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Abstract

We investigate several geometric packing problems (derived from an industrial setting) that involve

fitting patterns of regularly spaced disks without overlap. We first derive conditions for achieving the

feasible placement of a given set of patterns and construct a network formulation that, under certain

conditions, allows the calculation of such a placement. We then discuss certain related optimization

problems (e.g., fitting together the maximum number of patterns) and broaden the field of application

by showing a connection to the well-known Periodic Scheduling Problem. In addition, a variety of

heuristics are developed for solving large-scale instances of these provably difficult packing problems.

The results of extensive computational testing, conducted on these heuristics, are presented.
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Chapter 1

Introduction

In this dissertation, we are concerned with the problem of fitting together objects that occur peri-

odically. These objects can be intervals on the number line or shapes in the plane. This research

was motivated by the following example from an industrial setting:

A company uses a machine to drill holes in wheels to attach the wheels to vehicles with lug nuts.

The holes are arranged in patterns. Each pattern has a specific number of holes, all with the same

inner diameter, whose centers lie, evenly spaced, around the outer circumference of a larger circle.

The factory uses templates to guide the machine in drilling patterns of holes in multiple wheel types.

A template can contain multiple patterns whose outer circles are concentric. The company wishes to

construct a solution that uses the fewest number of templates to accommodate a given set of patterns.

To illustrate this motivating problem, we present the following simplified example.

Example 1.0.1: We are given a set P1 containing two patterns, the first (P1) comprising three

holes, each of radius 1 unit, evenly spaced around a circle of radius 11.5 units, and the second (P2)

comprising four holes, each of radius 2 units, evenly spaced around a circle of radius 13 units. Can

we fit both patterns without overlap on the same template? These patterns are shown in Figure

1.0.1(a) and Figure 1.0.1(b).

We can arbitrarily designate a hole of each pattern as the first and then number the remaining

1



1.0.1(a): Pattern P1 1.0.1(b): Pattern P2

Figure 1.0.1: P1: Patterns

holes sequentially in a clockwise direction. We can now arrange these patterns so that they do not

overlap with the first hole of P2 lying immediately after (in a clockwise sense) the first hole of P1,

as shown in Figure 1.0.2(a). Notice that we can continue to rotate P2 clockwise and the patterns

will not overlap until the second hole of P2 touches the second hole of P1, as shown in Figure 1.0.2(b).

In this example, the patterns can fit together. Moreover, there is a range of relative displacements

between these two patterns such that they can be feasibly arranged.

Another example of fitting together periodic objects is found in periodic scheduling. Burkhart [7]

describes this in a planar setting where two regular polygons are inscribed inside a circle. The

problem is then to maximize the minimum distance between any two corners of these polygons. An

application of this occurs when regularly operating trains share a track. If the trains arrive with

different periodicities, we wish to maximize the minimum time between trains for safety reasons.

These ideas have been extended to multiple polygons by Vince [27].

By far the most common instances of periodic scheduling involve events on the number line which

reoccur at regular intervals over an infinite horizon. These problems originally arose in the schedul-

2



1.0.2(a): Feasible solution 1 1.0.2(b): Feasible solution 2

Figure 1.0.2: P1: Solutions

ing of tasks on a computer where several types of requests are submitted [5, 10, 20]. A request

is an input that requires some processing on the computer. An example of this occurs where a

sensor provides a reading once every five seconds and every reading needs to be analyzed by the

processor. In general, each type of request occurs at known regular intervals. Each request takes a

certain amount of time to process and has to be dealt with within some fixed time period (usually

before the next occurrence of the same type of request). The problem is then to specify a schedule

for the processor that identifies which request to process and when. These problems usually allow

preemption of tasks. That is, a task can be halted part way through processing so that another job

can be processed; the original task can be resumed later without penalty.

The next development was to enforce that each request has to be processed immediately. The

requests then become events that occur with a fixed period. This is commonly called periodic

assignment: the problem is to assign the incoming requests to the minimum possible number of

processors so that all requests are handled. Orlin [22] showed that, when all events have the same

period and any processor can handle any event, periodic assignment can be solved in polynomial

time. This specific problem arises in the arena of airline scheduling where regularly scheduled flights

must be covered by equipment and crews. This problem can be extended to situations where each

3



occurrence of the same event must be handled by the same processor (known as constrained peri-

odic assignment); in this case periodic assignment becomes NP-hard since it is equivalent to coloring

circular-arc graphs [19, 22]. Alternatively, the requirement that all events have the same period can

be relaxed [19, 23]; in this case the problem is known as unconstrained periodic assignment which

is also NP-hard.

In some situations, events will occur periodically once they are started. Choosing the start time of

a periodic event thus determines the times of future occurrences of the same event [18, 28]. The

problem is then to find offsets such that a set of periodic events do not overlap. This problem is

known as constrained periodic scheduling since we wish to determine a schedule that governs when

the events occur. This formulation approximates the problem of fitting regularly-spaced patterns of

holes discussed in Example 1.0.1 above and is of major interest in this dissertation (Chapter 3). It

also has applications in the design of airplane computer systems [11]. Heuristics for this formulation

have been developed [28] for the special case where all events have integer periods and take one time

unit to process. Additionally, heuristics have been developed [18] for the case where the periods of

the events are harmonic (i.e., events can be ordered so that the period of event i divides the period

of event j for i < j).

Significant research has also addressed the problem of scheduling periodic tasks where the period is a

decision variable as well [2, 4, 13]. The aim of these problems is typically to minimize some function

of the period lengths. This formulation has a number of applications including the dissemination

of data via unidirectional broadcast [3]. In this application, customers arrive according to some

random distribution and wish to access certain data. The entity responsible for transmitting that

data does not have the bandwidth to process all requests on demand, so it transmits all data that

could possibly be requested on a periodic schedule. The goal is to find a transmission schedule that

minimizes the wait time for the customers. Another application involves the replenishment of stock,

where a store may need to schedule periodic deliveries by their suppliers so as to never run out of

stock. Yet another example is that of performing routine maintenance on equipment, where the

cost of running that equipment is proportional to the length of time that has passed since the last

maintenance was performed.

4



Serafini and Ukovich [26] propose a more general model for solving periodic scheduling problems

that allows for several of the different modifications listed above. Their approach involves a network

formulation which includes a node for each occurrence of each event, and they provide a pseudo-

polynomial time solution algorithm.

This dissertation is organized as follows. In Chapter 2 we formulate the problem of fitting patterns

of disks without overlap and prove various feasibility criteria for this problem. We also introduce

mixed integer programming and network algorithms as techniques for finding offsets that lead to

non-overlapping patterns. Chapter 3 shows how the general problem of fitting patterns together

without overlap can be approximated by the problem of scheduling periodic maintenance. Next,

the complexities of the various problems discussed are established in Chapter 4. Finally, we develop

several heuristics and detail their performance in Chapters 5 and 6.

5



Chapter 2

Problem Formulation and

Development

In this chapter we establish mathematical requirements that govern whether patterns overlap or

not. We start by formally defining patterns and detailing some of a pattern’s basic properties. We

then derive feasibility conditions for two patterns to fit without overlap, and extend those results to

multiple patterns. Next, we define a set of problems relating to the distribution of such patterns onto

feasible templates and formulate those problems as mixed integer programming problems. Finally, we

relate the derived feasibility conditions to the dual feasibility conditions for the well-studied shortest

path problem in networks. This results in our defining an appropriate network and considering

the conditions under which this network can be used to guide algorithms for the non-overlapping

placement of patterns.

2.1 Definitions and Properties

We define a pattern to be a set of open disks on the plane. Each pattern P consists of n disks of

radius ρ, arranged so that their centers are evenly spaced around the circumference of a circle of

radius R. To eliminate the need to account for the uninteresting special case when n = 1 we will

assume throughout this dissertation that n > 1. The disks themselves will be indexed by the set

of residues Z/nZ but can be referred to without confusion by any element of the equivalence class.

6



The first disk of the pattern will be that indexed by zero and the angle of rotation of the center of

that first disk will be denoted as ϕ and measured in radians.

Definition 2.1.1 A pattern P maps a starting angle of rotation ϕ to a set of disks on the plane:

i.e.,

P (ϕ) =
⋃
k∈Z

P (ϕ, k) ⊆ R2.

Each disk P (ϕ, k) is centered at

Å
R,ϕ+ k

2π

n

ã
, has radius ρ and forms the open set

P (ϕ, k) =

ß
(r, θ)

∣∣∣∣r2 − 2rR cos

Å
θ − ϕ− k 2π

n

ã
+R2 < ρ2

™
.

The mapping is completely defined by the strictly positive constants R, ρ ∈ R and n ∈ Z, and thus

can also be designated as P = (R,n, ρ).

Throughout this dissertation we will reference certain variables either as unknowns or as given fixed

values. To differentiate between these, we will typically denote unknowns as unadorned symbols

(i.e., ϕ) and fixed, known values will be given bars (i.e., ϕ) or some similar marking.

Definition 2.1.2 A template is a set of patterns P = {Pi | i ∈ I} with fixed starting angles

Φ = {ϕi | i ∈ I} and will be denoted T = P(Φ) = {Pi(ϕi) | i ∈ I}. Furthermore, if

Pi(ϕi) ∩ Pj(ϕj) = ∅, ∀i 6= j

then the template T is referred to as a feasible template and the starting positions Φ are said to be

valid for P.

The collection of all starting positions for which P is a feasible template is defined as

S(P) = {Φ | P(Φ) is a feasible template}.

7



The following lemma details some of the basic symmetrical properties of a pattern which we will

exploit later.

Lemma 2.1.3 A pattern P = (R,n, ρ) has the following immediate properties:

(a) Disks P (ϕ, k) and P (ϕ, k+ 1) will overlap unless ρ ≤ R sin
(π
n

)
. Since this is undesirable, we

will assume that this holds for all given patterns.

(b) P (ϕ) = P

Å
ϕ+ `

2π

n

ã
for all ` ∈ Z and for all ϕ ∈ R.

(c) If point (r, θ) ∈ P (ϕ) then Å
r, θ + `

2π

n

ã
∈ P (ϕ), ∀` ∈ Z.

(d) If point (r, θ) ∈ P (ϕ) then R− ρ < r < R+ ρ.

Proof: Let P = (R,n, ρ) be a given pattern.

(a) Figure 2.1.1 shows two consecutive disks of pattern P = (R,n, ρ) (drawn in blue and centered

at C1 and C2) and the circle the centers of P lie on (drawn in black and centered at O). In

order for the blue disks to be disjoint, we need the line segment C1C2 (drawn in red) to be

longer than twice the radius of the disks. Recall that the line segments OC1 and OC2 have

length R and the minor angle ∠C1OC2 has measure
2π

n
. Then the disks will be disjoint iff

(2ρ)2 ≤ R2 +R2 − 2RR cos

Å
2π

n

ã
4ρ2 ≤ 2R2 − 2R2 cos

Å
2π

n

ã
4ρ2 ≤ 2R2

Å
1− cos

Å
2π

n

ãã
4ρ2 ≤ 4R2

Ç
1− cos

(
2πn
)

2

å
ρ2 ≤ R2 sin2

(π
n

)
ρ ≤ R sin

(π
n

)

8



O
C1

C2

Figure 2.1.1: Non-overlapping requirement

(b) By definition

P

Å
ϕ+ `

2π

n

ã
=
⋃
k∈Z

ß
(r, θ)

∣∣∣∣r2 − 2rR cos

Å
θ −
Å
ϕ+ `

2π

n

ã
− k 2π

n

ã
+R2 < ρ2

™
=
⋃
k∈Z

ß
(r, θ)

∣∣∣∣r2 − 2rR cos

Å
θ − ϕ− (`+ k)

2π

n

ã
+R2 < ρ2

™
=
⋃
k′∈Z

ß
(r, θ)

∣∣∣∣r2 − 2rR cos

Å
θ − ϕ− k′ 2π

n

ã
+R2 < ρ2

™
= P (ϕ)

where k′ = k + `.

(c) Let (r, θ) ∈ P (ϕ) be given. Then there exists k ∈ Z such that (r, θ) ∈ P (ϕ, k). Thus

r2 − 2rR cos

Å
θ − ϕ− k 2π

n

ã
+R2 < ρ2

r2 − 2rR cos

Å
θ + `

2π

n
− ϕ− k 2π

n
− `2π

n

ã
+R2 < ρ2

r2 − 2rR cos

ÅÅ
θ + `

2π

n

ã
− ϕ− (k + `)

2π

n

ã
+R2 < ρ2

Thus

Å
r, θ + `

2π

n

ã
∈ P (ϕ, k + `) ⊂ P (ϕ).
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(d) Let (r, θ) ∈ P (ϕ). Then there exists k ∈ Z such that

r2 − 2rR cos

Å
θ − ϕ− k 2π

n

ã
+R2 < ρ2

r2 − 2rR+R2 < ρ2

(r −R)2 < ρ2

|r −R| < ρ

−ρ < r −R < ρ

R− ρ < r < R+ ρ

As discussed in Chapter 1, a fundamental problem of interest in this dissertation is that of partition-

ing a set of patterns P = {Pi | i ∈ I} into the fewest number of feasible templates. To achieve this,

we will partition the index set I into a collection of disjoint sets I = {Iu | u ∈ U}; accordingly the set

of patterns P is partitioned into sets Pu = {Pi | i ∈ Iu} so that the templates Tu = {Pi(ϕi) | i ∈ Iu}

are feasible. This problem can be stated as the Minimum Templates Problem (MinTemp):

MinTemp(P):

Given a set of patterns P = {Pi | i ∈ I}, determine a partition of I, I = {Iu | u ∈

U}, with minimum |U |, such that valid starting positions exist for each Pu = {Pi |

i ∈ Iu}.

It is easy to see a connection between this problem and the well-known Bin Packing Problem [6].

However, whereas it is relatively simple to determine whether or not an item fits in a bin, it is more

complicated to determine whether a set of patterns can form a feasible template. As a result, we

focus first on this subproblem, the Feasible Fit Problem (FFP):

FFP(P):

Given a set of patterns P = {Pi | i ∈ I}, does there exist a set of starting positions

Φ such that P(Φ) is a feasible template?

10



If it is not possible to fit all patterns in a set on a single template, we want to determine a largest

possible feasible template that can be formed. This problem is denoted as the Maximum Template

Problem (MaxTemp):

MaxTemp(P):

Given a set of patterns P = {Pi | i ∈ I}, determine a largest subset I1 ⊆ I such

that valid starting positions exist for P1 = {Pi | i ∈ I1}.

With the goal of solving these three problems, we devote the rest of this chapter to deriving tem-

plate feasibility conditions and using them to formulate the problems in ways that lead to solution

techniques.

2.2 Two Patterns

We first investigate conditions under which two patterns Pi(ϕi) and Pj(ϕj) fit on the same feasible

template. We could compare all possible pairs of disks Pi(ϕi, ki) and Pj(ϕj , kj), but this would be

cumbersome. Alternatively, we could look at the disks of Pj(ϕj) independently. For Pj(ϕj , kj) not

to overlap with any disk of Pi(ϕi), it must lie strictly “between” two consecutive disks of Pi(ϕi).

Unfortunately this approach is still algorithmically unwieldy, but it will form the theoretical basis

for our approach. To start we consider a simple case.

Lemma 2.2.1 Let patterns Pi = (Ri, ni, ρi) and Pj = (Rj , nj , ρj) be given such that ni | nj. Let

ϕi, ϕj ∈ R be given. Then {Pi(ϕi), Pj(ϕj)} is feasible iff Pi(ϕi, k) ∩ Pj(ϕj) = ∅ for any k ∈ Z.

Proof: (⇒)

If {Pi(ϕi), Pj(ϕj)} is feasible then Pi(ϕi) ∩ Pj(ϕj) = ∅ and this implies that Pi(ϕi, k) ∩ Pj(ϕj) = ∅

for all k ∈ Z.

(⇐)

Assume that {Pi(ϕi), Pj(ϕj)} is not feasible and thus Pi(ϕi) ∩ Pj(ϕj) 6= ∅. Let k ∈ Z be given

and let (r, θ) ∈ Pi(ϕi) ∩ Pj(ϕj). Then there exists ki, kj ∈ Z such that (r, θ) ∈ Pi(ϕi, ki) and

(r, θ) ∈ Pj(ϕj , kj).

Consider the set

I :=

ßÅ
r, θ + k

2π

ni

ã∣∣∣∣k ∈ Z
™
.

11



From Property 2.1.3(c) and the fact that (r, θ) ∈ Pi(ϕi), we get I ⊆ Pi(ϕi). Additionally, we have

I =

ßÅ
r, θ + k

nj
ni
· 2π

nj

ã∣∣∣∣k ∈ Z
™

and since ni | nj , k
nj
ni
∈ Z for all k, so we again get I ⊆ Pj(ϕj) from Property 2.1.3(c). Thus

I ⊆ Pi(ϕi) ∩ Pj(ϕj). In fact

Å
r, θ + k

2π

ni

ã
∈ Pi(ϕi, ki + k) for all k ∈ Z. Specifically for k = k − ki,

this implies that

Å
r, θ + (k − ki)

2π

ni

ã
, which is an element of I ⊆ Pj(ϕj), is contained in Pi(ϕi, k).

Thus Pj(ϕj) ∩ Pi(ϕi, k) 6= ∅.

Before proceeding, we introduce the following notation common in number theory [16]:

(a, b) = gcd(a, b) [a, b] = lcm(a, b)

Lemma 2.2.2 Let patterns Pi = (Ri, ni, ρi) and Pj = (Rj , nj , ρj) be given. Define Pij =
(
Ri, [ni, nj ], ρi

)
.

Then {Pi(ϕi), Pj(ϕj)} is a feasible template iff {Pij(ϕi), Pj(ϕj)} is a feasible template.

Proof: (⇐)

Assume that Pij(ϕi) ∩ Pj(ϕj) = ∅. Consider

Pi(ϕi) =

ß
(r, θ)

∣∣∣∣r2 − 2rRi cos

Å
θ − ϕi − k

2π

ni

ã
+R2

i < ρ2i , k ∈ Z
™

=

ß
(r, θ)

∣∣∣∣r2 − 2rRi cos

Å
θ − ϕi − k

2πnj
(ni, nj)[ni, nj ]

ã
+R2

i < ρ2i , k ∈ Z
™

=

ß
(r, θ)

∣∣∣∣r2 − 2rRi cos

Å
θ − ϕi − k

nj
(ni, nj)

2π

[ni, nj ]

ã
+R2

i < ρ2i , k ∈ Z
™

Since (ni, nj) | nj we have k
nj

(ni, nj)
∈ Z for all k ∈ Z. Thus

Pi(ϕi) ⊆ Pij(ϕi).

So if Pij(ϕi)∩Pj(ϕj) = ∅ then Pi(ϕi)∩Pj(ϕj) = ∅ and thus {Pi(ϕi), Pj(ϕj)} is a feasible template.
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(⇒)

Let ϕi and ϕj be given such that Pj(ϕj) ∩ Pij(ϕi) 6= ∅. We wish to show that Pi(ϕi) ∩ Pj(ϕj) 6= ∅.

Let (r, θ) be any point in Pj(ϕj) ∩ Pij(ϕi) and define

J =

ßÅ
r, θ + kj

2π

nj

ã∣∣∣∣kj ∈ Z
™
.

Since (r, θ) ∈ Pj(ϕj), Property 2.1.3(c) gives J ⊆ Pj(ϕj). Similarly, if we define

H =

ßÅ
r, θ + k

2π

[ni, nj ]

ã∣∣∣∣k ∈ Z
™

then H ⊆ Pij(ϕi). Furthermore, consider (r, θ̂) ∈ H ∩ Pi(ϕi).1 Since (r, θ̂) ∈ H there exists k̂ ∈ Z

such that

θ̂ = θ + k̂
2π

[ni, nj ]
.

Define

I =

ßÅ
r, θ + k̂

2π

[ni, nj ]
+ ki

2π

ni

ã∣∣∣∣ki ∈ Z
™
.

Since

Å
r, θ + k̂

2π

[ni, nj ]

ã
∈ Pi(ϕi), Property 2.1.3(c) gives I ⊆ Pi(ϕi).

Let ki, kj ∈ Z solve the diophantine equation

k̂(ni, nj) = kjni − kinj . (2.2.1)

We know that such ki, kj exist since (ni, nj) | k̂(ni, nj). Thus

k̂(ni, nj) = kjni − kinj

k̂
ninj

[ni, nj ]
+ kinj = kjni

k̂
2π

[ni, nj ]
+ ki

2π

ni
= kj

2π

nj
.

This gives Å
r, θ + k̂

2π

[ni, nj ]
+ ki

2π

ni

ã
=

Å
r, θ + kj

2π

nj

ã
.

1Recall that Pij was defined so that some of the disks of Pij are also disks of Pi. Since H has one point in each
disk in Pij(ϕi) at least one of those points is in a disk of Pi(ϕi) and so H ∩ Pi(ϕi) 6= ∅.
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From (2.2.1) Å
r, θ + kj

2π

nj

ã
=

Å
r, θ + k̂

2π

[ni, nj ]
+ ki

2π

ni

ã
∈ I

and we also know Å
r, θ + kj

2π

nj

ã
∈ J.

This implies that I ∩ J 6= ∅. Finally, since I ⊆ Pi(ϕi) and J ⊆ Pj(ϕj), Pi(ϕi) ∩ Pj(ϕj) 6= ∅ as

desired.

Combining the previous two lemmas, we can now check that two patterns Pi(ϕi) and Pj(ϕj) do not

overlap simply by forming the pattern Pij = (Ri, [ni, nj ], ρi) and ensuring that Pj(ϕj , 0)∩Pij(ϕi) =

∅. This will form the basis of our approach for finding valid starting positions, but first we need to

deal with another special case.

Lemma 2.2.3 Let patterns Pi = (Ri, ni, ρi) and Pj = (Rj , nj , ρj) be such that |Ri −Rj | ≥ ρi + ρj.

Then any ϕi, ϕj ∈ R are valid for the template {Pi, Pj}.

