12 research outputs found

    Author index volume 118 (1993)

    Get PDF

    Solving an Avionics Real-Time Scheduling Problem by Advanced IP-Methods

    Get PDF
    We report on the solution of a real-time scheduling problem that arises in the design of software-based operation control of aircraft. A set of tasks has to be distributed on a minimum number of machines and offsets of the tasks have to be computed. The tasks emit jobs periodically starting at their offset and then need to be executed on the machines without any delay. Also, further constraints in terms of memory usage and redundancy requirements have to be met. Approaches based on standard integer programming formulations fail to solve our real-world instances. By exploiting structural insights of the problem we obtain an IP-formulation and primal heuristics that together solve the real-world instances to optimality and outperform text-book approaches by several orders of magnitude. Our methods lead, for the first time, to an industry strength tool to optimally schedule aircraft sized problems

    Preemptive Uniprocessor Scheduling of Mixed-Criticality Sporadic Task Systems

    Full text link

    Preemptive Uniprocessor Scheduling of Mixed-Criticality Sporadic Task Systems

    Get PDF
    International audienceSystems in many safety-critical application domains are subject to certification requirements. For any given system, however, it may be the case that only a subset of its functionality is safety-critical and hence subject to certification; the rest of the functionality is non-safety-critical and does not need to be certified, or is certified to lower levels of assurance. The certification-cognizant runtime scheduling of such mixed-criticality systems is considered. An algorithm called EDF-VD (for Earliest Deadline First with Virtual Deadlines) is presented: this algorithm can schedule systems for which any number of criticality levels are defined. Efficient implementations of EDF-VD, as well as associated schedulability tests for determining whether a task system can be correctly scheduled using EDF-VD, are presented. For up to 13 criticality levels, analyses of EDF-VD, based on metrics such as processor speedup factor and utilization bounds, are derived, and conditions under which EDF-VD is optimal with respect to these metrics are identified. Finally, two extensions of EDF-VD are discussed that enhance its applicability. The extensions are aimed at scheduling a wider range of task sets, while preserving the favorable worst-case resource usage guarantees of the basic algorithm

    An Optimization Approach to a Geometric Packing Problem

    Get PDF
    We investigate several geometric packing problems (derived from an industrial setting) that involve fitting patterns of regularly spaced disks without overlap. We first derive conditions for achieving the feasible placement of a given set of patterns and construct a network formulation that, under certain conditions, allows the calculation of such a placement. We then discuss certain related optimization problems (e.g., fitting together the maximum number of patterns) and broaden the field of application by showing a connection to the well-known Periodic Scheduling Problem. In addition, a variety of heuristics are developed for solving large-scale instances of these provably difficult packing problems. The results of extensive computational testing, conducted on these heuristics, are presented

    Schedulability, Response Time Analysis and New Models of P-FRP Systems

    Get PDF
    Functional Reactive Programming (FRP) is a declarative approach for modeling and building reactive systems. FRP has been shown to be an expressive formalism for building applications of computer graphics, computer vision, robotics, etc. Priority-based FRP (P-FRP) is a formalism that allows preemption of executing programs and guarantees real-time response. Since functional programs cannot maintain state and mutable data, changes made by programs that are preempted have to be rolled back. Hence in P-FRP, a higher priority task can preempt the execution of a lower priority task, but the preempted lower priority task will have to restart after the higher priority task has completed execution. This execution paradigm is called Abort-and-Restart (AR). Current real-time research is focused on preemptive of non-preemptive models of execution and several state-of-the-art methods have been developed to analyze the real-time guarantees of these models. Unfortunately, due to its transactional nature where preempted tasks are aborted and have to restart, the execution semantics of P-FRP does not fit into the standard definitions of preemptive or non-preemptive execution, and the research on the standard preemptive and non-preemptive may not applicable for the P-FRP AR model. Out of many research areas that P-FRP may demands, we focus on task scheduling which includes task and system modeling, priority assignment, schedulability analysis, response time analysis, improved P-FRP AR models, algorithms and corresponding software. In this work, we review existing results on P-FRP task scheduling and then present our research contributions: (1) a tighter feasibility test interval regarding the task release offsets as well as a linked list based algorithm and implementation for scheduling simulation; (2) P-FRP with software transactional memory-lazy conflict detection (STM-LCD); (3) a non-work-conserving scheduling model called Deferred Start; (4) a multi-mode P-FRP task model; (5) SimSo-PFRP, the P-FRP extension of SimSo - a SimPy-based, highly extensible and user friendly task generator and task scheduling simulator.Computer Science, Department o

    Preemptive and Non-Preemptive Real-Time UniProcessor Scheduling

    Get PDF
    Projet REFLECSScheduling theory, as it applies to hard-real-time environment, has been widely studied in the last twenty years and it might be unclear to make it out within the plethora of results available. Our goal is first to collect in a single paper the results known for uniproces sor, non-idling, preemptive/non-preemptive, fixed/dynamic priority driven contexts, consid ering general task sets as a central figure for the description of possible processor loads. Second to establish new results when needed. In particular, optimality, feasibility conditions and worst-case response times are examined largely by utilizing the concepts of workload, processor demand and busy period. Some classic extensions such as jitter, resource sharing are also considered. Although this work is not oriented toward a formal comparison of these results, it appears that preemptive and non-preemptive scheduling are closely related and that the analysis of fixed versus dynamic scheduling might be unified according to the concept of higher priority busy period. In particular, we introduce the notion of deadline-d busy period for EDF sched ules, that we conjecture to be an interesting parallel of the level-i busy period, a concept already used in the analysis of fixed priority driven scheduling
    corecore