48,518 research outputs found

    Cycle-to-cycle control of swing phase of paraplegic gait induced by surface electrical stimulation

    Get PDF
    Parameterised swing phase of gait in paraplegics was obtained using surface electrical stimulation of the hip flexors, hamstrings and quadriceps; the hip flexors were stimulated to obtain a desired hip angle range, the hamstrings to provide foot clearance in the forward swing, and the quadriceps to acquire knee extension at the end of the swing phase. We report on two main aspects; optimisation of the initial stimulation parameters, and parameter adaption (control). The initial stimulation patterns were experimentally optimised in two paraplegic subjects using a controlled stand device, resulting in an initial satisfactory swinging motion in both subjects. Intersubject differences appeared in the mechanical output (torque joint) per muscle group. During a prolonged open-loop controlled trial with the optimised but unregulated stimulation onsets and burst duration for the three muscle groups, the hip angle range per cycle initially increased above the desired value and subsequently decreased below it. The mechanical performance of the hamstrings and quadriceps remained relatively unaffected. A cycle-to-cycle controller was then designed, operating on the basis of the hip angle ranges obtained in previous swings. This controller successfully adapted the burst duration of the hip flexors to maintain the desired hip angle range

    4D Continuous Descent Operations Supported by an Electronic Flight Bag

    Get PDF
    This paper describes a set of flight simulation experiments carried out with the DLR’s Generic Cockpit Simulator (GECO). A new concept named time and energy managed operations (TEMO), which aims to enable advanced four dimensional (4D) continuous descent operations (CDO), was evaluated after three full days of experiments with qualified pilots. The experiment focused to investigate the possibility of using a 4D-controller on a modern aircraft with unmodified or only slightly modified avionic systems. This was achieved by executing the controller in an Electronic Flight Bag (EFB) and using the pilot to “close the loop” by entering speed and other advisories into the autopilot Flight Control Unit (FCU). The outcome of the experiments include subjective (questionnaires answered by pilots) and objective (trajectory logs) data. Data analysis showed a very good acceptance (both in terms of safety and operability of the procedure) from the participating crews, only with minor suggestions to be improved in future versions of the controller and the speed advisories update rates. Good time accuracy all along the descent trajectory was also observed.Peer ReviewedPostprint (published version

    A Learning-based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles

    Full text link
    Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise Control (CACC), which is an automated application, provides drivers with extra benefits such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as cutting-into the CACC platoons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part of this paper. Next, a probabilistic framework is developed in which the cut-in probability is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in probability to enhance its reaction against the detected dangerous cut-in maneuver. The overall system is implemented and its performance is evaluated using realistic driving scenarios from Safety Pilot Model Deployment (SPMD).Comment: 10 pages, Submitted as a journal paper at T-I

    Design and Development of an Affordable Haptic Robot with Force-Feedback and Compliant Actuation to Improve Therapy for Patients with Severe Hemiparesis

    Get PDF
    The study describes the design and development of a single degree-of-freedom haptic robot, Haptic Theradrive, for post-stroke arm rehabilitation for in-home and clinical use. The robot overcomes many of the weaknesses of its predecessor, the TheraDrive system, that used a Logitech steering wheel as the haptic interface for rehabilitation. Although the original TheraDrive system showed success in a pilot study, its wheel was not able to withstand the rigors of use. A new haptic robot was developed that functions as a drop-in replacement for the Logitech wheel. The new robot can apply larger forces in interacting with the patient, thereby extending the functionality of the system to accommodate low-functioning patients. A new software suite offers appreciably more options for tailored and tuned rehabilitation therapies. In addition to describing the design of the hardware and software, the paper presents the results of simulation and experimental case studies examining the system\u27s performance and usability

    Machine learning-guided synthesis of advanced inorganic materials

    Full text link
    Synthesis of advanced inorganic materials with minimum number of trials is of paramount importance towards the acceleration of inorganic materials development. The enormous complexity involved in existing multi-variable synthesis methods leads to high uncertainty, numerous trials and exorbitant cost. Recently, machine learning (ML) has demonstrated tremendous potential for material research. Here, we report the application of ML to optimize and accelerate material synthesis process in two representative multi-variable systems. A classification ML model on chemical vapor deposition-grown MoS2 is established, capable of optimizing the synthesis conditions to achieve higher success rate. While a regression model is constructed on the hydrothermal-synthesized carbon quantum dots, to enhance the process-related properties such as the photoluminescence quantum yield. Progressive adaptive model is further developed, aiming to involve ML at the beginning stage of new material synthesis. Optimization of the experimental outcome with minimized number of trials can be achieved with the effective feedback loops. This work serves as proof of concept revealing the feasibility and remarkable capability of ML to facilitate the synthesis of inorganic materials, and opens up a new window for accelerating material development

    A Hierarchical Emotion Regulated Sensorimotor Model: Case Studies

    Full text link
    Inspired by the hierarchical cognitive architecture and the perception-action model (PAM), we propose that the internal status acts as a kind of common-coding representation which affects, mediates and even regulates the sensorimotor behaviours. These regulation can be depicted in the Bayesian framework, that is why cognitive agents are able to generate behaviours with subtle differences according to their emotion or recognize the emotion by perception. A novel recurrent neural network called recurrent neural network with parametric bias units (RNNPB) runs in three modes, constructing a two-level emotion regulated learning model, was further applied to testify this theory in two different cases.Comment: Accepted at The 5th International Conference on Data-Driven Control and Learning Systems. 201

    Signal processing methodologies for an acoustic fetal heart rate monitor

    Get PDF
    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use

    Research on computational and display requirements for human control of space vehicle boosters. Part 1 - Theory and results Final report, 22 Jun. - 22 Oct. 1966

    Get PDF
    Computational and display requirements for man-computer guidance and control techniques for reusable manned spacecraf
    • …
    corecore