Proof: Let patterns Pi = (Ri, ni, ρi) and Pj = (Rj , nj , ρj) satisfy |Ri−Rj | ≥ ρi + ρj . Assume that

Pi(ϕi, k) ∩ Pj(ϕj , `) 6= ∅ and let (r, θ) ∈ Pi(ϕi, k) ∩ Pj(ϕj , `) be given. Then

r2 − 2rRi cos

Å
θ − ϕi − k

2π

ni

ã
+R2

i < ρ2i r2 − 2rRj cos

Å
θ − ϕj − `

2π

nj

ã
+R2

j < ρ2j

r2 − 2rRi +R2
i < ρ2i r2 − 2rRj +R2

j < ρ2j

(r −Ri)2 < ρ2i (r −Rj)2 < ρ2j

|r −Ri| < |ρi| |r −Rj | < |ρj |

|Ri − r| < ρi |r −Rj | < ρj

and so, from the triangle inequality, we get

|Ri −Rj | = |Ri − r + r −Rj |

≤ |Ri − r|+ |r −Rj |

< ρi + ρj .
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Thus, if there exist ϕi, ϕj ∈ R such that {Pi(ϕi), Pj(ϕj)} is not feasible, then |Ri − Rj | < ρi + ρj .

Equivalently, if |Ri −Rj | ≥ ρi + ρj then {Pi(ϕi), Pj(ϕj)} is feasible for all ϕi, ϕj ∈ R.

Before continuing, it is useful to introduce the following notation:

βij =
2π

[ni, nj ]

and

δij =


2 arcsin

Ç 
(ρi + ρj)

2 − (Ri −Rj)2

4RiRj

å
, |Ri −Rj | < ρi + ρj

0, |Ri −Rj | ≥ ρi + ρj .

To show that δij is well defined, first note that since |Ri −Rj | < ρi + ρj , the operand of the square

root is non-negative. Also note that Property 2.1.3(a) implies that

ρi ≤ Ri sin

Å
π

ni

ã
≤ Ri

and similarly ρj ≤ Rj . Thus 
(ρi + ρj)2 − (Ri −Rj)2

4RiRj
≤
 

(Ri +Rj)2 − (Ri −Rj)2
4RiRj

=

 
4RiRj
4RiRj

= 1.

Thus the operand of the arcsine in the definition of δij is in the traditionally defined domain [−1, 1].

This results in 0 ≤ δij ≤ 2π for all i, j.

Finally, we can combine the previous three lemmas into the following main result that characterizes

the valid starting positions for any pair of patterns. The proof of this theorem is fairly lengthy and

can be found in Appendix A.
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Theorem 2.2.4 Let patterns Pi = (Ri, ni, ρi) and Pj = (Rj , nj , ρj) be given. Then {Pi(ϕi), Pj(ϕj)}

is feasible iff there exists k ∈ Z such that

kβij + δij ≤ ϕj − ϕi ≤ (k + 1)βij − δij . (2.2.2)

Moreover, if δij > 0 then k is unique.

Comment 2.2.5: The proof of Theorem 2.2.4 shows that k from inequality (2.2.2) has meaning

in the physical problem as well. Recall that, when a pattern was defined as a set of open disks,

those disks were indexed by k ∈ Z and the disk arbitrarily designated as first corresponds to the

disk where k = 0. Suppose we have two patterns, Pi(ϕi) and Pj(ϕj). We then form the pattern

Pij = (Ri, [ni, nj ], ρi) whose disks are indexed by kij and Pij(ϕi, 0) = Pi(ϕi, 0). Then Pj(ϕj , 0)

must lie between two disks of pattern Pij . These disks are Pij(ϕi, k) and Pij(ϕi, k + 1). Thus k is

just the relative offset between the indices of Pj and Pij . To illustrate, we offer the following example.

Example 2.2.6: Recall the set P1 from Example 1.0.1, with given patterns P1 = (11.5, 3, 1) and

P2 = (13, 4, 2). To start, we calculate the following values:

β12 =
2π

[n1, n2]
=

2π

[3, 4]
=
π

6
≈ 0.524

δ12 = 2 arcsin

 
(ρ1 + ρ2)2 − (R1 −R2)2

4R1R2
= 2 arcsin

 
(1 + 2)2 − (11.5− 13)2

4(11.5)(13)
= 2 arcsin

…
6.75

598
≈ 0.213

We use inequality (2.2.2) to verify that ϕ1 = 0 and ϕ2 = 0.75 are valid starting positions. We will

show later in Corollary 2.2.9 how to calculate k, but for now we assert the value k = 1. Then

kβ12 + δ12 = 1(0.524) + 0.213 (k + 1)β12 − δ12 = (1 + 1)0.524− 0.213

= 0.737 = 0.835

giving

0.737 ≤ 0.75 ≤ 0.835 (2.2.3)

kβ12 + δ12 ≤ ϕ2 − ϕ1 ≤ (k + 1)β12 − δ12.
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Notice that there are a range of starting positions that would lead to a feasible template. In fact

(2.2.3) shows that any starting positions that satisfy 0.737 ≤ ϕ2 − ϕ1 ≤ 0.835 would be valid for

P1, P2.

0

1

2
3

4

5

6

7

8
9

10

11

01

2 3

Figure 2.2.1: P1: The feasible template {P1(0), P2(0.75)}

Consider Figure 2.2.1 which contains the following:

• P1(0) shown as solid red disks,

• P2(0.75) shown as solid blue disks,

• P12(0) shown as both solid red disks and open red disks.

Both P2(0.75) and P12(0) have been labelled with their indexing integers. Notice that P2(0.75) does

not overlap with either P1(0) or P12(0) as the calculations predicted. Also, the geometric interpre-

tation of k = 1 is that P2(0.75, 0) lies between P12(0, 1) and P12(0, 2).

To remove any discomfort about the asymmetry of Theorem 2.2.4, we have the following corollary.
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Corollary 2.2.7 Suppose Pi = (Ri, ni, ρi) and Pj = (Rj , nj , ρj). If there exists k ∈ Z such that

kβij + δij ≤ ϕj − ϕi ≤ (k + 1)βij − δij

for some ϕi, ϕj ∈ R, then

k′βji + δji ≤ ϕi − ϕj ≤ (k′ + 1)βji − δji

where k′ = −k − 1.

Proof:

kβij + δij ≤ ϕj − ϕi ≤ (k + 1)βij − δij

(−k′ − 1)βij + δij ≤ ϕj − ϕi ≤ ((−k′ − 1) + 1)βij − δij

(k′ + 1)βij − δij ≥ ϕi − ϕj ≥ k′βij + δij

k′βji + δji ≤ ϕi − ϕj ≤ (k′ + 1)βji − δji

Example 2.2.8: Returning to the set of patterns P1 considered in Example 2.2.6, Corollary 2.2.7

implies that k′ = −k − 1 = −2. We verify that inequality (2.2.2) holds for P2(0.75) and P1(0).

k′β21 + δ21 = −2(0.524) + 0.213 (k′ + 1)β21 − δ21 = (−2 + 1)0.524− 0.213

= −0.835 = −0.737

giving

−0.835 ≤ −0.75 ≤ −0.737

k′β21 + δ21 ≤ ϕ1 − ϕ2 ≤ (k′ + 1)β21 − δ21
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Figure 2.2.2: P1: The feasible template {P2(0.75), P1(0)}

Consider Figure 2.2.2 which contains the following:

• P2(0.75) shown as solid blue disks,

• P1(0) shown as solid red disks,

• P21(0.75) shown as both solid blue disks and open blue disks.

Both P1(0) and P21(0.75) are labelled with their indexing integers. This time note that since k′ = −2,

P1(0, 0) lies between P21(0.75,−2) and P21(0.75,−1).

Theorem 2.2.4 gives a way of verifying that {ϕi, ϕj} ∈ S
(
{Pi, Pj}

)
, but it requires finding the value

of k first. The following corollary shows how this can be done.

Corollary 2.2.9 Let patterns Pi = (Ri, ni, ρi) and Pj = (Rj , nj , ρj) be given. If ϕi, ϕj are valid

for {Pi, Pj} then

k =

õ
ϕj − ϕi − δij

βij

û
satisfies inequality (2.2.2) from Theorem 2.2.4.
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Proof: Assume that Pi(ϕi) ∩ Pj(ϕj) = ∅. Thus, by Theorem 2.2.4, there exists k ∈ Z such that

kβij + δij ≤ ϕj − ϕi ≤ (k + 1)βij − δij

δij ≤ ϕj − ϕi − kβij ≤ βij − δij

δij − (ϕj − ϕi) ≤ −kβij ≤ βij − δij − (ϕj − ϕi)

ϕj − ϕi + δij − βij ≤ kβij ≤ ϕj − ϕi − δij
ϕj − ϕi + δij

βij
− 1 ≤ k ≤

ϕj − ϕi − δij
βij

.

As a result, we must have at least one integer inside the intervalï
ϕj − ϕi + δij

βij
− 1,

ϕj − ϕi − δij
βij

ò
(2.2.4)

and one such value is

k =

õ
ϕj − ϕi − δij

βij

û
.

Additionally, if δij > 0,
ϕj − ϕi − δij

βij
<
ϕj − ϕi + δij

βij
.

From this it follows that interval (2.2.4) has length strictly less than 1 and thus contains a unique

integer whose value is

k =

°
ϕj − ϕi + δij

βij
− 1

§
=

õ
ϕj − ϕi − δij

βij

û
. (2.2.5)

Example 2.2.10: Returning once again to the set P1 from Example 2.2.6, we calculate

k =

õ
ϕ2 − ϕ1 − δ12

β12

û
k′ =

õ
ϕ1 − ϕ2 − δ21

β21

û
=

õ
0.75− 0− 0.213

0.524

û
=

õ
0− 0.75− 0.213

0.524

û
= b1.025c = b−1.838c

= 1 = −2.
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Note that k = −k′ − 1, which is consistent with Corollary 2.2.7.

The following corollary enables us to characterize S
(
{Pi, Pj}

)
without involving k.

Corollary 2.2.11 Let patterns Pi = (Ri, ni, ρi) and Pj = (Rj , nj , ρj) be given. Then ϕi, ϕj are

valid for {Pi, Pj} iff
ϕj − ϕi + δij

βij
− 1 ≤

õ
ϕj − ϕi − δij

βij

û
.

Proof: (⇒)

Assume that {Pi(ϕi), Pj(ϕj)} is a feasible template. Then equation (2.2.5) from the proof of Corol-

lary 2.2.9 gives

k =

°
ϕj − ϕi + δij

βij
− 1

§
=

õ
ϕj − ϕi − δij

βij

û
.

This implies that
ϕj − ϕi + δij

βij
− 1 ≤

õ
ϕj − ϕi − δij

βij

û
as required.

(⇐)

Assume that
ϕj − ϕi + δij

βij
− 1 ≤

õ
ϕj − ϕi − δij

βij

û
.

Let

k =

õ
ϕj − ϕi − δij

βij

û
.

Then

kβij + δij =

õ
ϕj − ϕi − δij

βij

û
βij + δij

≤
ϕj − ϕi − δij

βij
· βij + δij

= ϕj − ϕi.
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Also, by our assumption

(k + 1)βij − δij =

Åõ
ϕj − ϕi − δij

βij

û
+ 1

ã
βij − δij

≥
Å
ϕj − ϕi + δij

βij
− 1 + 1

ã
βij − δij

=
ϕj − ϕi + δij

βij
· βij − δij

= ϕj − ϕi.

So

kβij + δij ≤ ϕj − ϕi ≤ (k + 1)βij − δij

and thus k fulfills the requirements of Theorem 2.2.4. This implies that Pi(ϕi) ∩ Pj(ϕj) = ∅.

Finally, the contents of S
(
{Pi, Pj}

)
can be verified by using the modulus function which we consider

as the smallest non-negative remainder (i.e., 0 ≤ a mod b < |b| for all a, b ∈ R). The inequalities

shown in the following two equivalent corollaries can be used to verify the validity of starting positions

in a way that is neater and possibly simpler to calculate than by using Corollary 2.2.11.

Corollary 2.2.12 Let patterns Pi = (Ri, ni, ρi) and Pj = (Rj , nj , ρj) be given. Then ϕi, ϕj are

valid for {Pi, Pj} iff

δij ≤ (ϕj − ϕi) mod βij ≤ βij − δij .

Proof: Theorem 2.2.4 guarantees that ϕi, ϕj are valid for {Pi, Pj} iff there exists k ∈ Z such that

kβij + δij ≤ ϕj − ϕi ≤ (k + 1)βij − δij

δij ≤ ϕj − ϕi − kβij ≤ βij − δij

which, since δij ≥ 0, holds iff

δij ≤ (ϕj − ϕi) mod βij ≤ βij − δij .
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We can equivalently express Corollary 2.2.12 as follows.

Corollary 2.2.13 Let patterns Pi = (Ri, ni, ρi) and Pj = (Rj , nj , ρj) be given. Then ϕi, ϕj are

valid for {Pi, Pj} iff (
ϕj − ϕi − δij

)
mod βij ≤ βij − 2δij . (2.2.6)

Next, given two patterns, we can determine whether valid starting positions exist using the following

corollary.

Corollary 2.2.14 Let patterns Pi = (Ri, ni, ρi) and Pj = (Rj , nj , ρj) be given. Then S
(
{Pi, Pj}

)
6=

∅ iff

βij ≥ 2δij .

Proof: (⇒)

Let (ϕi, ϕj) ∈ S
(
{Pi, Pj}

)
be given. Then, by Corollary 2.2.13 and the definition of the modulo

function

0 ≤
(
ϕj − ϕi − δij

)
mod βij ≤ βij − 2δij

giving

βij ≥ 2δij .

(⇐)

Assume that βij ≥ 2δij or 0 ≤ βij − 2δij . If we let ϕi = 0 and ϕj = δij then

(
ϕj − ϕi − δij

)
mod βij = (δij − 0− δij) mod βij

= 0

≤ βij − 2δij .

Corollary 2.2.13 then shows that (ϕi, ϕj) ∈ S
(
{Pi, Pj}

)
.
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Example 2.2.15: Consider again the set P1 from Example 2.2.6. Starting with Corollary 2.2.14,

we verify that

β12 = 0.524 ≥ 0.426 = 2δ12

and so valid starting positions must exist for {P1, P2}. Next, let us verify that ϕ1 = 0 and ϕ2 = 0.75

are valid using the inequality from Corollary 2.2.13.

(ϕ2 − ϕ1 − δ12) mod β12 = (0.75− 0− 0.213) mod 0.524

= (0.537) mod 0.524

= 0.013

≤ 0.098

= 0.524− 0.426

= β12 − 2δ12.

Finally, as the next corollary shows, if the two patterns have the same outer radius R, then the

calculation of δij becomes significantly simpler.

Corollary 2.2.16 Let patterns Pi = (R,ni, ρi) and Pj = (R,nj , ρj) be given (i.e., Ri = Rj = R).

Then {Pi(ϕi), Pj(ϕj)} is a feasible template iff there exists k ∈ Z such that

kβij + 2 arcsin
(ρi + ρj

2R

)
≤ ϕj − ϕi ≤ (k + 1)βij − 2 arcsin

(ρi + ρj
2R

)
. (2.2.7)

Proof: Theorem 2.2.4 implies that {Pi(ϕi), Pj(ϕj)} is feasible iff there exists k ∈ Z such that

kβij + 2 arcsin

 
(ρi + ρj)2 − (Ri −Rj)2

4RiRj
≤ ϕj − ϕi ≤ (k + 1)βij − 2 arcsin

 
(ρi + ρj)2 − (Ri −Rj)2

4RiRj

kβij + 2 arcsin

 
(ρi + ρj)2

4R2
≤ ϕj − ϕi ≤ (k + 1)βij − 2 arcsin

 
(ρi + ρj)2

4R2

kβij + 2 arcsin
(ρi + ρj

2R

)
≤ ϕj − ϕi ≤ (k + 1)βij − 2 arcsin

(ρi + ρj
2R

)
.
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2.3 Multiple Patterns

We wish to extend the theory developed in the preceding section for two patterns to multiple patterns.

This will enable us to solve the Feasible Fit Problem (FFP). Since a pattern is just a subset of R2,

we can determine if a template is feasible by pairwise comparisons of the patterns in the template.

This approach could be implemented in O(|I|2N2) time, where N is the size of the largest ni, but

as this is pseudopolynomial it seems impractical. Recall that the inequality from Corollary 2.2.14

does not describe the ϕi’s to be used; rather, it guarantees the existence of suitable ϕi values. To

illustrate, assume we have three patterns (R1, n1, ρ1), (R2, n2, ρ2), (R3, n3, ρ3) where ni, ρi and Ri

pairwise satisfy the inequality from Corollary 2.2.14. Then we can find non-empty sets S
(
{P1, P2}

)
,

S
(
{P1, P3}

)
and S

(
{P2, P3}

)
. The problem, however, is that the set

S
(
{P1, P2, P3}

)
={

(ϕ1, ϕ2, ϕ3)
∣∣∣ (ϕ1, ϕ2) ∈ S

(
{P1, P2}

)
, (ϕ1, ϕ3) ∈ S

(
{P1, P3}

)
, (ϕ2, ϕ3) ∈ S

(
{P2, P3}

)}

may be empty. Rather, we need to find ϕ1, ϕ2, ϕ3 that satisfy inequality (2.2.6) from Corollary 2.2.13

for all possible pairs. In other words, it is not sufficient to ensure the existence of ϕi’s pairwise; we

need the ϕi’s to be fixed first and then validated pairwise.

Before continuing, let us enforce a strict total ordering � on the patterns in the set. This will allow

us to consider each pair only once. We now present the following theorem, whose proof follows

directly from Theorem 2.2.4.
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Theorem 2.3.1 Suppose P = {Pi | i ∈ I} where Pi = (Ri, ni, ρi), and let � be a total order on I.

Then {Pi(ϕi) | i ∈ I} is a feasible template iff there exist kij ∈ Z, i ≺ j, such that

kijβij + δij ≤ ϕj − ϕi ≤ (kij + 1)βij − δij , ∀i ≺ j. (2.3.1)

Thus

S(P) =
{
{ϕi | i ∈ I}

∣∣ ∃kij ∈ Z 3 kijβij + δij ≤ ϕj − ϕi ≤ (kij + 1)βij − δij , ∀i ≺ j
}
. (2.3.2)

Example 2.3.2: Consider the set P2 containing three patterns P1 = (12, 3, 1), P2 = (11.5, 4, 1), P3 =

(12.5, 5, 1) shown in Figure 2.3.1. We use Corollary 2.2.13 to verify that {P1(0), P2(0.203), P3(0.671)}

is a feasible template.

2.3.1(a): P1 = (12, 3, 1) 2.3.1(b): P2 = (11.5, 4, 1) 2.3.1(c): P3 = (12.5, 5, 1)

Figure 2.3.1: P2: Fitting three patterns on a template

To begin, we calculate the following values:

β12 =
2π

[n1, n2]
=

2π

[3, 4]
≈ 0.524

β13 =
2π

[n1, n3]
=

2π

[3, 5]
≈ 0.419

β23 =
2π

[n2, n3]
=

2π

[4, 5]
≈ 0.314
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δ12 = 2 arcsin

 
(ρ1 + ρ2)2 − (R1 −R2)2

4R1R2
= 2 arcsin

 
(1 + 1)2 − (12− 11.5)2

4(12)(11.5)

= 2 arcsin

…
3.75

552
≈ 0.165

δ13 = 2 arcsin

 
(ρ1 + ρ3)2 − (R1 −R3)2

4R1R3
= 2 arcsin

 
(1 + 1)2 − (12− 12.5)2

4(12)(12.5)

= 2 arcsin

…
3.75

600
≈ 0.158

δ23 = 2 arcsin

 
(ρ2 + ρ3)2 − (R2 −R3)2

4R2R3
= 2 arcsin

 
(1 + 1)2 − (11.5− 12.5)2

4(11.5)(12.5)

= 2 arcsin

…
3

575
≈ 0.145.

We verify that inequality (2.2.6) holds for each pair i, j:

(ϕ2 − ϕ1 − δ12) mod β12 = (0.203− 0− 0.165) mod 0.524 = 0.038 ≤ 0.194 = β12 − 2δ12

(ϕ3 − ϕ1 − δ13) mod β13 = (0.671− 0− 0.158) mod 0.419 = 0.094 ≤ 0.103 = β13 − 2δ13

(ϕ3 − ϕ2 − δ23) mod β23 = (0.671− 0.203− 0.145) mod 0.314 = 0.009 ≤ 0.024 = β23 − 2δ23.

Since inequality (2.2.6) is satisfied for all pairs i, j, the given starting positions must be valid. The

resulting template is shown in Figure 2.3.2.

Figure 2.3.2: P2: The feasible template {P1(0), P2(0.203), P3(0.671)}
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2.3.1 Bounds on kij’s

Theorem 2.3.1 gives a characterization of valid starting positions for a set of patterns. However,

a pattern contains rotational symmetry (as was detailed in Lemma 2.1.3) and this leads to many

isomorphic solutions. For example
{
P1(0), P2(1)

}
and

{
P1(2π), P2(1 − 2π)

}
are geometrically the

same template but have different sets of starting positions and therefore different k’s. To reduce the

number of candidate ϕi and kij values, we prove that, if valid starting positions exist, there must be

a canonical set that lies in known intervals. Then we prove that the range of their associated kij ’s

is also limited. This will allow us to restrict attention to these specific, finite ranges.

Lemma 2.3.3 Let P = {Pi | i ∈ I} be given. If {ϕi | i ∈ I} ∈ S(P), thenß
ϕ̂i = ϕi mod

2π

ni

∣∣∣∣ i ∈ I™ ∈ S(P).

Proof: Let P = {Pi | i ∈ I} be given with Pi = (Ri, ni, ρi) and let {ϕi | i ∈ I} ∈ S(P). Let

ϕ̂i = ϕi mod
2π

ni
for all i ∈ I. Then there exist κi ∈ Z such that

ϕ̂i = ϕi + κi
2π

ni
, ∀i ∈ I

and ϕ̂i ∈
ï
0,

2π

ni

ã
for all i ∈ I. Let p 6= q ∈ I be given. Then Property 2.1.3(b) gives

Pp(ϕ̂p) ∩ Pq(ϕ̂q) = Pp

Å
ϕp + κp

2π

np

ã
∩ Pq

Å
ϕq + κq

2π

nq

ã
= Pp(ϕp) ∩ Pq(ϕq),

and since {ϕi | i ∈ I} ∈ S(P), we obtain

Pp(ϕ̂p) ∩ Pq(ϕ̂q) = Pp(ϕp) ∩ Pq(ϕq)

= ∅.

Thus {ϕ̂i | i ∈ I} ∈ S(P).
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Now that we have a canonical range for the values of the ϕ’s, we are able to bound the kij values

similarly in the following theorem.

Theorem 2.3.4 Let P = {Pi | i ∈ I} be given with Pi = (Ri, ni, ρi). Let � be a total order on the

set I. If S(P) 6= ∅ then there exist

kij ∈ Z ∩
ï
− nj

(ni, nj)
,

ni
(ni, nj)

− 1

ò
, ∀i ≺ j

and ϕ̂i ∈
ï
0,

2π

ni

ã
for all i ∈ I such that

kijβij + δij ≤ ϕ̂j − ϕ̂i ≤ (kij + 1)βij − δij , ∀i ≺ j.

Proof: Let P = {Pi | i ∈ I} be given with Pi = (Ri, ni, ρi) and assume that T = {Pi(ϕi) | i ∈ I}

is a feasible template. Define ϕ̂i = ϕi mod
2π

ni
for all i ∈ I which, by Lemma 2.3.3, are valid for P.

Finally, define �′ to be a total order on I obtained by sorting the ϕ̂i’s. Namely, if

ϕ̂π1
≤ ϕ̂π2

≤ ϕ̂π3
≤ · · · ≤ ϕ̂πp

then

π1 ≺′ π2 ≺′ π3 ≺′ · · · ≺′ πp.

Now, since the ϕ̂i’s are valid starting positions, there must exist k̂ij ∈ Z such that

k̂ijβij + δij ≤ ϕ̂j − ϕ̂i ≤ (k̂ij + 1)βij − δij , ∀i ≺′ j. (2.3.3)

Let p ≺′ q ∈ I be given and consider the left-hand side of inequality (2.3.3):

k̂pqβpq + δpq ≤ ϕ̂q − ϕ̂p

k̂pq
2π

[np, nq]
≤ ϕ̂q − ϕ̂p − δpq

k̂pq ≤ (ϕ̂q − ϕ̂p − δpq)
[np, nq]

2π
.
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Now ϕ̂q − ϕ̂p − δpq ≤ ϕ̂q <
2π

nq
, thus

k̂pq <
2π

nq
· [np, nq]

2π

k̂pq <
[np, nq]

nq

k̂pq <
np

(np, nq)

k̂pq ≤
np

(np, nq)
− 1.

Using the right-hand side of (2.3.3), we get

ϕ̂q − ϕ̂p ≤ (k̂pq + 1)βpq − δpq

ϕ̂q − ϕ̂p + δpq ≤ (k̂pq + 1)
2π

[np, nq]

(ϕ̂q − ϕ̂p + δpq)
[np, nq]

2π
≤ k̂pq + 1.

This time, since ϕ̂q ≥ ϕ̂p, we get ϕ̂q − ϕ̂p + δpq ≥ δpq ≥ 0. Thus

0 ≤ k̂pq + 1

−1 ≤ k̂pq

Since the choice of p and q was arbitrary, we have k̂ij ∈
ï
−1,

ni
(ni, nj)

− 1

ò
for all i ≺′ j. Now let �

be any total order on I and for i ≺ j define

kij =


k̂ij , i ≺′ j

−k̂ji − 1, j ≺′ i.

It follows from (2.3.3) and Theorem 2.2.7 that

kijβij + δij ≤ ϕ̂j − ϕ̂i ≤ (kij + 1)βij − δij , ∀i ≺ j
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so all that remains is to show that

− nj
(ni, nj)

≤ kij ≤
ni

(ni, nj)
− 1, ∀i ≺ j.

Let p ≺ q be given. If p ≺′ q then

kpq = k̂pq ∈
ï
−1,

np
(np, nq)

− 1

ò
else, if q ≺′ p then

−1 ≤ k̂qp ≤
nq

(nq, np)
− 1

0 ≤ k̂qp + 1 ≤ nq
(nq, np)

− nq
(nq, np)

≤ −k̂qp − 1 ≤ 0

− nq
(np, nq)

≤ kpq ≤ 0.

Thus, in either case kpq ∈
ï
− nq

(np, nq)
,

np
(np, nq)

− 1

ò
. Since our selection of p and q was arbitrary

we have

− nj
(ni, nj)

≤ kij ≤
ni

(ni, nj)
− 1, ∀i ≺ j

as required.

2.3.2 Integer Programming Formulations

Theorem 2.3.1 identifies a set of constraints involving both integer and real variables. This situation

lends itself to the application of integer programming [29]. The Feasible Fit Problem (FFP) can be
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formulated as a mixed integer program (MIP) with no objective function:

Fit(P) : kijβij + ϕi − ϕj ≤ −δij ∀i ≺ j (2.3.4)

ϕj − ϕi − kijβij ≤ βij − δij ∀i ≺ j (2.3.5)

0 ≤ ϕi ≤
2π

ni
∀i ∈ I (2.3.6)

− nj
(ni, nj)

≤ kij ≤
ni

(ni, nj)
− 1 ∀i ≺ j (2.3.7)

kij ∈ Z ∀i ≺ j

ϕi ∈ R ∀i ∈ I.

In Fit(P), constraints (2.3.4) and (2.3.5) are the two sides of inequality (2.3.1) from Theorem 2.3.1,

whereas constraints (2.3.6) and (2.3.7) are obtained from Theorem 2.3.4.

In the Maximum Template Problem (MaxTemp) we are given a set of patterns P = {Pi | i ∈ I} and

we wish to build a largest feasible template T = {Pi(ϕi) | i ∈ I1 ⊆ I}. To formulate this as a mixed

integer program we introduce binary variables xi that determine whether or not pattern Pi is in the

maximum template T : namely, for i ∈ I

xi =


1, i ∈ I1

0, i 6∈ I1.

Recall that inequality (2.3.1) ensures that two patterns Pi(ϕi) and Pj(ϕj) do not overlap by insisting

that the difference in their starting positions lies in exactly one of a set of non-overlapping intervals

{[
kijβij + δij , (kij + 1)βij − δij

] ∣∣∣ kij ∈ Z
}
. (2.3.8)

However, if Pi and Pj are not both on the maximum template T , we do not want to constrain

the difference in their starting positions. In other words, we do not care about enforcing inequality

(2.3.1) for two patterns that are not on the same template. We can do this by modifying the set

of intervals in (2.3.8) so that their union is the entire set R. In that case there will be an interval
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containing ϕj − ϕi no matter what their values. To achieve this, we change the intervals (2.3.8) to

{[
kijβij+δij−(1−xi)δij−(1−xj)δij , (kij+1)βij−δij+(1−xi)δij+(1−xj)δij

] ∣∣∣ kij ∈ Z
}
. (2.3.9)

Notice that if xi and xj both have value one, then the set of intervals (2.3.9) is identical to (2.3.8).

However if either or both variables have value zero, then the union of the intervals in (2.3.9) is R as

required. The MaxTemp problem can now be formulated as

MaxTemplate(P,�) : max
∑
i∈I

xi

s.t. kijβij + ϕi − ϕj + xiδij + xjδij ≤ δij ∀i ≺ j (2.3.10)

ϕj − ϕi − kijβij + xiδij + xjδij ≤ βij + δij ∀i ≺ j (2.3.11)

0 ≤ ϕi ≤
2π

ni
∀i ∈ I

− nj
(ni, nj)

≤ kij ≤
ni

(ni, nj)
− 1 ∀i ≺ j

kij ∈ Z ∀i ≺ j

ϕi ∈ R ∀i ∈ I

xi ∈ {0, 1} ∀i ∈ I.

In MaxTemplate(P,�), the objective function maximizes the number of patterns in the template,

which is equal to the sum of the x variables. Also, constraints (2.3.10) and (2.3.11) implement the

inequality from Theorem 2.3.1 with the modifications in (2.3.9). The next two sets of constraints

are repeated from Fit(P,�).

In the Minimum Templates Problem (MinTemp) we are given a set P = {Pi | i ∈ I} and we wish to

partition I into disjoint subsets {Iu | u ∈ U}. These subsets need to be such that Tu = {Pi(ϕi) | i ∈

Iu} is a feasible template for all u ∈ U . To formulate this as a mixed integer program define binary

variables x to indicate which template each pattern is assigned to:

xiu =


1, i ∈ Iu

0, i 6∈ Iu
, ∀i ∈ I, ∀u ∈ U.
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We also duplicate the constraint set from MaxTemplate(P,�) for each template. Because of this

duplication, it will significantly reduce the size of the MIP if we have a good upper bound2 on the

number of templates needed, |U |. Additionally, we define binary variables zu to indicate whether or

not a template is empty:

zu =


1, Iu 6= ∅

0, Iu = ∅
, ∀u ∈ U.

The resulting formulation3 is

MinTemplates(P,�, U) : min
∑
u∈U

zu

s.t. kijβij + ϕi − ϕj + xiuδij + xjuδij ≤ δij ∀i ≺ j, u ∈ U (2.3.12)

ϕj − ϕi − kijβij + xiuδij + xjuδij ≤ βij + δij ∀i ≺ j, u ∈ U (2.3.13)∑
u∈U

xiu = 1 ∀i ∈ I (2.3.14)

xiu − zu ≤ 0 ∀i ∈ I, u ∈ U (2.3.15)

0 ≤ ϕi ≤
2π

ni
∀i ∈ I

− nj
(ni, nj)

≤ kij ≤
ni

(ni, nj)
− 1 ∀i ≺ j

kij ∈ Z ∀i ≺ j

ϕi ∈ R ∀i ∈ I

xiu ∈ {0, 1} ∀i ∈ I, u ∈ U

zu ≥ 0 ∀u ∈ U.

In this MIP, the objective function minimizes the number of non-empty templates, given by the sum

of the z variables. Constraints (2.3.12)-(2.3.13) are modified versions of constraints (2.3.10)-(2.3.11),

duplicated for each template. Constraint (2.3.14) ensures that each pattern is assigned to exactly

one template. If a pattern Pi is assigned to template Tu then xiu = 1 and constraint (2.3.15) forces

zu = 1, ensuring that template Tu is non-empty. The next two sets of constraints are repeated from

MaxTemplate(P,≺). Now observe that the objective function involves minimizing variables zu;

2This bound can be generated by suitably designed heuristics such as those discussed in Chapter 5, or it can
näıvely be set to |I|.

3This formulation is based on that developed by Eisenbrand, et al. [11].
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moreover zu only occurs in the constraints (2.3.15). Because of the structure of this constraint, if

zu > 0 then zu = 1 in any optimal solution. Thus we relax the binary condition on zu, allowing it

to be continuous and non-negative.

Integer programming is a very versatile tool for solving a myriad of problems and there is a vast array

of software that will attempt to solve any integer program to optimality. Unfortunately, however, as

the number of discrete variables in a mixed integer program grows, known techniques for solving it

become ineffective. This is especially evident in the mixed integer programs presented in this section

as the number of feasible integer points grows rapidly in relation to the number of patterns in P.

Table 2.3.1 summarizes the sizes of these formulations.

Formulation Fit(P) MaxTemplate(P) MinTemplates(P)

Constraints |I|
(
|I| − 1

)
|I|
(
|I| − 1

)
|U ||I|2 + |I|

Real Variables |I| |I| |I|+ |U |

Integer Variables
|I|
(
|I| − 1

)
2

|I|
(
|I| − 1

)
2

+ |I|
|I|
(
|I| − 1

)
2

+ |U ||I|

Table 2.3.1: Mixed integer programming formulation sizes

2.4 Network Representation

Consider inequalities (2.3.1) for any pair of patterns Pi and Pj where i ≺ j:

kijβij + δij ≤ ϕj − ϕi ≤ (kij + 1)βij − δij

 ϕj − ϕi ≤ (kij + 1)βij − δij

ϕi − ϕj ≤ −kijβij − δij .

Thus, if we define for i 6= j

wij =


(kij + 1)βij − δij , i ≺ j

−kjiβji − δji, j ≺ i

35



then the above inequalities become (for i 6= j)

ϕj − ϕi ≤ wij

or

ϕj ≤ ϕi + wij . (2.4.1)

These, however, are simply the dual program constraints for the single-source shortest path problem

[1] in an appropriately defined network with arc lengths (weights) wij . Thus, any feasible dual

variables will be valid starting positions. Additionally, if we specify a root node (i.e., ϕp = 0), then

the shortest path distances from the root node will be valid starting positions. Consequently, we are

led to the construction of the following network.

Definition 2.4.1 Let P = {Pi | i ∈ I} be a set of patterns where Pi = (Ri, ni, ρi), let � be an order

on I, and let K = {kij ∈ Z | i ≺ j}. We define the network G(P,�,K) = (N,A,w) where

N = I

A =
{

(i, j)
∣∣ i 6= j ∈ I

}
wij =


(kij + 1)βij − δij , i ≺ j

−kjiβji − δji, j ≺ i.

The following theorem formalizes the connection between shortest paths in G(P,�,K) from a given

source node and valid starting positions.

Theorem 2.4.2 Let P = {Pi | i ∈ I} be a set of patterns, let � be an order on I, and let K =

{kij ∈ Z | i ≺ j}. If {ϕi | i ∈ I} are shortest path distances from a specified root node in network

G(P,�,K), then {ϕi | i ∈ I} ∈ S(P).

Proof: Since the shortest path distances from the specified root satisfy the shortest path optimality
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conditions, then for any i ≺ j

ϕi − ϕj ≤ wji ϕj − ϕi ≤ wij

ϕi − ϕj ≤ −kijβij − δij ϕj − ϕi ≤ (kij + 1)βij − δij

kijβij + δij ≤ ϕj − ϕi ϕj − ϕi ≤ (kij + 1)βij − δij .

Thus the ϕi’s satisfy characterization (2.3.2) for S(P).

Similarly, one can find shortest paths in G(P,�,K) to a specified root node. The associated opti-

mality conditions lead to the following corollary.

Corollary 2.4.3 Let P = {Pi | i ∈ I} be a set of patterns, let � be an order on I, and let

K = {kij ∈ Z | i ≺ j}. If
{
ψi

∣∣∣ i ∈ I} are valid shortest path distances to a specified root node in

network G(P,�,K), then
{
−ψi

∣∣∣ i ∈ I} ∈ S(P).

Proof: The optimality conditions for shortest paths to a given root node are

ψi ≤ wij + ψj

ψi − ψj ≤ wij

−(−ψi) + (−ψj) ≤ wij

(−ψj)− (−ψi) ≤ wij .

Now letting ϕi = −ψi for all i ∈ I, we get

ϕj − ϕi ≤ wij .

Thus, by the same argument as above, the ϕi’s or
(
−ψi

)
’s satisfy characterization (2.3.2) for S(P).

Example 2.4.4: Recall the set P2 from Example 2.3.2 which contains patterns P1 = (12, 3, 1), P2 =

(11.5, 4, 1), P3 = (12.5, 5, 1). If we use the same ordering 1 ≺ 2 ≺ 3 and treat K as unknown, then

the network G(P,�,K) is shown in Figure 2.4.1.
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1 2 3

0.524k12 + 0.359

−0.524k12 − 0.165

0.314k23 + 0.169

−0.314k23 − 0.145

0.419k13 + 0.261

−0.419k13 − 0.158

Figure 2.4.1: P2: G(P,�,K)

If we propose K = {k12 = 0, k13 = 1, k23 = 1} then G(P,�,K) is shown in Figure 2.4.2.

1 2 3

0.359

−0.165

0.483

−0.459

0.680

−0.577

Figure 2.4.2: P2: G(P,�,K)

Finding shortest paths from node 1 gives (0, 0.221, 0.680) = (ϕ1, ϕ2, ϕ3). This solution is shown

in Figure 2.4.3(a). Alternatively, finding shortest paths to node 1 gives (0, −0.165, −0.624) =

(−ϕ1,−ϕ2,−ϕ3). This solution is shown in Figure 2.4.3(b).
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2.4.3(a): The feasible template

{P1(0), P2(0.221), P3(0.680)}

2.4.3(b): The feasible template

{P1(0), P2(0.165), P3(0.624)}

Figure 2.4.3: P2: Solutions gained from the network

Now we know that if we can find shortest paths in network G(P,�,K), then the corresponding

shortest path distances are valid starting positions for P. However, shortest path distances exist in

a network iff that network contains no negative weight cycle. This leads to the following theorem.

Theorem 2.4.5 Let P = {Pi | i ∈ I} be a set of patterns and let � be an order on I. S(P) 6= ∅ iff

there exists K = {kij ∈ Z | i ≺ j} such that G(P,�,K) contains no negative (weight) cycle.

Proof:

(⇐)

Since G(P,�,K) has no negative cycles, a set of shortest path distances from any node in I will

exist [1] and by Theorem 2.4.2 will be an element of S(P).

(⇒)

Let {ϕi | i ∈ I} ∈ S(P) be given, and let � be an order on I. By Theorem 2.3.1 there is a set

K = {kij ∈ Z | i ≺ j} satisfying

kijβij + δij ≤ ϕj − ϕi ≤ (kij + 1)βij − δij , ∀i ≺ j

or

ϕj − ϕi ≤ (kij + 1)βij − δij , ∀i ≺ j
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and

ϕj − ϕi ≤ −kjiβji − δji, ∀j ≺ i.

Let C be any directed cycle in G(P,�,K) and define the following sets

C≺ := {(i, j) ∈ C | i ≺ j}

C� := {(i, j) ∈ C | j ≺ i}.
(2.4.2)

Now, the total weight of the cycle C is given by

w[C] =
∑

(i,j)∈C

wij

=
∑

(i,j)∈C≺

[(kij + 1)βij − δij ] +
∑

(i,j)∈C�

[−kjiβji − δji]

≥
∑

(i,j)∈C≺

(ϕj − ϕi) +
∑

(i,j)∈C�

(ϕj − ϕi)

=
∑

(i,j)∈C

(ϕj − ϕi)

= 0.

Thus the weight of cycle C must be non-negative. Since the choice of C was arbitrary, G(P,�,K)

must have no negative cycle.

We have already seen that the existence of starting positions leading to a feasible template is not

dependent on the order we assign to the patterns. However, in our network representation of the

problem we have imposed an ordering, which affects the calculation of the wij ’s. The following

theorem shows that if we change the ordering �, there is a corresponding change to the set K that

will keep the network invariant.
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Theorem 2.4.6 Let P = {Pi | i ∈ I} be a set of patterns, let � be a total order on I, and let

K = {kij ∈ Z | i ≺ j}. Let p ≺ q be such that there does not exist r ∈ I satisfying p ≺ r ≺ q (i.e., p

and q are adjacent w.r.t. �). Define �′ by q ≺′ p and

i ≺′ j ⇔ i ≺ j, ∀{i, j} 6= {p, q} ⊆ I

i.e., �′ is exactly the same as � except that the order of p and q is switched. Also, let K ′ = {k′ij |

i ≺′ j} where

k′ij =


−kji − 1, i = q, j = p

kij , else.

Then G(P,�,K) = G(P,�′,K ′).

Proof: Both networks have the same node set, and since both networks are complete the only

question concerns the equality of the weights. Let w denote the weights for G(P,�,K) and let w′

denote the weights for G(P,�′,K ′). Consider {i, j} ⊆ I. If {i, j} 6= {p, q} then wij = w′ij . Now

q ≺′ p and p ≺ q, so

w′pq = −k′qpβqp − δqp w′qp = (k′qp + 1)βqp − δqp

= −(−kpq − 1)βqp − δpq = (−kpq − 1 + 1)βqp − δqp

= (kpq + 1)βpq − δpq = −kpqβpq − δpq

= wpq = wqp.

Thus w = w′ and the two networks are identical.

Theorem 2.4.6 shows that given network G(P,�,K), we will obtain an identical network G(P,�′

,K ′) where � and �′ have one pair of adjacent elements reversed. Since any permutation can be

obtained from any other permutation through a sequence of pairwise swaps, Theorem 2.4.6 ensures

that given network G(P,�,K) and any other total order �′ on I, there exists K ′ such that

G(P,�,K) = G(P,�′,K ′).

The construction in Theorem 2.4.6 can be applied to the given K repeatedly to obtain the corre-
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sponding set K ′.

The next theorem investigates the special case of inverse orderings.

Theorem 2.4.7 Let P = {Pi | i ∈ I} be a set of patterns. Let �1 and �2 be total orderings on I

such that

i �1 j ⇔ j �2 i, ∀i, j ∈ I,

i.e., �1 and �2 are inverses of each other. Let K1 = {k1ij ∈ Z | i ≺1 j} be given and let K2 =

{k2ij ∈ Z | i ≺2 j} be defined by k2ij = k1ji for all i ≺2 j. Then G(P,�1,K
1) has no negative weight

cycle iff G(P,�2,K
2) has no negative weight cycle.

Proof: Assume that G(P,�1,K
1) has no negative weight cycle. Let cycle C ∈ G(P,�2,K

2) be

given. Note that C ∈ G(P,�1,K
1) since both networks are complete. Define C to be the reverse

cycle of C: C = {(i, j) | (j, i) ∈ C}. Let C1
≺, C

1
�, C

1

≺ C
1

� be defined relative to �1 as in (2.4.2) and

similarly define C2
≺, C

2
�, C

2

≺ C
2

� relative to �2. First note that

(i, j) ∈ C2
≺ ⇔ i ≺2 j

⇔ j ≺1 i

⇔ (j, i) ∈ C1

≺

and similarly (i, j) ∈ C2
� ⇒ (j, i) ∈ C1

�. Now, the total weight of C in G(P,�2,K
2) is given by

w2[C] =
∑

(i,j)∈C2
≺

[
(k2ij + 1)βij − δij

]
+

∑
(i,j)∈C2

�

[
−k2jiβji − δji

]
=

∑
(j,i)∈C1

≺

[
(k1ji + 1)βji − δji

]
+

∑
(j,i)∈C1

�

[
−k1ijβij − δij

]
= w1[C]

≥ 0.

Thus G(P,�2,K
2) also has no negative weight cycle.

In summary, if we can find an appropriate set K, then we can calculate valid starting positions
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quickly and easily using well-known shortest path algorithms. The problem of finding valid starting

positions is now reduced to the problem of finding K such that G(P,�,K) has no negative cycles.

Heuristics that address this approach will be covered in Chapter 5, but for now we continue with a

relaxation of the original problem.
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Chapter 3

Linearization

So far we have dealt with an exact formulation of the problem of fitting patterns without overlap.

However, this formulation involves the calculation of irrational constants βij and δij which leads to

some computational challenges. In this chapter we wish to simplify the problem by eliminating a

dimension of the problem, i.e., making a pattern a subset of R instead of R2. In the process, we make

a connection between the problem of fitting patterns of disks and the problem of scheduling periodic

events. We then show how the results of Chapter 2 can be extended to this simplified version of the

problem and consider some special cases that are exploited by heuristics developed in Chapter 5.

3.1 Definitions

The structure of a pattern can be approximated by unfolding its outer circumference along the

number line and duplicating the pattern infinitely in both directions. The disks of the pattern now

become intervals of the outer circumference. The pattern can now be defined by the length of the

outer circumference B, the number of intervals in the pattern n, and the length of each interval d.

The rotation of the pattern now becomes a shift s, which will measure the distance from a designated

point on the outer circumference to the left endpoint of the first interval.
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Definition 3.1.1 A linear pattern maps a starting position s to an infinite set of open intervals:

i.e., ‹P (s) =
⋃
k∈Z

Å
s+ k

B

n
, s+ k

B

n
+ d

ã
.

The mapping is completely defined by the strictly positive constants B, d ∈ R and n ∈ Z and thus

can also be designated as ‹P = (B,n, d).

Definition 3.1.2 A template is a set of linear patterns ‹P = {‹Pi | i ∈ I} with fixed starting positions

S = {si | i ∈ I} and will be denoted T = ‹P(S) = {‹Pi(si) | i ∈ I}. Furthermore, if‹Pi(si) ∩ ‹Pj(sj) = ∅, ∀i 6= j

then ‹T is referred to as a feasible template and the starting positions S are said to be valid for ‹P.

The collection of all starting positions for which ‹P is a feasible template is defined as

S(‹P) =
{
S
∣∣ ‹P(S) is a feasible template

}
.

We further simplify our patterns by requiring that all patterns in a set share the same outer cir-

cumference B. In this simplified context, we study three questions analogous to the ones defined

in Chapter 2: namely, the Linearized Minimum Templates Problem (LinMinTemp), the Linearized

Feasible Fit Problem (LinFFP) and the Linearized Maximum Template Problem (LinMaxTemp).

LinMinTemp(‹P):

Given a set of linear patterns ‹P = {‹Pi | i ∈ I} where ‹Pi = (B,ni, di), determine

a partition of I, I = {Iu | u ∈ U}, with minimum |U |, such that valid starting

positions exist for each ‹Pu = {‹Pi | i ∈ Iu}.
LinFFP(‹P):

Given a set of linear patterns ‹P = {‹Pi | i ∈ I} where ‹Pi = (B,ni, di), does there

exist a set of starting positions S such that ‹P(S) is a feasible template?

LinMaxTemp(‹P):

Given a set of linear patterns ‹P = {‹Pi | i ∈ I} where ‹Pi = (B,ni, di), determine a

largest subset I1 ⊆ I such that valid starting positions exist for ‹P1 = {‹Pi | i ∈ I1}.
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Comment 3.1.3: Consider the Periodic Scheduling Problem (PSP) of Korst, et al. [17]. In this

problem we are given a set T of n periodic tasks, where each task i ∈ T has a period p(i) ∈ N and

an execution time e(i) ∈ N with e(i) ≤ p(i). We are also given a set of identical processors, and a

positive integer k. Tasks are assigned to processors and a starting time s(i) is given for each task i

with the requirement that no processor is expected to run two tasks at the same time. The problem

is to find such an assignment that uses at most k processors. Note that the periodic tasks from the

PSP correspond to the linear patterns of Definition 3.1.1 with p(i) =
B

ni
1 and e(i) = di.

2. Moreover,

the processors of the PSP are analogous to templates in LinMinTemp and a task’s starting time s(i)

corresponds to a pattern’s starting position si. Also note that

(
p(i), p(j)

)
=

Å
B

ni
,
B

nj

ã
=

B

[ni, nj ]
.

Thus, LinMinTemp is equivalent to PSP and this allows us to state the following theorem.

Theorem 3.1.4 3(Korst, Aarts, Lenstra & Wessels [18])

Given a set of linear patterns ‹P = {‹Pi | i ∈ I} where ‹Pi = (B,ni, di), then {‹Pi(si) | i ∈ I} is a

feasible template iff

di ≤ (sj − si) mod
B

[ni, nj ]
≤ B

[ni, nj ]
− dj , ∀i 6= j. (3.1.1)

As with generalized patterns, it is useful to define the recurring value

Bij =
B

[ni, nj ]
.

1While
B

ni
may not satisfy the requirement that p(i) be integer, one can scale all patterns by

[n1, n2, ..., nm]

B
to

correct this.
2Again, the di’s may not satisfy the integrality constraint imposed by Korst, et al. on e(i), but this can be

corrected by insisting that the di’s be rational (and then scaling them appropriately to achieve integrality). However,
even with positive and real-valued e(i)’s all proofs in [17] would remain valid.

3cf. Corollary 2.2.12
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Note that Theorem 3.1.4 is equivalent to

Theorem 3.1.5 4 Suppose ‹P = {‹Pi | i ∈ I} is a set of linear patterns where ‹Pi = (B,ni, di), and let

� be a total order on I. Then {‹Pi(si) | i ∈ I} is a feasible template iff there exist kij ∈ Z, i ≺ j ∈ I,

such that

kijBij + di ≤ sj − si ≤ (kij + 1)Bij − dj , ∀i ≺ j. (3.1.2)

The similarities between (3.1.2) and (2.3.1) lead to the following:

Comment 3.1.6: Recall that we are dealing with patterns on the same outer circumference. Con-

sider inequality (2.2.7) from Corollary 2.2.16:

k
2π

[ni, nj ]
+ 2 arcsin

(ρi + ρj
2R

)
≤ ϕj − ϕi ≤ (k + 1)

2π

[ni, nj ]
− 2 arcsin

(ρi + ρj
2R

)
.

Now, using the identity function to approximate the arcsine, we get

k
2π

[ni, nj ]
+ 2

ρi + ρj
2R

≤ ϕj − ϕi ≤ (k + 1)
2π

[ni, nj ]
− 2

ρi + ρj
2R

k
2πR

[ni, nj ]
+ ρi + ρj ≤ Rϕj −Rϕi ≤ (k + 1)

2πR

[ni, nj ]
− ρi − ρj

k
2πR

[ni, nj ]
+ 2ρi ≤ (Rϕj − ρj)− (Rϕi − ρi) ≤ (k + 1)

2πR

[ni, nj ]
− 2ρj .

Note that 2πR is the circumference of the outer circle B. Additionally, 2ρi is the diameter of the

disks of Pi, but we can approximate it using the arc length di of the outer circumference contained

in each disk. Finally, recall that Rϕi is the length of the arc on the outer circumference between the

arbitrary zero point and the center of the first disk, which translates to si +
di
2

. This gives us

k
B

[ni, nj ]
+ di ≤

Å
sj +

dj
2
− dj

2

ã
−
Å
si +

di
2
− di

2

ã
≤ (k + 1)

B

[ni, nj ]
− dj

k
B

[ni, nj ]
+ di ≤ sj − si ≤ (k + 1)

B

[ni, nj ]
− dj .

Thus the problem of fitting linear patterns (which are equivalent to periodic tasks) approximates

the general problem of fitting patterns of disks on the same outer circumference.

4cf. Theorem 2.3.1
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Example 3.1.7: Consider the set P3 containing patterns P1 =

Å
20

π
, 3,

20

π
sin

π

40

ã
≈ (6.3662, 3, 0.4995)

and P2 =

Å
20

π
, 4,

20

π
sin

3π

80

ã
≈ (6.3662, 4, 0.7483) shown in Figures 3.1.1(a) and 3.1.1(b) respec-

tively.

3.1.1(a): Generalized pattern P1 3.1.1(b): Generalized pattern P2

Figure 3.1.1: P3: Generalized patterns

We will approximate these patterns with the linear patterns ‹P1 = (40, 3, 1) and ‹P1 = (40, 4, 1.5),

shown in Figures 3.1.2(a) and 3.1.2(b), which will be contained in set ‹P3.

3.1.2(a): Linear pattern P̃1

3.1.2(b): Linear pattern P̃2

Figure 3.1.2: ‹P3: Linear patterns
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Using Theorem 3.1.4, we verify that the starting positions s1 = 0, s2 = 1.3 are valid for ‹P1, ‹P2. First

we calculate the value

B12 =
B

[n1, n2]
=

40

[3, 4]
=

40

12
≈ 3.333.

Next

(s2 − s1) mod B12 = (1.3− 0) mod 3.333 = 1.3.

Thus

1 ≤ 1.3 ≤ 1.833

1 ≤ 1.3 ≤ 3.333− 1.5

d1 ≤ (s2 − s1) mod B12 ≤ B12 − d2

So the template {‹P1(0), ‹P2(1.3)} shown in Figure 3.1.3 is feasible.

Figure 3.1.3: ‹P3: The feasible template {‹P1(0), ‹P2(1.3)}

Because of the similarity between Theorem 2.3.1 and Theorem 3.1.5, we can derive the same results

for linear patterns that we did for generalized patterns in Chapter 2. The proofs of these corollaries

and theorems are identical to those given in Chapter 2, but with Bij replacing βij and di and dj

replacing δij . To illustrate this point, we give the corollary used to calculate the value of kij for

inequality (3.1.2). Compare its proof to that of Corollary 2.2.9.

Corollary 3.1.8 5 Let linear patterns ‹Pi = (B,ni, di) and ‹Pj = (B,nj , dj) be given. If si, sj are

valid for {‹Pi, ‹Pj} then

kij =

õ
sj − si − di

Bij

û
is the unique value that satisfies inequality (3.1.2) from Theorem 3.1.5.

5cf. Corollary 2.2.9
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Proof: Assume that ‹Pi(si) ∩ ‹Pj(sj) = ∅. Thus, by Theorem 3.1.5, there exists kij ∈ Z such that

kijBij + di ≤ sj − si ≤ (kij + 1)Bij − dj

di ≤ sj − si − kijBij ≤ Bij − dj

di − (sj − si) ≤ −kijBij ≤ Bij − dj − (sj − si)

sj − si + dj −Bij ≤ kijBij ≤ sj − si − di
sj − si + dj

Bij
− 1 ≤ kij ≤

sj − si − di
Bij

.

As a result, we must have at least one integer kij inside the intervalï
sj − si + dj

Bij
− 1,

sj − si − di
Bij

ò
. (3.1.3)

However, note that since di, dj > 0,

sj − si − di
Bij

<
sj − si + dj

Bij
.

From this it follows that interval (3.1.3) has length strictly less than 1 and thus contains only one

integer whose value is

kij =

°
sj − si + dj

Bij
− 1

§
=

õ
sj − si − di

Bij

û
. (3.1.4)

As the proof above shows, proving statements about linear patterns simply involves rewriting the

equivalent proof for generalized patterns and replacing the appropriate parameters. As a result of

this, we state the following corollaries without proof. These provide a series of tests that can be

used to determine whether two patterns overlap. The first result calculates the value of kij for a

pair of starting positions and tests whether or not they are valid.

Corollary 3.1.9 6 Let linear patterns ‹Pi = (B,ni, di) and ‹Pj = (B,nj , dj) be given. Then si, sj

are valid for {‹Pi, ‹Pj} iff

sj − si + dj
Bij

− 1 ≤
õ
sj − si − di

Bij

û
.

6cf. Corollary 2.2.11
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Next, we can test the validity of starting positions using the modulo function.

Corollary 3.1.10 7 Let linear patterns ‹Pi = (B,ni, di) and ‹Pj = (B,nj , dj) be given. Then si, sj

are valid for {‹Pi, ‹Pj} iff

(sj − si − di) mod Bij ≤ Bij − di − dj . (3.1.5)

Next, given two patterns we can test whether or not valid starting positions even exist.

Corollary 3.1.11 8(Korst, Aarts, Lenstra & Wessels [18]) Let linear patterns ‹Pi = (B,ni, di)

and ‹Pj = (B,nj , dj) be given. Then S
(
{‹Pi, ‹Pj}) 6= ∅ iff

Bij ≥ di + dj .

We can also bound the si and kij values in the same fashion as before.

Theorem 3.1.12 9 Let ‹P = {‹Pi | i ∈ I} be given with ‹Pi = (B,ni, di). Let � be a total order on

the set I. If S(‹P) 6= ∅ then there exist

kij ∈ Z ∩
ï
− nj

(ni, nj)
,

ni
(ni, nj)

− 1

ò
, ∀i ≺ j

and ŝi ∈
ï
0,
B

ni

ã
for all i ∈ I such that

kijBij + di ≤ ŝj − ŝi ≤ (kij + 1)Bij − dj , ∀i ≺ j.

Comment 3.1.13: Using the same transformation applied to the corollaries above, we can modify

the mixed integer programs (MIPs) developed in Section 2.3.2 so that they apply to linearized

patterns. In fact, because of the similarities between Theorem 2.3.1 and Theorem 3.1.5, this can be

achieved with relatively little effort. All references to ϕi and ϕj need to be changed to si and sj ,

their bounds amended to be compatible with Theorem 3.1.12, and all references to βij and δij should

7cf. Corollary 2.2.13
8cf. Corollary 2.2.14
9cf. Theorem 2.3.4
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be replaced with Bij , di and dj appropriately. This results in the following three formulations:

Fit(‹P) : kijBij + si − sj ≤ −di ∀i ≺ j

sj − si − kijBij ≤ Bij − dj ∀i ≺ j

0 ≤ si ≤
B

ni
∀i ∈ I

− nj
(ni, nj)

≤ kij ≤
ni

(ni, nj)
− 1 ∀i ≺ j

kij ∈ Z ∀i ≺ j

ϕi ∈ R ∀i ∈ I,

MinTemplates(P,�, U) : min
∑
u∈U

zu

s.t. kijBij + si − sj + xiudi + xjudi ≤ di ∀i ≺ j, u ∈ U

sj − si − kijBij + xiudj + xjudj ≤ Bij + dj ∀i ≺ j, u ∈ U∑
u∈U

xiu = 1 ∀i ∈ I

xiu − zu ≤ 0 ∀i ∈ I, u ∈ U

0 ≤ si ≤
B

ni
∀i ∈ I

− nj
(ni, nj)

≤ kij ≤
ni

(ni, nj)
− 1 ∀i ≺ j

kij ∈ Z ∀i ≺ j

ϕi ∈ R ∀i ∈ I

xiu ∈ {0, 1} ∀i ∈ I, u ∈ U

zu ≥ 0 ∀u ∈ U,
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and

MaxTemplate(‹P,�) : max
∑
i∈I

xi

s.t. kijBij + si − sj + xidi + xjdi ≤ di ∀i ≺ j

sj − si − kijBij + xidj + xjdj ≤ Bij + dj ∀i ≺ j

0 ≤ si ≤
B

ni
∀i ∈ I

− nj
(ni, nj)

≤ kij ≤
ni

(ni, nj)
− 1 ∀i ≺ j

kij ∈ Z ∀i ≺ j

ϕi ∈ R ∀i ∈ I

xi ∈ {0, 1} ∀i ∈ I.

In the same spirit as the corollaries above, we can also apply the network formulation from Section

2.4 to linearized patterns.

Definition 3.1.14 10 Let ‹P = {‹Pi | i ∈ I} be a set of linear patterns where ‹Pi = (B,ni, di), let �

be a total order on I, and let K = {kij ∈ Z | i ≺ j}. We define the network G(‹P,�,K) = (N,A,w)

where

N = I

A =
{

(i, j)
∣∣ i 6= j ∈ I

}
wij =


(kij + 1)Bij − dj , i ≺ j

−kjiBji − dj , j ≺ i.

Again, since the weights of G(‹P,�,K) are so similar to the weights of G(P,�,K), the proofs of the

next four theorems can be obtained from their corresponding proofs in Section 2.4 just by replacing

the appropriate parameters. As a result, these will be stated without proof. The first theorem shows

that valid starting positions can be obtained from the shortest path distances from (or to) a given

root node in G(‹P,�,K).

10cf. Definition 2.4.1
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Theorem 3.1.15 11 Let ‹P = {‹Pi | i ∈ I} be a set of linear patterns, let � be a total order on I,

and let K = {kij ∈ Z | i ≺ j}. If {si | i ∈ I} are shortest path distances from a specified root node in

network G(‹P,�,K), then {si | i ∈ I} ∈ S(‹P). Also, if {ti | i ∈ I} are valid shortest path distances

to a specified root node in network G(‹P,�,K), then {−ti | i ∈ I} ∈ S(‹P).

The next theorem shows the connection between the existence of valid starting positions and negative

(weight) cycles in G(‹P,�,K).

Theorem 3.1.16 12 Let ‹P = {‹Pi | i ∈ I} be a set of linear patterns and let � be a total order on I.

S(‹P) 6= ∅ iff there exists K = {kij ∈ Z | i ≺ j} such that G(‹P,�,K) contains no negative (weight)

cycle.

Example 3.1.17: Consider the set ‹P4 containing linear patterns ‹P1 = (120, 3, 3), ‹P2 = (120, 4, 3),

and ‹P3 = (120, 5, 3) shown in Figure 3.1.4.

3.1.4(a): Pattern P̃1

3.1.4(b): Pattern P̃2

3.1.4(c): Pattern P̃3

Figure 3.1.4: ‹P4: Fitting three linear patterns on a template

First we calculate the following values:

B12 =
120

[3, 4]
= 10

B13 =
120

[3, 5]
= 8

B23 =
120

[4, 5]
= 6.

11cf. Theorem 2.4.2 and Corollary 2.4.3
12cf. Theorem 2.4.5
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Since d1 = d2 = d3 = 3 and Bij ≥ 6 ≥ di + dj for all i 6= j ∈ {1, 2, 3} Corollary 3.1.11 implies that

valid starting positions exist for each pair of patterns. If we use the ordering 1 ≺ 2 ≺ 3 and treat K

as unknown, then the network G(‹P,�,K) is as shown in Figure 3.1.5.

1 2 3

10k12 + 7

−10k12 − 3

6k23 + 3

−6k23 − 3

8k13 + 5

−8k13 − 3

Figure 3.1.5: ‹P4: G(‹P,�,K)

If we propose K = {k12 = 0, k13 = 1, k23 = 1} then G(‹P,�,K) is shown in Figure 3.1.6.

1 2 3

7

−3

9

−9

13

−11

Figure 3.1.6: ‹P4: G(‹P,�,K)

Finding shortest paths from node 1 gives (0, 4, 13) = (s1, s2, s3). The corresponding solution is

shown in Figure 3.1.7(a). Alternatively, finding shortest paths to node 1 gives (0, −3, −12) =

(−s1,−s2,−s3), with the corresponding solution is shown in Figure 3.1.7(b).
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3.1.7(a): The feasible template {P̃1(0), P̃2(4), P̃3(13)}

3.1.7(b): The feasible template {P̃1(0), P̃2(3), P̃3(12)}

Figure 3.1.7: ‹P4: Solutions gained from the network

The next two theorems deal with the ordering � and its effect on G(‹P,�,K). The first shows that,

given a change in the ordering � there is a corresponding change in K that will keep the network

invariant.

Theorem 3.1.18 13 Let ‹P = {‹Pi | i ∈ I} be a set of linear patterns, let � be a total order on I,

and let K = {kij ∈ Z | i ≺ j}. Let p ≺ q be such that there does not exist r ∈ I satisfying p ≺ r ≺ q

(i.e., p and q are adjacent w.r.t. �). Define �′ by q ≺′ p and

i ≺′ j ⇔ i ≺ j, ∀{i, j} 6= {p, q} ⊆ I

i.e., �′ is exactly the same as � except that the order of p and q is switched. Also, let K ′ = {k′ij |

i ≺′ j} where

k′ij =


−kji − 1, i = q, j = p

kij , else.

Then G(‹P,�,K) = G(‹P,�′,K ′).
As with Theorem 2.4.6, Theorem 3.1.18 is sufficient to show that, given network G(‹P,�,K) and

any other total order �′ on I, there exists K ′ such that

G(‹P,�,K) = G(P,�′,K ′).

13cf. Theorem 2.4.6
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Finally, the following theorem details the special case of inverse orderings.

Theorem 3.1.19 14 Let ‹P = {‹Pi | i ∈ I} be a set of linear patterns. Let �1 and �2 be total

orderings on I such that

i �1 j ⇔ j �2 i, ∀i, j ∈ I,

i.e., �1 and �2 are inverses of each other. Let K1 = {k1ij ∈ Z | i ≺1 j} be given and let K2 =

{k2ij ∈ Z | i ≺2 j} be defined by k2ij = k1ji for all i ≺2 j. Then G(‹P,�1,K
1) has no negative weight

cycle iff G(‹P,�2,K
2) has no negative weight cycle.

3.2 Special Orderings

Let us consider the network G(‹P,�,K). We know that given an appropriate set K, we can find

shortest path distances in the network and use them as valid starting positions. However, the ques-

tion remains as to how to find such a set K. In this section we investigate conditions that enable

the use of a very specific set K which guarantees that shortest path distances exist in G(‹P,�,K).

In order for G(‹P,�,K) to have shortest path distances, it must contain no negative cycles. Let C

be the set of all directed cycles in G(‹P,�,K). Consider C ∈ C. If we define, as in the proof for

Theorem 2.4.5

C≺ := {(i, j) ∈ C | i ≺ j}

C� := {(i, j) ∈ C | j ≺ i}

14cf. Theorem 2.4.7
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then the total weight of C is

w[C] =
∑

(i,j)∈C

wij

=
∑

(i,j)∈C≺

[(kij + 1)Bij − dj ] +
∑

(i,j)∈C�

[−kjiBji − dj ]

=
∑

(i,j)∈C≺

(kij + 1)Bij −
∑

(i,j)∈C≺

dj −
∑

(i,j)∈C�

kjiBji −
∑

(i,j)∈C�

dj

=
∑

(i,j)∈C≺

(kij + 1)Bij −
∑

(i,j)∈C�

kjiBji −
∑
j∈C

dj . (3.2.1)

Thus, for the network to have no negative cycles, we need

w[C] ≥ 0∑
(i,j)∈C≺

(kij + 1)Bij −
∑

(i,j)∈C�

kjiBji −
∑
j∈C

dj ≥ 0

∑
(i,j)∈C≺

kijBij +
∑

(i,j)∈C≺

Bij −
∑

(i,j)∈C�

kjiBji −
∑
j∈C

dj ≥ 0

∑
(i,j)∈C≺

kijBij −
∑

(i,j)∈C�

kjiBji ≥
∑
j∈C

dj −
∑

(i,j)∈C≺

Bij . (3.2.2)

Finding kij ’s that satisfy this inequality for all cycles in G(‹P,�,K) is not easy. Instead we consider

a very specific set K and find simple conditions such that there are no negative cycles in G(‹P,�,K).

Namely, let K0 = {kij = 0 | i ≺ j}. This makes the left-hand side of the inequality (3.2.2) zero, so

G(‹P,�,K0) has no negative cycles iff

0 ≥
∑
j∈C

dj −
∑

(i,j)∈C≺

Bij

∑
(i,j)∈C≺

Bij ≥
∑
j∈C

dj , ∀C ∈ C. (3.2.3)

Theorem 3.1.18 implies that the existence of valid starting positions is not dependent on the order-

ing. If the ordering is changed, then we just have to change the set K appropriately to maintain the

network structure. However, we now wish to keep the set K0 fixed. Consequently, a change in �

will change the network structure and thus the weights of the cycles. Indeed, examples can be con-

structed to show that G(‹P,�,K0) having no negative cycles does not guarantee that G(‹P,�′,K0)
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has no negative cycles for every �′. Thus, G(‹P,�,K0) having no negative cycles is dependent on the

given total ordering �, which is consistent with the fact that inequalities (3.2.3) are also dependent

on �.

Given a total ordering � on I, we can check the inequalities (3.2.3) to determine whether G(‹P,�,K0)

has no negative cycles. However, there is one inequality per cycle inG(‹P,�,K0) and there areO
(
|I|!
)

cycles in the network. We can in fact reduce the effort to only checking O
(
|I|2
)

inequalities, but

first we need the following lemma.

Lemma 3.2.1 Let G = (N,A) be a directed graph and let � be a total order on the elements of N .

Given any directed cycle C in G and any node m in cycle C, there exists an arc (p, q) ∈ C such that

p � m � q.

Proof: Let us assume that the nodes in cycle C are visited in the order

i0, i1, ..., i`

and let m = ik be any node in C. Now express the cycle C as the list of nodes visited in the following

order: [
ik+1, ..., i`, i0, ..., ik−1,m

]
.

Let q = iw be the first element in this list such that m � q and let p = iw−1. Then

p � m � q

and (p, q) ∈ C.

59



We now proceed to reduce the number of required inequalities in (3.2.3).

Theorem 3.2.2 Let ‹P = {‹Pi | i ∈ I} be a set of linear patterns and let � be a total order on I.

The network G(‹P,�,K0) has no negative cycles iff

Bij ≥
∑
i�`�j

d`, ∀i ≺ j.

Proof:

(⇐)

Assume that

Bij ≥
∑
i�`�j

d`, ∀i ≺ j.

Now consider any cycle C in G. Using equation (3.2.1) for the set K0 gives

w(C) =
∑

(i,j)∈C≺

(kij + 1)Bij −
∑

(i,j)∈C�

kjiBji −
∑
j∈C

dj

=
∑

(i,j)∈C≺

Bij −
∑
j∈C

dj

=
∑

(i,j)∈C≺

Bij −
∑

(i,j)∈C≺

∑
i�`�j

d` +
∑

(i,j)∈C≺

∑
i�`�j

d` −
∑
j∈C

dj

=
∑

(i,j)∈C≺

Bij − ∑
i�`�j

d`

+
∑

(i,j)∈C≺

∑
i�`�j

d` −
∑
j∈C

dj .

From the assumption

Bij ≥
∑
i�`�j

d`, ∀i ≺ j

the first summation is non-negative. Thus, if we can show that

∑
(i,j)∈C≺

∑
i�`�j

d` −
∑
j∈C

dj ≥ 0

then the cycle weight will be non-negative. Now, from Lemma 3.2.1, we know that for all m ∈ C,

there must exist (i, j) ∈ C≺ such that i � m � j. Thus

{m | m ∈ C} ⊆
⋃

(i,j)∈C≺

{` | i � ` � j}

60



giving ∑
(i,j)∈C≺

∑
i�`�j

d` ≥
∑
j∈C

dj .

Thus w(C) ≥ 0.

(⇒)

Assume that G(‹P,�,K0) has no negative cycles. Let � be a total order on I and let p ≺ q be given.

Let the indices of I between p and q be denoted as

p ≺ `1 ≺ `2 ≺ · · · ≺ `m−1 ≺ `m ≺ q.

Let C be the cycle in G that visits the nodes

[q, `m, `m−1, ..., `2, `1, p, q].

The total weight of C relative to K0 is from equation (3.2.1)

w(C) =
∑

(i,j)∈C≺

(kij + 1)Bij −
∑

(i,j)∈C�

kjiBji −
∑
j∈C

dj

=
∑

(i,j)∈C≺

Bij −
∑
j∈C

dj

= Bpq −
∑
p�`�q

d`.

Since w[C] is non-negative by assumption, we have

Bpq ≥
∑
p�`�q

d`.
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This leads to the following definition.

Definition 3.2.3 Let ‹P = {‹Pi | i ∈ I} be a set of linear patterns with ‹Pi = (B,ni, di) for all i ∈ I.

A total order � on I is called zero-feasible for ‹P if

Bij ≥
∑
i�`�j

d`, ∀i ≺ j (3.2.4)

and the pair (I,�) will be called a zero-feasible chain.

Consider i ≺ j and recall from Comment 2.2.5 that kij = 0 implies that the first interval of ‹Pj lies

between the first and second intervals of the pattern ‹Pij = (B, [ni, nj ], di). Thus the first interval

of ‹Pj must closely follow the first interval of ‹Pi. Since this must hold for all i ≺ j we can state the

following.

Theorem 3.2.4 Let ‹P = {‹Pi | i ∈ I} be a set of linear patterns with ‹Pi = (B,ni, di) for all i ∈ I

and let � be a total order on I. If � is zero-feasible then the set of starting positions

{
si =

∑
`≺i

d`

∣∣∣∣∣ i ∈ I
}

(3.2.5)

is in ‹P(S).

Note that, if i is the minimum element of I with respect to �, then the summation
∑
`≺i

d` is null.

We will assume throughout this dissertation that a null summation has value zero.

Proof: Assume that � is zero-feasible, so

Bij ≥
∑
i�`�j

d`, ∀i ≺ j.

Recall from Theorem 3.1.5 that {si | i ∈ I} is in S(‹P) if there exist kij ∈ Z such that

kijBij + di ≤ sj − si ≤ (kij + 1)Bij − dj , ∀i ≺ j.

62



Let kij = 0 for all i ≺ j and note that

∑
i�`�j

d` ≤ Bij

⇔
∑
i≺`≺j

d` ≤ Bij − di − dj .

Now

0 ≤
∑
i≺`≺j

d` ≤ Bij − di − dj

0 ≤
∑
`≺j

d` −
∑
`�i

d` ≤ Bij − di − dj

0 ≤
∑
`≺j

d` −
∑
`≺i

d` − di ≤ Bij − di − dj

di ≤
∑
`≺j

d` −
∑
`≺i

d` ≤ Bij − dj

0 ·Bij + di ≤ sj − si ≤ (0 + 1)Bij − dj

kijBij + di ≤ sj − si ≤ (kij + 1)Bij − dj .

This implies that the si’s defined by (3.2.5) are valid starting positions for ‹P.

Alternatively, we can prove Theorem 3.2.4 as follows.

Proof: Let ‹P = {‹Pi | i ∈ I} and � be given. Assume that � is zero-feasible for ‹P. Thus, by

Theorem 3.2.2, G(‹P,�,K0) has no negative cycles. Let the elements of I be listed according to �

as

i0 ≺ i1 ≺ i2 ≺ · · · ≺ im

and define the path Q in G(‹P,�,K0) by

im → im−1 → im−2 → · · · → i1 → i0.
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Note that in Q there is a path Qr from any node ir to i0 which has total length

w[Qr] = wirir−1 + wir−1ir−2 + · · ·+ wi1i0

= −dr−1 − dr−2 − · · · − d0

= −
∑
`≺r

d`.

We claim that Q defines a shortest path tree into node i0 and thus the values tr = w[Qr] are the

shortest path distances from any node r to node i0. First note that ti0 = 0. Now, let p ≺ q ∈ I be

given. Then

tp − tq = −
∑
`≺p

d` +
∑
`≺q

d` tq − tp = −
∑
`≺q

d` +
∑
`≺p

d`

=
∑
p�`≺q

d` = −
∑
p�`≺q

d`

=
∑
p�`�q

d` − dq = −dp −
∑
p≺`≺q

d`

≤ Bpq − dq ≤ −dp

= wpq = wqp.

Thus, the tr’s satisfy the optimality conditions for shortest paths to a specified node and by Theorem

3.1.15 {
si = −ti =

∑
`≺i

d`

∣∣∣∣∣ i ∈ I
}
∈ S(‹P).

Thus zero-feasible orderings have the property that we can arrange the patterns in ‹P on a feasible

template where the first intervals of all patterns form a contiguous block in the order given by �.

The periodic scheduling analog of this situation would involve performing each task in the order � a

single time before performing any task a second time. To illustrate, we present the following example.
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Example 3.2.5: Consider the set ‹P4 from Example 3.1.17 which contains linear patterns ‹P1 =

(120, 3, 3), ‹P2 = (120, 4, 3), and ‹P3 = (120, 5, 3). We showed earlier that

B12 = 10 ≥ 6 = d1 + d2

B23 = 6 ≥ 6 = d1 + d2.

However, since

B13 = 8 < 9 = d1 + d2 + d3,

the ordering 1 ≺ 2 ≺ 3 is not zero-feasible. However, consider the order 1 ≺′ 3 ≺′ 2. Then

B13 = 8 ≥ 6 = d1 + d3

B32 = 6 ≥ 6 = d1 + d2

B12 = 10 ≥ 9 = d1 + d3 + d2

and so≺′ is zero-feasible. This implies thatG(‹P,�′,K0) has no negative cycles, and that {‹P1(0), ‹P3(3), ‹P2(6)}

shown in Figure 3.2.1, is feasible.

Figure 3.2.1: ‹P4: The feasible template {‹P1(0), ‹P3(3), ‹P2(6)}

The relationship detailed in Theorem 3.2.4 is not unique to zero-feasible orderings and this leads to

the following definition.

Definition 3.2.6 Let ‹P = {‹Pi | i ∈ I} be a set of linear patterns with ‹Pi = (B,ni, di) for all i ∈ I.

A total order � on I is called a contiguous ordering for ‹P if

{
si =

∑
`≺i

d`

∣∣∣∣∣ i ∈ I
}
∈ S(‹P)

and the pair (I,�) will be called a contiguous chain.
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Theorem 3.2.4 implies that any zero-feasible ordering is also a contiguous ordering. The reverse is

not true, but the following theorem shows how the definition of zero-feasibility can be generalized

to characterize contiguous orderings.

Theorem 3.2.7 Let ‹P = {‹Pi | i ∈ I} be a set of linear patterns where ‹Pi = (B,ni, di) and let � be

a total order on I. Then � is a contiguous ordering for ‹P iffÑ∑
i≺`≺j

d`

é
mod Bij ≤ Bij − di − dj , ∀i ≺ j. (3.2.6)

Proof: Corollary 3.1.10 guarantees that

{
si =

∑
`≺i

d`

∣∣∣∣∣ i ∈ I
}
∈ S(‹P) iff

(sj − si − di) mod Bij ≤ Bij − di − dj

⇔

Ñ∑
`≺j

d` −
∑
`≺i

d` − di

é
mod Bij ≤ Bij − di − dj

⇔

Ñ∑
i�`≺j

d` − di

é
mod Bij ≤ Bij − di − dj

⇔

Ñ∑
i≺`≺j

d`

é
mod Bij ≤ Bij − di − dj .
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To show that the inclusion of zero-feasible orderings in the set of contiguous orderings is strict, we

present the next example.

Example 3.2.8: Consider the set ‹P5 containing the four patterns ‹P1 = (24, 3, 1), ‹P2 = (24, 2, 1),‹P3 = (24, 3, 1), and ‹P4 = (24, 4, 1). Define the order � by 1 ≺ 2 ≺ 3 ≺ 4. Now

B12 =
24

[3, 2]
=

24

6
= 4

∑
1≤`≤2

d` = 2

B13 =
24

[3, 3]
=

24

3
= 8

∑
1≤`≤3

d` = 3

B14 =
24

[3, 4]
=

24

12
= 2

∑
1≤`≤4

d` = 4

B23 =
24

[2, 3]
=

24

6
= 4

∑
2≤`≤3

d` = 2

B24 =
24

[2, 4]
=

24

4
= 6

∑
2≤`≤4

d` = 3

B34 =
24

[3, 4]
=

24

12
= 2

∑
3≤`≤4

d` = 2

Thus � is not zero-feasible because B14 6≥
∑

1≤`≤4

d`, but it is a contiguous ordering because

( ∑
1<`<4

d`

)
mod B14 = 2 mod 2 = 0

and

B14 − d1 − d4 = 2− 1− 1 = 0.

This implies that

T =
{‹P1(0), ‹P1(1), ‹P2(2), ‹P3(3)

}
is a feasible template.
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Chapter 4

Complexity

In this chapter we establish the computational complexity of the problems discussed in Chapters

2-3. This will justify our work in Chapter 5 developing heuristics for these problems. We start with

the problems involving linear patterns and their special orderings and then move on to proving that

the general Feasible Fit Problem is NP-hard. Before we do that, however, we present a summary of

complexity results from the periodic scheduling literature.

In the planar case, Vince [27] shows that maximizing the minimum distance between the vertices of

regular polygons inscribed in a circle1 is NP-complete by reduction from Graph Coloring2. In the

linear case, Orlin [22] points out that constrained periodic assignment is NP-hard in the case of all

periods being equal by reduction from Circular Arc Coloring. Korst, et al. [19] then extend the

same reduction to the more general constrained periodic assignment problem. Later they show that

the periodic scheduling problem is NP-complete [18] by reduction from Bin-Packing and is NP-

complete in the strong sense even in the case of one processor [17] by reduction from 3-Partition.

Bar-Noy, et al. [3] show that a different special case of periodic scheduling, where all processing

times are unit length, is also NP-complete by reduction from Graph Coloring. Additionally,

Serafini and Ukovich [26] show that the more general Periodic Event Scheduling Problem (PESP) is

NP-complete by reduction from Hamiltonian Cycle.

1Please see Chapter 1 for more thorough definitions of the problems described here.
2See Garey & Johnson [12] for more information about common NP-complete problems (written in small caps)

used in this section.
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4.1 Linearized Fit Problems

We start this section by stating the decision problem versions of the three linearized problems defined

in Section 3.1:

Linearized Feasible Fit:

Given a set of patterns ‹P = {‹Pi | i ∈ I}, does there exist a set of starting positions

S such that ‹P(S) is a feasible template?

Linearized Minimum Templates:

Given a set of patterns ‹P = {‹Pi | i ∈ I} and K ∈ N, does there exist a partition of

I, I = {Iu | u ∈ U}, with |U | ≤ K, such that valid starting positions exist for each‹Pu = {‹Pi | i ∈ Iu}?
Linearized Maximum Template:

Given a set of patterns ‹P = {‹Pi | i ∈ I} and K ∈ N, does there exist a subset I1 of

I, with |I1| ≥ K, such that valid starting positions exist for ‹P1 = {‹Pi | i ∈ I1}?
In Comment 3.1.3 we showed that the Periodic Scheduling Problem (PSP) from [17] is equivalent

to the Linearized Minimum Templates Problem (LinMinTemp). Since [17] proves that Periodic

Scheduling is NP-complete in the strong sense by reduction from 3-Partition, it follows that

Linearized Minimum Templates is also NP-complete in the strong sense. Moreover, [17] reduces

3-Partition to an instance of Periodic Scheduling with only one processor. This shows that the

special case of Linearized Minimum Templates where K = 1 (which is Linearized Feasible

Fit) is also NP-complete in the strong sense. Finally, noting that Linearized Feasible Fit is

a special case of Linearized Maximum Template where K = |I| implies that the latter is also

NP-complete in the strong sense.

4.1.1 Zero-Feasible Ordering Problem

We now determine the complexity of finding a zero-feasible ordering. First, let us define the Zero-

Feasibility Problem (ZFP):

Zero-Feasibility:

Given a set of patterns ‹P = {‹Pi | i ∈ I} where ‹Pi = (B,ni, di) for all i ∈ I, does

there exist a total order � on I that is zero-feasible for P?
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We will prove that ZFP is NP-complete by reduction from the Bandwidth Problem:

Bandwidth:

Given an undirected graph G = (N,A) and a positive integer K ≤ |N |, does there

exist a one-to-one function π : N → {1, ..., |N |} such that

|π(i)− π(j)| ≤ K, ∀{i, j} ∈ A?

Given an instance of the Bandwidth Problem (G = (N,A) and K ≤ |N |), we will construct a set

of linear patterns ‹P = {‹Pi | i ∈ N} that will have a zero-feasible ordering � if and only if there is

a permutation π that solves the given instance. First, let di = 1 for all i ∈ N . Moreover, we will

connect the ordering � and the permutation π so that

π(j)− π(i) =
∑
i�`�j

d` − 1, ∀i � j. (4.1.1)

We will choose B and ni’s such that

∑
i�`�j

d` ≤ Bij ⇒ |π(j)− π(i)| ≤ K, ∀{i, j} ∈ A

and ∑
i�`�j

d` ≤ Bij , ∀{i, j} 6∈ A.

When {i, j} ∈ A, we will have for i ≺ j,

π(j)− π(i) =
∑
i�`�j

d` − 1 ≤ Bij − 1.

Thus, Bij = K + 1 if {i, j} ∈ A and Bij is greater than |N | + 1 if {i, j} 6∈ A. Since Bij =
B

[ni, nj ]
,

choose the ni’s so that [ni, nj ] =
B

K + 1
if {i, j} ∈ A and [ni, nj ] <

B

|N |+ 1
if {i, j} 6∈ A. With this

aim, define the following:

• Let Ω be the set of the first

∣∣∣∣{{i, j} ∣∣∣ {i, j} 6∈ A}∣∣∣∣ primes.
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• Associate with each pair {i, j} 6∈ A a distinct prime, i.e.,

φ :
{
{i, j}

∣∣∣ {i, j} 6∈ A}→ Ω.

• Let n` be the product of all primes in Ω that are associated with pairs {i, j} such that ` 6∈ {i, j},

raised to a sufficiently high power m, i.e.,

n` =
∏{

{i,j}
∣∣{i,j}6∈A,` 6∈{i,j}}φ

(
{i, j}

)m
.

In other words, n` is the product of all primes in Ω divided by the primes in Ω that are

associated with arcs in A{ incident with node `, all raised to the power m. (The value of m

will be determined later.)

• Let B be the product of all elements of Ω raised to the power m, and multiplied by K+ 1, i.e.,

B = (K + 1)
∏
{i,j}6∈A

φ
(
{i, j}

)m
.

We turn our attention to the value [np, nq]. To determine the least common multiple of two integers

a and b we factor them into their product of prime powers

a = pa11 p
a2
2 · · · parr

b = pb11 p
b2
2 · · · pbrr

where some of the a`’s and b`’s could be zero. Then

[a, b] = p
max{a1,b1}
1 p

max{a2,b2}
2 · · · pmax{ar,br}

r .
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Now consider [np, nq]. The prime factorizations of np and nq are readily available since they are

products of primes. Let

np =
∏
{i,j}6∈A

φ
(
{i, j}

)a{i,j}
nq =

∏
{i,j}6∈A

φ
(
{i, j}

)b{i,j} .
Now, if {p, q} ∈ A, then for each {i, j} 6∈ A, at least one of p or q must not be in {i, j} and

max{a{i,j}, b{i,j}} = m. Thus [np, nq] must be the product of all primes in Ω raised to the power

m. Finally if {p, q} 6∈ A, then a{p,q} = b{p,q} = 0 and max{a{i,j}, b{i,j}} = m for all {i, j} 6= {p, q}.

Thus,

[np, nq] =



∏
{i,j}6∈A

φ
(
{i, j}

)m
, {p, q} ∈ A

1

φ
(
{p, q}

)m ∏
{i,j}6∈A

φ
(
{i, j}

)m
, {p, q} 6∈ A

and

Bpq =


K + 1, {p, q} ∈ A

(K + 1) · φ
(
{p, q}

)m
, {p, q} 6∈ A.

Now, to ensure that Bpq > |N |+ 1 for {p, q} 6∈ A, set m =

°
log2

|N |+ 1

K + 1

§
, giving

Bpq = (K + 1) · φ
(
{p, q}

)⌈log2
|N|+1
K+1

⌉
> (K + 1) · 2

⌈
log2

|N|+1
K+1

⌉
> (K + 1) · 2log2

|N|+1
K+1

= (K + 1)
|N |+ 1

K + 1

= |N |+ 1. (4.1.2)
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Finally then, we can state the following theorem.

Theorem 4.1.1 The Zero-Feasibility Problem is NP-complete.

Proof: First, (ZFP) is in NP since the inequalities defining zero-feasibility can be checked for a

given order � in O(|N |2) time. Now let G = (N,A) and K ≤ |N | be given. We will construct

a set of linear patterns as follows. Let Ω be the set of the first

∣∣∣∣{{i, j} ∣∣∣ {i, j} 6∈ A}∣∣∣∣ primes, let

φ :
{
{i, j}

∣∣ {i, j} 6∈ A} → Ω be a one-to-one function (in other words there is a distinct prime for

each edge in the complement of G). Now define the following values

di := 1, ∀i ∈ N

m :=

°
log2

|N |+ 1

K + 1

§
B := (K + 1)

∏
{i,j}6∈A

φ
(
{i, j}

)m

a`,{i,j} :=


0, ` ∈ {i, j}, {i, j} 6∈ A

m, else

, ∀`, i 6= j ∈ N

n` :=
∏
{i,j}6∈A

φ
(
{i, j}

)a`,{i,j}
, ∀` ∈ N.

Finally, let ‹P = {‹Pi | i ∈ N} where ‹Pi = (B,ni, di). As discussed earlier,

[np, nq] =
∏
{i,j}6∈A

φ
(
{i, j}

)max{ap,{i,j},aq,{i,j}}

=



∏
{i,j}6∈A

φ
(
{i, j}

)m
, {p, q} ∈ A

1

φ
(
{p, q}

)m ∏
{i,j}6∈A

φ
(
{i, j}

)m
, {p, q} 6∈ A

⇒ Bpq =


K + 1, {p, q} ∈ A

(K + 1) · φ
(
{p, q}

)m
, {p, q} 6∈ A.

It now remains to prove that there exists a function π : N → {1, ..., |N |} that solves the bandwidth

problem for G = (N,A) and K iff there exists an order � on N that is zero-feasible for P.
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(⇒)

Given π define � such that

i � j ⇔ π(i) ≤ π(j), ∀i, j ∈ N.

Suppose that π solves the Bandwidth Problem for G = (N,A) and K. Then

|π(i)− π(j)| ≤ K, ∀{i, j} ∈ A.

Let p ≺ q ∈ N be given.

Case 1: {p, q} 6∈ A

Since π(p), π(q) ≤ |N | and all d` = 1, relations (4.1.1) and (4.1.2) give

∑
p�`�q

d` = π(q)− π(p) + 1

≤ |N |+ 1

≤ Bpq.

Case 2: {p, q} ∈ A

Now |π(q)− π(p)| ≤ K and Bpq = K + 1, giving

∑
p�`�q

d` = π(q)− π(p) + 1

≤ |π(q)− π(p)|+ 1

≤ K + 1

= Bpq.

Thus � is zero-feasible for P.
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(⇐)

Let � be zero-feasible for P. Define π : N → {1, ..., |N |} according to

π(i) =
∑
`�i

1, ∀i ∈ N.

Let {p, q} ∈ A. Then

0 < π(q)− π(p) + 1 =
∑
p�`�q

d` ≤ Bpq = K + 1.

Thus,

|π(q)− π(p)| ≤ K

and π solves the bandwidth problem.

To ensure that this transformation takes polynomial time and space, first consider the time it takes

to find the set Ω. As shown in [25], the mth prime number pm is bounded by

pm < m(logm+ log logm), m ≥ 6.

The size of Ω is ∣∣∣∣{{i, j} ∣∣∣ {i, j} 6∈ A}∣∣∣∣ <
Ç
|N |
2

å
= O

(
|N |2

)
so to find the primes for Ω, we can run the Sieve of Eratosthenes on the set {x ∈ Z | 2 ≤ x ≤ p|N |2}.

This set has size

O
(
|N |2 log |N |

)
.

Since the sieve runs in time O(r log log r) on a set of size r it will take

O
(
|N |2 log |N | log log

(
|N |2 log |N |

))
= O

(
|N |2 log |N |

(
log log |N |2 + log log log |N |

))
= O

(
|N |2 log |N | log log |N |

)

time to find Ω.
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Finally, we need to consider the encoding length of B and the ni’s. Since B > ni for all i ∈ N , we

just need to consider the length of B:

logB = log

Ñ
(K + 1)

∏
{i,j}6∈A

φ
(
{i, j}

)⌈log2
|N|+1
K+1

⌉é
= log(K + 1) +

∑
{i,j}6∈A

log

Å
φ
(
{i, j}

)⌈log2
|N|+1
K+1

⌉ã
= log(K + 1) +

°
log2

|N |+ 1

K + 1

§ ∑
{i,j}6∈A

log
(
φ
(
{i, j}

))
= O

(
log |N |

)
+O

(
log |N |

) ∑
{i,j}6∈A

log
(
O
(
|N |2 log |N |

))
= O

(
log |N |

)
+O

(
log |N |

)
O
(
|N |2

)
log
(
O
(
|N |2 log |N |

))
= O

(
log |N |

)
+O

(
log |N |

)
O
(
|N |2

)
O
(
log |N |2 + log log |N |

)
= O

(
log |N |

)
+O

(
log |N |

)
O
(
|N |2

)
O
(
log |N |

)
= O

(
|N |2 log2 |N |

)
.

4.2 Generalized Fit Problem

Having shown the complexity of the problems associated with linearized patterns ‹Pi = (B,ni, di),

we return to the problems associated with generalized patterns Pi = (Ri, ni, ρi). Bar-Noy, et al. [3]

discuss a special case of the Periodic Scheduling Problem with only one server and e(i) = 1 for all i

which they call the Periodic Maintenance Scheduling Problem (PMSP):

Periodic Maintenance Scheduling:

Given m machines and service intervals l1, l2, ..., lm such that
m∑
i=1

1

li
≤ 1, does

there exist an infinite maintenance service schedule of these machines for which

consecutive services of machine i are exactly li time slots apart and no more than

one machine is serviced in a single time slot?

They show that PMSP is NP-complete by reduction from Graph Coloring. We wish to show

that FFP(P) is NP-hard by reduction from PMSP. To do this, given any specific instance of PMSP,
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we need to construct a set of patterns that can be fit on a single feasible template iff the instance

of PMSP has a feasible maintenance schedule. More importantly, we need to show how a set of

starting positions that are valid for our constructed set of patterns can be transformed into a feasi-

ble maintenance schedule for a PMSP instance. We illustrate our approach in the following example.

Consider an instance of PMSP with machines {A,B,C} and service intervals (lA, lB , lC) = (6, 8, 12).

Each machine takes a full day to process, so building a schedule can be seen as filling the days on

a calendar. The days are viewed as empty bins as shown in Figure 4.2.1(a). Note that, since

lcm(6, 8, 12) = 24, the schedule for the first 24 days yields the exact same schedule for the next

24 days and every 24 day period after that [18]. So, for example, scheduling the maintenance on

machine A for day 1 fills bins 1 + 6k for k ∈ Z. Similarly, we can schedule B and C, as shown in

Figure 4.2.1(b).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

4.2.1(a): Bins for a PMSP example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A A A AB B BC C

4.2.1(b): A valid PMSP schedule

Figure 4.2.1: PMSP Example

Instead of thinking of the days as intervals on the number line, consider them as disks of diameter

1, arranged around the circumference of a circle as shown in Figure 4.2.2(a). Then maintenance can

be scheduled by filling in the disks as in Figure 4.2.2(b). The periodic maintenance of a machine is

now a pattern of disks as defined in Section 2.1.

It is useful to note that the centers of the disks in Figure 4.2.2(a) define the vertices of a regu-

lar 24-gon whose sides are of length 1. Thus the radius of the outer circle can be calculated as

1

2
csc

π

24
. The disks themselves have radii of 0.5 and for each machine the corresponding pattern

has ni = 24/li disks. The main problem, however, is that valid starting positions for the patterns

can be real-valued, but a feasible schedule for PMSP must be integer. If the starting angles for the
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1

2

3

4

5
678

9

10

11

12

13

14

15

16

17
18 19 20

21

22

23

24

4.2.2(a): PMSP bins arranged as disks

1

2

3

4

5
678

9

10

11

12

13

14

15

16

17
18 19 20

21

22

23

24

A

A

A

A

B

B

B

C

C

4.2.2(b): A valid PMSP schedule as disks

Figure 4.2.2: PMSP Example: Transformation to disks

patterns place the centers of the disks exactly on the vertices of the regular 24-gon, then the starting

angles will be of the form ϕi =
2π

24
vi where vi ∈ Z. In this case, the vi’s form a feasible maintenance

schedule. The following lemma generalizes this construction.

Lemma 4.2.1 Let P = {Pi | i ∈ I} be given where Pi =

Å
1

2
csc

π

L
, ni,

1

2

ã
and ni | L for all i ∈ I.

Then S(P) 6= ∅ iff there exist {v̂i ∈ Z | i ∈ I} such that

ß
ϕ̂i =

2π

L
v̂i

∣∣∣∣i ∈ I™ ∈ S(P).

That is, if there are valid starting positions, then there must be valid starting positions that lie on

the points of the regular L-gon centered at the origin with sides of length 1.

Proof:

(⇐)

If there exists {v̂i ∈ Z | i ∈ I} such that

ß
ϕ̂i =

2π

L
v̂i

∣∣∣∣i ∈ I™ ∈ S(P) then S(P) cannot be empty.
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(⇒)

Let P = {Pi | i ∈ I} be given as above and let � be a total order on I. Assume that {Pi(ϕi) | i ∈ I}

is a feasible template. First, we calculate the following values3:

βij =
2π

[ni, nj ]

δij = 2 arcsin
(ρi + ρj

2R

)
= 2 arcsin

Ç
1

csc π
L

å
= 2 arcsin

(
sin

π

L

)
=

2π

L
.

Define vi =
L

2π
ϕi for all i ∈ I. Now we know from Theorem 2.3.1 that there exists K = {kij ∈ Z |

i ≺ j} such that for i ≺ j,

kijβij + δij ≤ ϕj − ϕi ≤ (kij + 1)βij − δij

kij
2π

[ni, nj ]
+

2π

L
≤ 2π

L
vj −

2π

L
vi ≤ (kij + 1)

2π

[ni, nj ]
− 2π

L

kij
L

[ni, nj ]
+ 1 ≤ vj − vi ≤ (kij + 1)

L

[ni, nj ]
− 1. (4.2.1)

Consider the network Ğ = (N,A, w̆) where

N = I

A = {(i, j) | i 6= j ∈ I}

w̆ij =


(kij + 1)

L

[ni, nj ]
− 1, i ≺ j

−kji
L

[nj , ni]
− 1, j ≺ i.

3Recall that, since all patterns are arranged on the same outer circumference, we can use the simplified formula
for δij from Corollary 2.2.16.
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Note that Ğ is the same network as G(P,�,K) except that w̆ij =
L

2π
wij . Let C be any cycle in Ğ

and define C≺ and C� as in (2.4.2). Then by (4.2.1)

w̆[C] =
∑

(i,j)∈C

w̆ij

=
∑

(i,j)∈C≺

ï
(kij + 1)

L

[ni, nj ]
− 1

ò
−

∑
(i,j)∈C�

ï
kji

L

[nj , ni]
+ 1

ò
≥

∑
(i,j)∈C≺

(vj − vi) +
∑

(i,j)∈C�

(vj − vi)

=
∑

(i,j)∈C

(vj − vi)

= 0.

Since our selection of C was arbitrary, Ğ must have no negative cycles. Next notice that, since

[ni, nj ] | L for all i, j, w̆ij ∈ Z for all (i, j). Thus the shortest path distances v̂i from some given root

node r ∈ I must be integer and these must also satisfy for all i ≺ j,

kij
L

[ni, nj ]
+ 1 ≤ v̂j − v̂i ≤ (kij + 1)

L

[ni, nj ]
− 1

kij
2π

[ni, nj ]
+

2π

L
≤ 2π

L
v̂j −

2π

L
v̂i ≤ (kij + 1)

2π

[ni, nj ]
− 2π

L

kijβij + δij ≤ ϕ̂j − ϕ̂i ≤ (kij + 1)βij − δij

where ϕ̂i =
2π

L
v̂i for all i ∈ I.

The lemma above shows that, with a properly constructed set of patterns, we can build a special

network Ğ that can be used to find starting positions that are multiples of
2π

L
. Unfortunately, build-

ing the set of patterns detailed in Lemma 4.2.1 is not practical since in general we cannot calculate

R =
1

2
csc

π

L
precisely in polynomial time (in fact, if R is irrational, we may not be able to calculate

it precisely in any finite amount of time). To remedy this we next prove that, even if R is calcu-

lated to within some tolerance of the value defined in Lemma 4.2.1, the same solution structure exists.
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Lemma 4.2.2 Let P = {Pi | i ∈ I} be given where Pi =

Å
1

2
csc

π

L
, ni,

1

2

ã
and ni | L for all i ∈ I.

Define P ′ = {P ′i | i ∈ I} where P ′i =

Å
1

2
csc

π

L
+ ε, ni,

1

2

ã
. Then S(P) 6= ∅ iff S(P ′) 6= ∅ for all

0 ≤ ε < 1

16|I|2
.

Proof: Throughout this proof we refer to the values associated with the set P ′ with primes (i.e.,

β′ij , δ
′
ij , and w′ij). The values associated with the set P will remain unadorned (i.e., βij , δij , and

wij). It should be noted at this point, however, that since ni occurs in both Pi and P ′i , βij = β′ij

for all i, j ∈ I. Recall from the proof of Lemma 4.2.1 that

δij =
2π

L
.

Before we proceed to the actual proof, let us bound how much the error ε in the value of R′ affects

the calculation of δ′ij . First, note that

ε <
1

16|I|2
<

π2

16|I|2
.

Thus

2ε <
1

2
· π2

4|I|2
=

1

2

Å
π

2|I|

ã2
. (4.2.2)

Next, recall the Taylor series expansion for secx:

secx =
∞∑
n=0

|E2n|x2n

(2n)!
= 1 +

1

2
x2 +

∞∑
n=2

|E2n|x2n

(2n)!

where |E2n| are the Euler numbers4. Since all terms in the summation are positive for x > 0,

secx > 1 +
1

2
x2, 0 < x <

π

2
.

4The Online Encyclopedia of Integer Sequences (http://oeis.org) #A000364
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Thus, continuing from (4.2.2),

2ε <
1

2

Å
π

2|I|

ã2
< sec

π

2|I|
− 1

= csc

Å
π

2
− π

2|I|

ã
− csc

π

2

≤ csc

Å
π

L
− π

L|I|

ã
− csc

π

L
, ∀L ≥ 2.

Finally,

2ε < csc

Å
π

L
− π

L|I|

ã
− csc

π

L

csc
π

L
+ 2ε < csc

Å
π

L
− π

L|I|

ã
1

csc π
L + 2ε

> sin

Å
π

L
− π

L|I|

ã
arcsin

Ç
1

csc π
L + 2ε

å
>
π

L
− π

L|I|

arcsin

Ç
1

2 1
2 csc π

L + 2ε

å
> arcsin

(
sin
(π
L

))
− π

L|I|

arcsin

Ç
1

2( 1
2 csc π

L + ε)

å
> arcsin

Ç
1

csc π
L

å
− π

L|I|

arcsin

Ç
1

2( 1
2 csc π

L + ε)

å
> arcsin

Ç
1

2( 1
2 csc π

L )

å
− π

L|I|

2 arcsin

Å
1

2R′

ã
> 2 arcsin

Å
1

2R

ã
− 2π

L|I|

2 arcsin

Å
1

2R

ã
− 2 arcsin

Å
1

2R′

ã
<

2π

L|I|

δij − δ′ij <
2π

L|I|
. (4.2.3)
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To bound the error in the other direction, note that since ε ≥ 0,

1

2
csc

π

L
+ ε ≥ 1

2
csc

π

L

2

Å
1

2
csc

π

L
+ ε

ã
≥ 2

Å
1

2
csc

π

L

ã
1

2( 1
2 csc π

L + ε)
≤ 1

2( 1
2 csc π

L )

arcsin

Ç
1

2( 1
2 csc π

L + ε)

å
≤ arcsin

Ç
1

2( 1
2 csc π

L )

å
0 ≤ 2 arcsin

Å
1

2R

ã
− 2 arcsin

Å
1

2R′

ã
0 ≤ δij − δ′ij .

Combining this with (4.2.3), we get

0 ≤ δij − δ′ij <
2π

L|I|
. (4.2.4)

We continue, showing that S(P) 6= ∅ iff S(P ′) 6= ∅.

(⇒)

Assume that S(P) 6= ∅. Let the total order � on I be given. Then there exists ϕi ∈ R for all i ∈ I

and kij ∈ Z for all i ≺ j such that

kijβij + δij ≤ ϕj − ϕi ≤ (kij + 1)βij − δij .

Since 0 ≤ δij − δ′ij , we have δij ≥ δ′ij . Thus,

kijβ
′
ij + δ′ij ≤ kijβij + δij ≤ ϕj − ϕi ≤ (kij + 1)βij − δij ≤ (kij + 1)β′ij − δ′ij ,

and so the ϕi’s are valid for P ′.
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(⇐)

Assume that S(P ′) 6= ∅ and let the total order � on I be given. Now, let K = {kij | i ≺ j} be given

such that G(P ′,�,K) has no negative cycles. Such a K exists by Theorem 2.4.5. We prove that

G(P,�,K) has no negative cycles.

Let C be any directed cycle in G(P ′,�,K). Let C≺ and C� be defined as in (2.4.2). Then

0 ≤ w′[C]

=
∑

(i,j)∈C≺

(kij + 1)β′ij −
∑

(i,j)∈C�

kjiβ
′
ji −

∑
(i,j)∈C

δ′ij

<
∑

(i,j)∈C≺

(kij + 1)βij −
∑

(i,j)∈C�

kjiβji −
∑

(i,j)∈C

Å
δij −

2π

L|I|

ã
by (4.2.4). Continuing,

0 <
∑

(i,j)∈C≺

(kij + 1)βij −
∑

(i,j)∈C�

kjiβji −
∑

(i,j)∈C

δij +
∑

(i,j)∈C

2π

L|I|

0 <
∑

(i,j)∈C≺

(kij + 1)
2π

[ni, nj ]
−

∑
(i,j)∈C�

kji
2π

[nj , ni]
−

∑
(i,j)∈C

2π

L
+

∑
(i,j)∈C

2π

L|I|

0 <
∑

(i,j)∈C≺

(kij + 1)
L

[ni, nj ]
−

∑
(i,j)∈C�

kji
L

[nj , ni]
−

∑
(i,j)∈C

1 +
∑

(i,j)∈C

1

|I|

−
∑

(i,j)∈C

1

|I|
<

∑
(i,j)∈C≺

(kij + 1)
L

[ni, nj ]
−

∑
(i,j)∈C�

kji
L

[nj , ni]
−

∑
(i,j)∈C

1.

Now, since |C| ≤ |I|,

−
∑

(i,j)∈C

1

|C|
<

∑
(i,j)∈C≺

(kij + 1)
L

[ni, nj ]
−

∑
(i,j)∈C�

kji
L

[nj , ni]
−

∑
(i,j)∈C

1

−1 <
∑

(i,j)∈C≺

(kij + 1)
L

[ni, nj ]
−

∑
(i,j)∈C�

kji
L

[nj , ni]
−

∑
(i,j)∈C

1.
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Note that, since [ni, nj ] | L for all i, j, all terms of the right-hand side of this inequality are integer.

Thus

0 ≤
∑

(i,j)∈C≺

(kij + 1)
L

[ni, nj ]
−

∑
(i,j)∈C�

kji
L

[nj , ni]
−

∑
(i,j)∈C

1

0 ≤
∑

(i,j)∈C≺

(kij + 1)
2π

[ni, nj ]
−

∑
(i,j)∈C�

kji
2π

[nj , ni]
−

∑
(i,j)∈C

2π

L

0 ≤
∑

(i,j)∈C≺

(kij + 1)βij −
∑

(i,j)∈C�

kjiβji −
∑

(i,j)∈C

δij

0 ≤ w[C].

Our choice of C was arbitrary and so G(P,�,K) has no negative cycles. This implies by Theorem

2.4.5 that S(P) 6= ∅.

Now, combining these two lemmas, we can say that if P ′ has valid starting positions, then P has

valid starting positions that are multiples of
2π

L
. We should also note that, as shown in the proof of

Lemma 4.2.2, any valid starting positions for P are also valid for P ′. This will enable us to create

a set of patterns that can be used to find a solution to any instance of PMSP. Before the main

theorem, however, we need to state one more lemma, this one regarding PMSP.

Lemma 4.2.3 5(Bar-Noy, Bhatia, Naor, & Schieber [3])

A given integer vector ~v determines a feasible schedule for the PMSP instance, if and only if, the

following holds for any pair of machines i and j:

vi − vj 6= 0 mod (li, lj).

Finally, we can prove the following:

Theorem 4.2.4 The generalized Feasible Fit Problem is NP-Hard.

Proof: Let a number of machines m and service intervals l1, l2, ..., lm be given. Without loss of

generality, let m ≥ 3 (Recall that the case with m = 2 can be solved immediately as detailed

in Section 2.2). We will construct a set of patterns which can be fit on one template iff a valid

5cf. Corollary 3.1.4
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maintenance service schedule exists. We construct our patterns by defining the following:

I := {1, 2, 3, ...,m}

L := lcm(l1, l2, ..., lm) = [l1, l2, ..., lm]

R :=
1

2
csc

π

L

ρ :=
1

2

ni :=
L

li
, ∀i ∈ I.

We also define R′ := R + ε for some 0 ≤ ε <
1

16m2
. Note that since L = ni · li, we have ni | L for

all i ∈ I and

(li, lj) =

Å
L

ni
,
L

nj

ã
=

L

[ni, nj ]
.

We define the sets of patterns P =
{
Pi = (R,ni, ρ)

∣∣ i ∈ I} and P ′ =
{
P ′i = (R′, ni, ρ)

∣∣ i ∈ I}
and claim that the given instance of PMSP has a solution iff S(P ′) 6= ∅. More importantly, we

detail how valid starting positions for P ′ can be used to find a valid maintenance service schedule

in polynomial time.

Recall from the proof of Lemma 4.2.2 that

δij =
2π

L
, βij = β′ij =

2π

[ni, nj ]
,

and

0 ≤ δij − δ′ij <
2π

L|I|
=

2π

Lm
.
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(⇒)

Let ~v be a valid maintenance service schedule. Lemma 4.2.3 ensures that for 1 ≤ i 6= j ≤ m

vi − vj 6= 0 mod (li, lj).

Note that, since ~v is integer, this is equivalent to

1 ≤ (vj − vi) mod (li, lj) ≤ (li, lj)− 1

1 ≤ vj − vi − kij(li, lj) ≤ (li, lj)− 1

for some kij ∈ Z. Continuing,

1 ≤ vj − vi − kij(li, lj) ≤ (li, lj)− 1

1 ≤ vj − vi − kij
L

[ni, nj ]
≤ L

[ni, nj ]
− 1

kij
L

[ni, nj ]
+ 1 ≤ vj − vi ≤ (kij + 1)

L

[ni, nj ]
− 1

kij
2π

[ni, nj ]
+

2π

L
≤ 2π

L
vj −

2π

L
vi ≤ (kij + 1)

2π

[ni, nj ]
− 2π

L

kijβij + δij ≤
2π

L
vj −

2π

L
vi ≤ (kij + 1)βij − δij .

Now, since δ′ij ≤ δij ,

kijβ
′
ij + δ′ij ≤ kijβij + δij ≤

2π

L
vj −

2π

L
vi ≤ (kij + 1)βij − δij ≤ (kij + 1)β′ij − δ′ij .

Letting ϕ̂i =
2π

L
vi for all i ∈ I, we get

kijβ
′
ij + δ′ij ≤ ϕ̂j − ϕ̂i ≤ (kij + 1)β′ij − δ′ij .

Thus {ϕ̂i | i ∈ I} ∈ S(P ′) and S(P ′) 6= ∅.
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(⇐)

Assume that {P ′i (ϕi) | i ∈ I} is a feasible template. Let the total order � on I be given. Lemmas

4.2.1 and 4.2.2 imply that there is a set of starting positions of the form ϕ̂i =
2π

L
vi where vi ∈ Z,

but we still need to show how to find those solutions.

We start by using (2.2.5) to calculate the set K from the valid starting positions ϕi. Since the

resulting G(P ′,�,K) has no negative cycles, we know that G(P,�,K) has no negative cycles by

Lemma 4.2.2. Following the construction used in the proof of Lemma 4.2.1 we build network Ğ

which we know also has no negative cycles. Finally, we find shortest path distances vi from some

given root node r in Ğ. Because of the integrality of the weights of Ğ, these vi are integer for all

i ∈ I and, since they are shortest path distances in Ğ, satisfy for i ≺ j

−w̆ji ≤ vj − vi ≤ w̆ij

kij
L

[ni, nj ]
+ 1 ≤ vj − vi ≤ (kij + 1)

L

[ni, nj ]
− 1

1 ≤ vj − vi − kij
L

[ni, nj ]
≤ L

[ni, nj ]
− 1

1 ≤ vj − vi − kij(li, lj) ≤ (li, lj)− 1

1 ≤ (vj − vi) mod (li, lj) ≤ (li, lj)− 1

vj − vi 6= (0 mod (li, lj)).

Thus, ~v is a valid maintenance schedule for the instance of PMSP.
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Finally, we need to ensure that this transformation does in fact take polynomial time and space.

Note that we can calculate cscx to n bits of precision in O(n2.5) time using Taylor series. Thus, if

we calculate R to at least 5 log2m bits of precision (which we can do in O(log2.5m) time) then

R′ −R <
1

25 log2m

=
1

m5

≤ 1

33 ·m2

=
1

27m2

<
1

16m2

=
1

16|I|2

as required. To ensure that L is of reasonable size, let l = max
i=1,...,m

{li}, then

L ≤
m∏
i=1

li

⇒ logL ≤ log
m∏
i=1

li

=
m∑
i=1

log li

≤
m∑
i=1

log l

= m log l.

Finally, the Euclidean Algorithm for computing the greatest common divisor of two integers runs

in time O(log2 n) [9] where n is the number of bits in the smaller of the two integers. It can also

be modified to find the least common multiple in the same asymptotic time. Thus, calculating L

requires repeatedly calculating
[
[l1, l2, . . . , lk], lk+1

]
which takes time O(log2 log l). As a result, the

total time required to calculate L is O(m log2 log l).
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Chapter 5

Heuristics

In Chapter 4 we showed that finding feasible templates is intrinsically difficult and thus finding exact

answers to the problems studied in this dissertation is impractical in most cases. As a result, we

develop heuristics for the solution of all three posed problems. We start by exploiting the special

orderings described in Section 3.2 to solve problems involving linearized patterns. We then present

an additional heuristic based on the network formulation presented in Section 2.4. This is first

implemented for linearized patterns but is then extended to generalized patterns. To begin, we

consider the problem of trying to find zero-feasible orderings.

5.1 Ordering-Based Heuristics

Throughout this section we will use the value Bij − di − dj often and therefore define

B′ij := Bij − di − dj =
B

[ni, nj ]
− di − dj .

We now discuss two heuristics for building feasible solutions to the proposed problems. They are both

based on the zero-feasible inequalities discussed in Section 3.2 and are thus only valid for linearized

patterns. Both grow a zero-feasible solution by adding patterns to an existing zero-feasible solution.

We know that zero-feasibility is based on the given total order � on the patterns. The inequality

B′ij ≥
∑
i≺`≺j

d`, ∀i ≺ j (5.1.1)
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is equivalent to Definition 3.2.3. Our convention is that, if the range of the summation
∑
i≺`≺j

d` is

empty, then its value is zero. Relation (5.1.1) requires that pairs (i, j) that are adjacent with respect

to � have non-negative B′ij . On the other hand, pairs that are further apart with respect to �, are

required to have B′ij not less than the sum of the d`’s strictly between i and j in the given order. To

this end, we would like to arrange the patterns on a template in such a way that those pairs with

large B′ij are far apart and, more importantly, that those pairs with small but positive B′ij are kept

close together in the ordering. Thus, if we consider B′ij ’s for all (i, j) pairs, it is desirable to first link

together those pairs with smallest positive B′ij before possibly considering those pairs with larger

B′ij . In this way these heuristics closely resemble classical algorithms for constructing a minimum

spanning tree (MST) [1].

We first establish some notation. Let ‹P = {‹Pi | i ∈ I} be the given set of patterns. Let Iu ⊆ I and

define ‹Pu = {‹Pi | i ∈ Iu}. Let �u be a strict total order on Iu and let

s∗i =
∑
`≺ui

d` ∀i ∈ Iu

be defined as in (3.2.5). Our objective is to build a zero-feasible order �u for ‹Pu. This will imply

that Tu = {‹Pi(s∗i ) | i ∈ Iu} is a feasible template.

Now let us assume that we have a collection of disjoint sets I = {Iu | u ∈ U}. This will be especially

useful when considering the LinMinTemp problem. We will therefore need to identify the set that

contains a given element i and so we define u(i) to be such that i ∈ Iu(i). Since we are trying to find

zero-feasible solutions, we will need to check the inequality (5.1.1) repeatedly. The main calculation

will be finding the sum of the d`’s. In order to speed up this calculation we define the values

Left-Sum(u, i) =


0, i = null∑
`≺ui

d`, else
and Right-Sum(u, i) =


0, i = null∑
`�ui

d`, else.
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Now the summation from inequality (5.1.1) can be found using

∑
i≺u`≺uj

d` = Right-Sum(u, i)−Right-Sum(u, j)− dj = Left-Sum(u, j)− Left-Sum(u, i)− di.

Similarly, it will be useful to be able to walk the chain (Iu,�u) and so we define the functions

Right-Neighbor(u, i) =


min�u

{` ∈ Iu}, i = null

null, i = max�u{` ∈ Iu}

min�u{` ∈ Iu | ` � i}, else

and

Left-Neighbor(u, i) =


max�u{` ∈ Iu}, i = null

null, i = min�u
{` ∈ Iu}

max�u
{` ∈ Iu | ` ≺ i}, else.

5.1.1 Kruskal Heuristic

Let us begin by considering the Linearized Minimum Templates Problem (LinMinTemp) defined in

Section 3.1. Given a set of linear patterns ‹P = {‹Pi | i ∈ I}, we wish to find a partition of I into a

collection of disjoint sets I = {Iu | u ∈ U} such that S(‹Pu) 6= ∅ for each u ∈ U . To do this, we find

a partition U and strict total orderings �u which are zero-feasible for ‹Pu for all u ∈ U .

Recall that Kruskal’s MST algorithm [1] works by joining together trees that span disjoint subsets

of the given node set. In the same way, our heuristic will join together disjoint subsets Iu and Iv,

and combine their respective zero-feasible orderings �u and �v so that the augmented ordering �uv

is a strict total order on Iu ∪ Iv and is zero-feasible for ‹Puv = {‹Pi | i ∈ Iu ∪ Iv}. Recall that, since

�u is a strict total order on Iu, (Iu,�u) is a chain as is (Iv,�v). We will join sets by linking two

zero-feasible chains end-to-end. We achieve this by placing (say) set Iu before set Iv to create set

Iuv; accordingly we define the augmented order �uv via

i ≺u j ⇒ i ≺uv j, i ≺v j ⇒ i ≺uv j, i ≺uv j, ∀i ∈ Iu, j ∈ Iv. (5.1.2)
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That is, �uv maintains the orderings �u and �v and requires all elements of Iu to precede all

elements of Iv. We need to determine what conditions are necessary so that this new combined

chain is zero-feasible. Because the order of all indices in Iu is maintained in the new set Iuv, the

inequalities of the form (5.1.1) for a pair i ≺u j are unmodified under the new ordering �uv. In

other words, since no index from Iv has been placed between i and j, we have

B′ij ≥
∑

i≺u`≺uj

d` =
∑

i≺uv`≺uvj

d`.

The same holds for pairs from Iv. This means that we only need to consider i ∈ Iu and j ∈ Iv in

checking (5.1.1) or equivalently (3.2.4).

To clarify this, consider the following example.

Example 5.1.1: Consider the set of linear patterns ‹P6 = {‹Pi | i ∈ I} where

I = {1, 2, 3, 4, 5} ‹P1 = (420, 4, 2)‹P2 = (420, 15, 2) ‹P3 = (420, 7, 2)‹P4 = (420, 10, 2) ‹P5 = (420, 6, 2).

Let I1 = {1, 2, 3} and I2 = {4, 5}. Define �1 and �2 such that 1 ≺1 2 ≺1 3 and 4 ≺2 5. The values

Bij can be represented in matrix form as

[
Bij

]
=



B12 B13 B14 B15

B23 B24 B25

B34 B35

B45


=



420
60

420
28

420
20

420
12

420
105

420
30

420
30

420
70

420
42

420
30


=



7 15 21 35

4 14 14

6 10

14


.
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Note that

B12 = 7 ≥ 4 = d1 + d2

B23 = 4 ≥ 4 = d2 + d3

B13 = 15 ≥ 6 = d1 + d2 + d3

so �1 is zero-feasible for ‹P6
1 . Additionally,

B45 = 14 ≥ 4 = d4 + d5

so �2 is zero-feasible for ‹P6
2 . This situation is shown in Figure 5.1.1(a).

1 2 3

I1

I12

4 5

I2

B12 ≥ d1 + d2 B23 ≥ d2 + d3

B13 ≥ d1 + d2 + d3

B45 ≥ d4 + d5

5.1.1(a): The zero-feasible chains I1 and I2

1 2 3

I12 I2

4 5

B12 ≥ d1 + d2 B23 ≥ d2 + d3

B13 ≥ d1 + d2 + d3

B45 ≥ d4 + d5B34 ≥ d3 + d4

B24 ≥ d2 + d3 + d4

B14 ≥ d1 + d2 + d3 + d4

B35 ≥ d3 + d4 + d5

B25 ≥ d2 + d3 + d4 + d5

B15 ≥ d1 + d2 + d3 + d4 + d5

5.1.1(b): The merged zero-feasible chain I12

Figure 5.1.1: ‹P6: Joining two zero-feasible chains
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We now wish to join I1 and I2. This will involve creating the merged set

I12 = I1 ∪ I2 = {1, 2, 3, 4, 5}

and defining the ordering �12 where 1 �12 2 �12 3 �12 4 �12 5. Figure 5.1.1(b) shows all inequalities

of the form (3.2.4) that need to hold in order for �12 to be zero-feasible for ‹P6. Notice that four

of these inequalities are duplicated exactly from �1 and �2 and are greyed out in Figure 5.1.1(b).

The only inequalities left to check are those where i ∈ I1 and j ∈ I2:

B14 = 21 ≥ 8 = d1 + d2 + d3 + d4 B15 = 35 ≥ 10 = d1 + d2 + d3 + d4 + d5

B24 = 14 ≥ 6 = d2 + d3 + d4 B25 = 14 ≥ 8 = d2 + d3 + d4 + d5

B34 = 6 ≥ 4 = d3 + d4 B35 = 10 ≥ 6 = d3 + d4 + d5

Thus, the new chain (I12,�12) is zero-feasible. The starting positions s∗i are therefore valid for ‹P6.

We calculate these as

s∗1 =
∑
`≺121

d` = 0 s∗2 =
∑
`≺122

d` = d1 = 2

s∗3 =
∑
`≺123

d` = d1 + d2 = 4 s∗4 =
∑
`≺124

d` = d1 + d2 + d3 = 6

s∗5 =
∑
`≺125

d` = d1 + d2 + d3 + d4 = 8

The resulting feasible template is shown in Figure 5.1.2.

Figure 5.1.2: ‹P6: The feasible template {‹P1(0), ‹P2(2), ‹P3(4), ‹P4(6), ‹P5(8)}

We now proceed to the details of the Kruskal heuristic which deals extensively with sets Iu. Each

set will need to have a listing of the elements in that set and the ordering of the elements in that set.

We initialize the heuristic by placing each index i ∈ I in its own subset. As a result, we will need

a procedure Make-Set(p) that forms the initial set Iu = {p} with a null ordering. We will also
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need a procedure Find-Set(p) that outputs the set Iu(p) containing p. We then wish to join sets

together and so we require procedure Join-Set(p, q) that finds the set Iu containing p and the set Iv

containing q and merges these sets by placing Iu before Iv in the new order �uv. It does this by up-

dating U so that Find-Set(p) = Find-Set(q) = Iu∪Iv, and by creating �uv as described in (5.1.2).

Recall that we only need to consider the new inequalities generated by joining two chains: those

corresponding to the pair (i, j) where i ∈ Iu and j ∈ Iv. Note that the summation in these

inequalities is of the form
∑

i≺uv`≺uvj

d`. However, those indices between i and j with respect to �uv

are exactly those indices in Iu that are to the right of i and those indices in Iv to the left of j. Thus,

we can calculate this sum before potentially merging Iu and Iv as

∑
i≺uv`≺uvj

d` = Right-Sum(u, i) + Left-Sum(v, j).

In this way, we can test whether two zero-feasible chains can merge to become a larger zero-feasible

chain. To do this test, we run routine Kruskal-Check-Zero-Feasibility(p, q) shown in Algo-

rithm 11, which returns true if
[
(Iu(p),�u(p)), (Iu(q),�u(q))

]
would be a zero-feasible chain and false

otherwise.

Algorithm 1 Kruskal-Check-Zero-Feasibility(p, q)

Iu ← Find-Set(p)
Iv ← Find-Set(q)

3: for all i ∈ Iu do
for all j ∈ Iv do

if B′ij < Right-Sum(u, i) + Left-Sum(v, j) then
6: return false

end if
end for

9: end for
return true

One more detail that needs to be pointed out is that Theorem 3.1.19 guarantees that, if � is zero-

feasible for a set of patterns ‹P, then its inverse order � is also zero-feasible for ‹P. Thus when joining

two zero-feasible chains (Iu,�u) and (Iv,�v), there are four ways we can join them end-to-end to

1Note that all algorithms presented here have every third line numbered. This will be useful later when we discuss
changes that can be made to the algorithms for alternative formulations.
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possibly create a larger zero-feasible chain, namely

[
(Iu,�u), (Iv,�v)

]
,

[
(Iu,�u), (Iv,�v)

]
,[

(Iv,�v), (Iu,�u)
]
,

[
(Iv,�v), (Iu,�u)

]
.

To implement this in our Kruskal heuristic, we employ a routine Reverse(i) that reverses the or-

dering of a given chain Iu(i).

Algorithm 2 describes the Kruskal heuristic for constructing a partition of I into zero-feasible chains.

It requires a data structure H that stores pairs of indices from I. H needs to support two operations:

Insert(H, i, j) that adds pair (i, j) to H, and Extract-Min(H) that removes and returns a pair

(p, q) ∈ H such that

B′pq ≤ B′ij , ∀(i, j) ∈ H.

Algorithm 2 Kruskal-Construction(‹P)

for all i ∈ I do
Make-Set(i)

3: end for
H ← ∅
for all i ∈ I do

6: for all j ∈ I \ {i} do
Insert(H, i, j)

end for
9: end for

while H 6= ∅ do
(p, q)← Extract-Min(H)

12: for ` = 1..2 do
if Find-Set(p) 6= Find-Set(q) then

if Kruskal-Check-Zero-Feasibility(p, q) = true then
15: Join-Set(p, q)

else if Kruskal-Check-Zero-Feasibility(q, p) = true then
Join-Set(q, p)

18: else
Reverse(q)

end if
21: end if

end for
end while

24: return (Iu,�u), ∀u ∈ U
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The Kruskal heuristic first creates a set Iu = {i} for each element i ∈ I, and then it populates

the data structure H with all possible pairs i 6= j ∈ I. We then extract all pairs (p, q) from H in

ascending order of B′pq and, if p and q are not already in the same chain, we try to join chains Iu(p)

and Iu(q). Finally, once all pairs have been tried, we output the sets Iu and their orderings �u.

Theorem 5.1.2 Given ‹P = {‹Pi | i ∈ I}, the sets Iu and orders �u returned by the heuristic

Kruskal-Construction(‹P) are such that �u is zero-feasible for ‹Pu = {‹Pi | i ∈ Iu} for all u ∈ U .

Proof: Vacuously, the null ordering is zero-feasible for the initial set Iu = {i} for all i ∈ I.

Then, since each call of the operation Join-Set(p, q) is preceded by a successful call to Kruskal-

Check-Zero-Feasibility(p, q), we know that each merged set created by Join-Set(p, q) was also

zero-feasible. Thus, all chains returned by Kruskal-Construction(‹P) must be zero-feasible.

Notice that the Kruskal heuristic could be used as a heuristic for the Linearized Feasible Fit problem

as well. If the Kruskal-Construction(‹P) routine terminates with |U | = 1 or I = {I} then all

patterns can be fit on the same template and the s∗i ’s are valid starting positions. Additionally, by

taking the largest set Iu, the Kruskal-Construction(‹P) routine could be used as a heuristic for

the Linearized Maximum Template problem.

5.1.2 Prim Heuristic

We now turn our attention to the Linearized Maximum Template Problem. Recall that, given a set

of linearized patterns ‹P = {‹Pi | i ∈ I}, this involves finding a largest subset I1 ⊆ I such that there

exist valid starting positions for ‹P1 = {‹Pi | i ∈ I1}. We take an incremental construction approach

here, by adding one pattern at a time to an existing zero-feasible chain. As before, we would like

to keep pairs of patterns with small B′ij close together in the ordering. Again, we turn to minimum

spanning tree algorithms for inspiration, this time to the classical algorithm of Jarńık and Prim [1].

In this heuristic we keep track of the current subset I1 and the associated current zero-feasible

ordering �1. Repeatedly, we will attempt to add index t 6∈ I1 to I1 between two successive patterns

p and q in I1.2 Care will need to be taken when adding t to I1 to keep �1 both a strict total order on

2Note that we can also add to the ends of I1 by setting either p or q equal to null.
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the expanded I1 and a zero-feasible ordering for the new ‹P1. Recall that, in the Kruskal heuristic,

we only needed to check the new inequalities of the form (3.2.4) generated by merging two sets.

In the Prim heuristic we still need to check that these new inequalities hold. That is, if t is being

inserted between p and q, we need to ensure that

B′it ≥
∑

i≺1`�1p

d` = Right-Sum(1, i)−Right-Sum(1, p), ∀i �1 p

and

B′tj ≥
∑

q�1`≺1j

d` = Left-Sum(1, j)− Left-Sum(1, q), ∀j �1 q.

However, the difference in the Prim heuristic is that we may also affect some of the existing inequal-

ities by inserting t into I1. That is, we already know that

Bij ≥
∑

i�1`�1j

d`, ∀i ≺1 j

since �1 is zero-feasible but, to ensure that (I1,�1) will remain zero-feasible after inserting t between

p and q, we need to check that

Bij ≥ dt +
∑

i�1`�1j

d`, ∀i �1 p, j �1 q.

In the interest of verifying that the above inequalities hold after the insertion of t, define

Slack(i, j) =


Bij −

∑
i�1`�1j

d`, i ≺ j

∞, else.

Thus, when inserting t between p and q, if Slack(i, j) ≥ dt for all i �1 p and j �1 q, then none of

the existing inequalities (3.2.4) will be violated. Thus, if

dt ≤ min
{
Slack(i, j)

∣∣∣ i �1 p, j �1 q
}
≡Min-Slack(p, q) (5.1.3)

then no existing inequality will be violated.
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To clarify, consider the following example.

Example 5.1.3: Recall the set of linear patterns from Example 5.1.1, ‹P6 = {‹Pi | i ∈ I} where

I = {1, 2, 3, 4, 5} ‹P1 = (420, 4, 2)‹P2 = (420, 15, 2) ‹P3 = (420, 7, 2)‹P4 = (420, 10, 2) ‹P5 = (420, 6, 2).

Let I1 = {1, 2, 3, 5} and let �1 be such that 1 ≺1 2 ≺1 3 ≺1 5. The values for Bij are

[
Bij

]
=



B12 B13 B14 B15

B23 B24 B25

B34 B35

B45


=



7 15 21 35

4 14 14

6 10

14


.

Note that

B12 = 7 ≥ 4 = d1 + d2 B13 = 15 ≥ 6 = d1 + d2 + d3

B23 = 4 ≥ 4 = d2 + d3 B25 = 14 ≥ 6 = d2 + d3 + d5

B35 = 10 ≥ 4 = d3 + d5 B15 = 35 ≥ 8 = d1 + d2 + d3 + d5.

Thus (I1,�1) is a zero-feasible chain. This situation is shown in Figure 5.1.3(a). We then wish to

insert 4 between 3 and 5. This forms I2 = {1, 2, 3, 4, 5} and �2 such that 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

To ensure that (I2,�2) is a zero-feasible chain we first check to see whether the existing inequalities

would be violated by inserting 4. The inequalities that are affected are shown in red in Figure

5.1.3(b). The greyed out inequalities are not affected by inserting 4 and so their feasibility is implied

by the zero-feasibility of �1. We calculate Slack(i, j) for all appropriate pairs i, j:

Slack(1, 5) = 35− (2 + 2 + 2 + 2) = 27

Slack(2, 5) = 14− (2 + 2 + 2) = 8

Slack(3, 5) = 10− (2 + 2) = 6.
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Thus, since

Min-Slack(3, 5) = min{27, 8, 6} = 6 ≥ 2 = d4

none of the existing inequalities will be violated by inserting 4 into I1. Next we check the new

inequalities created by inserting 4 into I1. These new inequalities are shown in blue in Figure

5.1.3(c). Thus, since

B14 = 21 ≥ 8 = d1 + d2 + d3 + d4 B24 = 14 ≥ 6 = d2 + d3 + d4

B34 = 6 ≥ 4 = d3 + d4 B45 = 14 ≥ 4 = d4 + d5,

(I2,�2) is a zero-feasible chain. As a result, the s∗i ’s calculated in Example 5.1.1 are again valid for‹P6 and the resulting feasible template is the same as that shown in Figure 5.1.2.
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1 2 3

I1

5

B12 ≥ d1 + d2 B23 ≥ d2 + d3

B13 ≥ d1 + d2 + d3
B35 ≥ d3 + d5

B25 ≥ d2 + d3 + d5

B15 ≥ d1 + d2 + d3 + d5

5.1.3(a): The zero-feasible chain I1

1 2 3

I2

4 5

B12 ≥ d1 + d2 B23 ≥ d2 + d3

B13 ≥ d1 + d2 + d3
B35 ≥ d3 + d4 + d5

B25 ≥ d2 + d3 + d4 + d5

B15 ≥ d1 + d2 + d3 + d4 + d5

5.1.3(b): Changes to the existing inequalities

1 2 3

I2

4 5

B12 ≥ d1 + d2 B23 ≥ d2 + d3

B13 ≥ d1 + d2 + d3

B45 ≥ d4 + d5B34 ≥ d3 + d4

B24 ≥ d2 + d3 + d4

B14 ≥ d1 + d2 + d3 + d4

B35 ≥ d3 + d4 + d5

B25 ≥ d2 + d3 + d4 + d5

B15 ≥ d1 + d2 + d3 + d4 + d5

5.1.3(c): The new inequalities

Figure 5.1.3: ‹P6: Inserting into a zero-feasible chain
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To handle the details of inserting the new index t into Iu we developed a routine Add-Pattern(t, p, q)

to modify the set Iu. The arguments are t, the index to be added to I1, and p and q, the indices we

wish to insert t between. The routine adds t to the set I1 and updates �1 so that i ≺1 t for all i �1 p

and j �1 t for all j �1 q. Next we use routine Prim-Check-Zero-Feasibility(t, p, q) shown in

Algorithm 3 to check all appropriate inequalities described above to ensure the zero-feasibility of

the augmented �u. This routine will also check the existing inequalities. Recall from (5.1.3) that

this can be done more efficiently by using Min-Slack(p, q) which we calculate as

Min-Slack(p, q) = min
{
Slack(i, j)

∣∣∣ i �1 p, j �1 q
}
.

Algorithm 3 Prim-Check-Zero-Feasibility(t, p, q)

if dt >Min-Slack(p, q) then
return false

3: end if
i← p
while i 6= null do

6: if B′it < Right-Sum(1, i)−Right-Sum(1, p) then
return false

end if
9: i← Left-Neighbor(1, i)

end while
j ← q

12: while j 6= null do
if B′tj < Left-Sum(1, j)− Left-Sum(1, q) then

return false
15: end if

j ← Right-Neighbor(1, j)
end while

18: return true

Since we may need to check all possible positions to successfully insert index t, we developed the

routine Prim-Check-All-Feasibility(t) shown in Algorithm 4. This routine simply runs the

subroutine Prim-Check-Zero-Feasibility(t, p, q) for all possible adjacent pairs (p, q) in I1 (in-

cluding the two end positions). It returns valid positions (p, q) such that Prim-Check-Zero-

Feasibility(t, p, q) yields true, or (null,null) if no such positions exist.
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Algorithm 4 Prim-Check-All-Feasibility(t)

p← null
q ← Right-Neighbor(1, p)

3: while q 6= null do
if Prim-Check-Zero-Feasibility(t, p, q) = true then

return (p, q)
6: end if

p← q
q ← Right-Neighbor(1, p)

9: end while
if Prim-Check-Zero-Feasibility(t, p, q) = true then

return (p, q)
12: end if

return (null,null)

Algorithm 5 Prim-Construction(‹P, r)
I1 ← {r}
H ← ∅

3: for all j ∈ I \ {r} do
Insert(H, j,B′rj)

end for
6: �1← ∅

while H 6= ∅ do
t← Extract-Min(H)

9: (p, q)← Prim-Check-All-Feasibility(t)
if p 6= null and q 6= null then

Add-Pattern(t, p, q)
12: for all j ∈ H do

if B′tj < Key(j) then
Update-Key(H, j,B′tj)

15: end if
end for

end if
18: end while

return (I1,�1)

Algorithm 5 describes the Prim heuristic for constructing a maximal zero-feasible chain I1. We

initialize I1 by inserting a starting index r ∈ I. There are a number of different ways to choose r,

which are discussed in Section 5.1.3.1. The heuristic then inserts all other elements of I into H. In

the main loop of the heuristic we remove an index t from H such that

t = argmin
j∈H

{
min
i∈I1
{B′ij}

}
.
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We then try to insert t into every possible position in I1. If valid positions (p, q) are returned by

Prim-Check-All-Feasibility(t), then the heuristic inserts index t into the appropriate position

of I1. If no feasible positions are found then the current index is discarded. Finally, the heuristic

terminates when all indices in H have been tried and it outputs I1 and �1.

We treat the set H as a priority queue, sorted by the value Key(j) = min{B′ij | i ∈ I1}. Thus H

will need to support Insert(H, j, α) which inserts j into H and sets Key(j) = α. This value will

initially be B′rj where r is the initial index in I1. It will also need to support Extract-Min(H)

which removes and returns the element t in H with minimum Key(j) value. Additionally, in order

for H to be consistent after we change the set I1, we need to update the value of Key(j) for all

j ∈ H. As a result, H must support Update-Key(H, j, α) which sets the value of Key(j) to α and

re-sorts the queue so that the new (minimum) element can be returned.

Theorem 5.1.4 Given ‹P = {‹Pi | i ∈ I} and r ∈ I, the chain (I1,�1) returned by Prim-

Construction(‹P, r) is zero-feasible.

Proof: Vacuously, the null ordering is zero-feasible for the initial set I1 = {r}. Then before each call

to Add-Pattern(t, p, q) we make a call to Prim-Check-All-Feasibility(t) that returns (p, q).

Therefore, since that routine must have made a call to Prim-Check-Zero-Feasibility(t, p, q) that

returned true, we know that the chain created by Add-Pattern(t, p, q) is zero-feasible. Thus in-

ductively, the chain returned by Prim-Construction(‹P, r) must be zero-feasible.

Notice that the Prim construction procedure can be used as a heuristic for the Linearized Feasible

Fit problem as well. If the Prim-Construction(‹P, r) routine terminates with |I1| = |I| then

all patterns can be fit on the same template and the associated s∗i ’s are valid starting positions.

Additionally, by finding the largest subset I1 and then iteratively running the heuristic on the

remaining indices I \ I1, Prim-Construction(‹P, r) can be used as a heuristic for the Linearized

Minimum Templates problem.
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5.1.3 Implementation

To implement the Kruskal heuristic we employ a disjoint-set data structure. If this is implemented

as a disjoint-set forest with path compression and union-by-rank [9], then the set operations Make-

Set(p), Find-Set(p), and Join-Set(p, q) each run in O(α(|I|)) amortized time where α is the

Inverse Ackermann function. There is additional bookkeeping needed when Join-Set(p, q) is run,

such as updating Left-Sum(u, i) and Right-Sum(u, i). However, we know that after Join-Set(p, q)

is run, we will access the value Left-Sum(u, i) again before the next call to Join-Set(p, q). Thus,

we can do a ‘lazy’ update, storing incremental values ∆left and ∆right for each set Iu, so that when

the next call is made to Right-Sum(u, i), the ∆ values can be added to the Left- and Right-Sum

values. Thus we amortize this bookkeeping effort into the Right-Sum(u, i) and Left-Sum(u, i)

calls, keeping the amortized running time of Join-Set(p, q) to O
(
α(|I|)

)
. The total running time

for all set operations is then dominated by the O(|I|2) calls to Find-Set(p) giving us O
(
|I|2α(|I|)

)
time overall.

The total number of calls to Right-Sum(u, i) and Left-Sum(u, i) can also be reduced. It is possible

that the priority queue H returns a pair (p, q) where p and q are already in the same chain, or in

chains that have already been compared and found incompatible for merging. Thus, if we keep a

boolean matrix of all (p, q) pairs in I initialized to false, and set the entry to true once p and q

have been compared in the routine Kruskal-Check-Zero-Feasibility(p, q), then the pair (p, q)

can only be checked a maximum of 4 times. This reduces the total amount of work done by these

calls to O(|I|2).

The operations on the priority queue H also need to be accounted for. If implemented as a binary

heap, then each operation runs in O(log |I|) time. However, since we have all the elements for

the heap at the start, we can actually construct the heap in O(|I|2) time. Thus, the total time

taken for the heap operations is dominated by the calls to Extract-Min(H) which take a total of

O(|I|2 log |I|) time. The last operation that needs to be considered is the Reverse(q) routine. If

we practice a ‘lazy’ reverse then we only need to actually reverse the elements when merging one

chain that is reversed and one that is not. In this case we can always reverse the smaller chain

before merging which gives a total of O(|I|) time. Thus the total running time for the Kruskal-
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Construction(‹P) heuristic is

O
(
|I|2α(|I|)

)
+O(|I|2) +O(|I|2 log |I|) +O(|I|) = O(|I|2 log |I|).

To implement the Prim heuristic we cannot rely on the same analysis for updating the Left-

Sum(1, i) and Right-Sum(1, i) values. This needs to be done in the Add-Pattern(t, p, q) routine

and thus takes O(|I1|2) time for each call to Add-Pattern(t, p, q). This time is dominated by the

effort needed to update the Min-Slack(p, q) parameter. While this does save time in the Prim-

Check-Zero-Feasibility(t, p, q) routine, it takes a total of O(|I1|2) effort to keep it updated for

each call to Add-Pattern(t, p, q). The Prim-Check-Zero-Feasibility(t, p, q) routine itself then

takes O(|I1|) time and is called O(|I1|) times by the Prim-Check-All-Feasibility(t) routine.

The priority queue H can again be implemented as a binary heap. This means that it takes O(|I|)

time to initialize and O(log |I|) time for each Extract-Min(H) call. An iteration of the Prim-

Construction(‹P,�) routine then requires a single call to Extract-Min(H), a call to the Prim-

Check-All-Feasibility(t) routine, a possible call to Add-Pattern(t, p, q) and |I \ I1| calls to

Update-Key(H, i, α). Thus the total running time of the heuristic is

O(|I|) +

|I|∑
`=1

[
O(log |I|) +O(`2) +O(`2) + (|I| − `)O(log |I|)

]
= O(|I|) +O(|I| log |I|) +

|I|∑
`=1

(
O(`2)

)
= O(|I|) +O(|I| log |I|) +O(|I|3)

= O(|I|3).

5.1.3.1 Initializing the Prim Heuristic

Whereas the Kruskal heuristic starts with each index in its own set, the Prim heuristic needs to be

initialized by placing one index r in the set I1. Prim’s MST algorithm can be initialized with any

node in the graph, and it will find a minimum spanning tree. However, since our Prim heuristic

builds a chain and not a tree, starting it in different places may lead to different solutions. As a

result, the decision about where to start the Prim heuristic is an important one. One strategy is to

start with a random index; however other options are more successful in practice. Another idea is to

start with one of the patterns in the pair with the smallest B′ij value. Which one is inconsequential
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as the heuristic will add the other member of the pair next. Alternatively, since the heuristic has

polynomial running time, we can simply run the algorithm |I| times, starting with each index in

turn, and choose the best solution appearing.

5.1.3.2 Modifications for Contiguous Ordering

Although both the Kruskal and Prim heuristics described in this section are based on finding zero-

feasible orderings, they can be adapted very easily to find contiguous orderings instead. The rea-

son for this is that the inequalities (3.2.6) which determine a contiguous ordering are very sim-

ilar to the inequalities (3.2.4) which define a zero-feasible ordering. Thus, the Kruskal heuristic

can be modified to find contiguous orderings simply by changing line 5 of the routine Kruskal-

Check-Zero-Feasibility(p, q). The updated routine is shown in Algorithm 6. The new routine

Kruskal-Check-Contiguous-Feasibility(p, q) can then be used in place of Kruskal-Check-

Zero-Feasibility(p, q) in lines 14 and 16 of the routine Kruskal-Construction(‹P) to produce

a partition of I into contiguous chains. Note that this does not change the overall running time of

the heuristic.

Algorithm 6 Kruskal-Check-Contiguous-Feasibility(p, q)

Iu ← Find-Set(p)
Iv ← Find-Set(q)

3: for all i ∈ Iu do
for all j ∈ Iv do

if B′ij <
(
Right-Sum(u, i) + Left-Sum(v, j)

)
mod Bij then

6: return false
end if

end for
9: end for

return true

In a similar way, the Prim heuristic can also be modified to find a maximal contiguous chain.

Lines 6 and 13 of routine Prim-Check-Zero-Feasibility(t, p, q) need the same modification as

in Kruskal-Check-Zero-Feasibility(p, q) to check the feasibility of the new inequalities formed

by inserting t into I1. However, the major change is that we can no longer easily check the existing

inequality simply using the minimum Slack(i, j) when inserting t between p and q in I1. Instead,
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we need to ensure that

(
Slack(i, j)− dt

)
mod Bij ≤ B′ij , ∀i �1 p, j �1 q.

The corresponding routine Prim-Check-Contiguous-Feasibility(t, p, q) is shown in Algorithm

7. This routine can be used in place of Prim-Check-Zero-Feasibility(t, p, q) in lines 4 and 10 of

routine Prim-Check-All-Feasibility(t).

It should be noted that updating a matrix of Slack(i, j) values takes the same amount of time as

updating the Min-Slack(p, q) value but checking the existing inequalities now takes O(|I1|) time

for each call to Prim-Check-Contiguous-Feasibility(t, p, q) instead of O(1) time for each call

to Prim-Check-Zero-Feasibility(t, p, q). However, this does not affect the overall asymptotic

running time of the Prim heuristic.

Algorithm 7 Prim-Check-Contiguous-Feasibility(t, p, q)

i← p
while i 6= null do

3: j ← q
while j 6= null do

if B′ij <
(
Slack(i, j)− dt

)
mod Bij then

6: return false
end if
j ← Right-Neighbor(1, j)

9: end while
i← Left-Neighbor(1, i)

end while
12: i← p

while i 6= null do
if B′it <

(
Right-Sum(1, i)−Right-Sum(1, p)

)
mod Bij then

15: return false
end if
i← Left-Neighbor(1, i)

18: end while
j ← q
while j 6= null do

21: if B′tj <
(
Left-Sum(1, j)− Left-Sum(1, q)

)
mod Bij then

return false
end if

24: j ← Right-Neighbor(1, j)
end while
return true
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5.2 Cycle-Based Heuristics

The heuristics presented in Section 5.1 are specifically designed to find zero-feasible or contiguously

ordered solutions. While they perform well at this task, the number of sets of patterns that do not

have zero-feasible or contiguous solutions grows as the number of patterns in the set grows3. To

address this limitation, we present another heuristic where, instead of the set K having a specific

structure and trying to find a feasible order �, we hold the ordering constant and try to find a

feasible set K. To achieve this, we utilize the network formulation of the problem of finding valid

starting positions for a given set of patterns. Recall from Section 3.1 that, if we can find a set K

such that G(‹P,�,K) has no negative cycles, then we can find shortest paths from (or to) some given

root node r in G(‹P,�,K), and the lengths of those shortest paths yield valid starting positions for

the set ‹P. Thus, given a set of patterns ‹P = {‹Pi | i ∈ I} and a total order � on I, the goal of this

heuristic is to find a maximal subset Iu of I and a set of integers Ku such that G(‹Pu,�,Ku) has no

negative cycles. We do this by adding patterns to the end of subset Iu one at a time4.

Assume that we have I1 ⊆ I and a set K1 = {k1ij ∈ Z | i ≺ j ∈ I1} such that G(‹P1,�,K1) has no

negative cycles. We now wish to add index t to I1 forming I2 = I1 ∪ {t} and expand the total order

� so that i ≺ t for all i ∈ I1. We then need to find K2 such that G(‹P2,�,K2) has no negative

cycles. Initially, let K2 = {k2ij | i ≺ j ∈ I2} where

k2ij =


k1ij , i ≺ j ∈ I1

0, else.

Now note that G(‹P1,�,K1) ⊂ G(‹P2,�,K2), and since G(‹P1,�,K1) has no negative cycle, any neg-

ative cycle in G(‹P2,�,K2) must pass through the new node t. We wish to eliminate any negative

cycles in G(‹P2,�,K2) by modifying the k2ij ’s. However, we also want to maintain the feasibility of

G(‹P1,�,K1), so we will only modify those k2ij ’s that involve t, i.e., k2it. We proceed as follows. Let

C be a negative cycle in G(‹P2,�,K2). There must exist i, j in I1 such that (i, t), (t, j) ∈ C. Since

i ≺ t for all i ∈ I1, the weights on these arcs are wit = (k2it+ 1)Bit−dt and wtj = −k2jtBjt−dj . The

3Chapter 6 discusses the performance of the Kruskal and Prim heuristics, as well as the density of zero-feasible
and contiguous solutions.

4The order in which we add patterns can lead to different solutions. See Section 5.2.1.2 for a discussion of which
orderings empirically lead to better performance.
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values Bit, Bjt, dt, and dj are all positive and so, to make w[C] non-negative, we need to increase

k2it or decrease k2jt.

To clarify this process, consider the following example.

Example 5.2.1: Recall the set of linear patterns ‹P6 = {‹Pi | i ∈ I} from Example 5.1.1, where

I = {1, 2, 3, 4, 5} ‹P1 = (420, 4, 2)‹P2 = (420, 15, 2) ‹P3 = (420, 7, 2)‹P4 = (420, 10, 2) ‹P5 = (420, 6, 2).

The values for Bij are

[
Bij

]
=



B12 B13 B14 B15

B23 B24 B25

B34 B35

B45


=



7 15 21 35

4 14 14

6 10

14


.

Assume that I1 = {2, 3, 4, 1} and let � be defined such that 2 ≺ 3 ≺ 4 ≺ 1 with

K1 =



k123 k124 k121

k134 k131

k141

 =



0 0 1

0 0

0

 .

These parameters produce the feasible template T1 = {‹P2(0), ‹P3(2), ‹P4(4), ‹P1(9)}, as shown in Figure

5.2.1(a). We wish to add pattern 5 to the current feasible template forming I2 = {2, 3, 4, 1, 5}, with

2 ≺ 3 ≺ 4 ≺ 1 ≺ 5. First, let us calculate the arc weights W = (wij) of the network G(P2,�,K2)
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treating the k2it as unknown:

W =



w23 w24 w21 w25

w32 w34 w31 w35

w42 w43 w41 w45

w12 w13 w14 w15

w52 w53 w54 w51



=



2 12 12 14k225 + 12

−2 4 13 10k235 + 8

−2 −2 19 14k245 + 12

−9 −2 −2 35k215 + 33

−14k225 − 2 −10k235 − 2 −14k245 − 2 −35k215 − 2


.

We then initialize K2 as

K2 =



k223 k224 k221 k225

k234 k231 k235

k241 k245

k215


=



0 0 1 0

0 0 0

0 0

0


,

which gives arc weights

W ′ =



w′23 w′24 w′21 w′25

w′32 w′34 w′31 w′35

w′42 w′43 w′41 w′45

w′12 w′13 w′14 w′15

w′52 w′53 w′54 w′51


=



2 12 12 12

−2 4 13 8

−2 −2 19 12

−9 −2 −2 33

−2 −2 −2 −2


.

Relative to weights W ′, the cycle C1 = 1→ 2→ 3→ 5→ 1 has weight

w′[C1] = −9 + 2 + 8− 2 = −1.
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The two arcs on this cycle incident with 5 are (3, 5) and (5, 1). Thus, to correct this negative cycle,

we can either increase k235 or decrease k215. If we arbitrarily set k235 = 1, the arc weight matrix

becomes

W ′′ =



w′′23 w′′24 w′′21 w′′25

w′′32 w′′34 w′′31 w′′35

w′′42 w′′43 w′′41 w′′45

w′′12 w′′13 w′′14 w′′15

w′′52 w′′53 w′′54 w′′51


=



2 12 12 12

−2 4 13 18

−2 −2 19 12

−9 −2 −2 33

−2 −12 −2 −2


.

Cycle C1 now has weight

w′′[C1] = −9 + 2 + 18− 2 = 9.

However, cycle C2 = 3→ 2→ 5→ 3 now has weight5

w′′[C2] = −2 + 12− 12 = −2.

5.2.1(a): The feasible template {P̃2(0), P̃3(2), P̃4(4), P̃1(9)}

5.2.1(b): The feasible template {P̃2(0), P̃3(2), P̃4(4), P̃1(9), P̃5(16)}

Figure 5.2.1: ‹P6: Feasible templates, before and after the addition of pattern 5

The two arcs in this cycle incident with 5 are (2, 5) and (5, 3). To make w[C2] non-negative we can

either increase k225 or decrease k235. However, since we already increased k235, decreasing it again

would cause us to return to the previous situation. As a result we choose to increase k225 to 1. This

5Note that C2 had weight w′[C2] = −2 + 12− 2 = 8 before we increased k235. Thus, by eliminating one negative
cycle we created another.
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gives us new weights

W ′′′ =



w′′′23 w′′′24 w′′′21 w′′′25

w′′′32 w′′′34 w′′′31 w′′′35

w′′′42 w′′′43 w′′′41 w′′′45

w′′′12 w′′′13 w′′′14 w′′′15

w′′′52 w′′′53 w′′′54 w′′′51


=



2 12 12 26

−2 4 13 18

−2 −2 19 12

−9 −2 −2 33

−16 −12 −2 −2


.

These weights however produce no negative cycles. Thus, with

K2 =



k223 k224 k221 k225

k234 k231 k235

k241 k245

k215


=



0 0 1 1

0 0 1

0 0

0


the resulting network G(P2,�,K2) has no negative cycles. We can now find shortest paths in this

network, say to node 2, giving us the feasible template shown in Figure 5.2.1(b)6.

To carry out this cycle-based heuristic, we develop routine Eliminate-Negative-Cycles(u,Ku, t)

shown in Algorithm 8 which takes arguments u (the index of the current subset Iu of I), Ku (the

current set of integers kuij), and t (the index of the pattern to be added to the current feasible

template). Eliminate-Negative-Cycles(u,Ku, t) outputs Kv, a new set of integers kvij such that

G

Å‹Pv =
{‹Pi | i ∈ Iu ∪ {t}},�,Kv

ã
has no negative cycles, or null if no such Kv could be found.

In order to eliminate negative cycles we first need to be able to repeatedly find such cycles. For

this we designed a routine Find-Negative-Cycle(v) that returns a cycle in G(‹Pv,�,Kv) of neg-

ative weight, or null if no such cycle exists7. To avoid cycling we add a flag Direction(i) that

can take values up, down, or null. Each time we attempt to add a new index t to the current

template, these flags are set to the value null. We are then free to increase or decrease k2it. Once

k2it has been either increased or decreased, we set Direction(i) to up or down respectively. After

6Note that these patterns are the same as those in Example 5.1.1; however, here we develop a different solution
that is not zero-feasible. Compare Figures 5.2.1(b) and 5.1.2.

7Several different options for such a routine are discussed in Section 5.2.1.1.
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Direction(i) = up we never8 decrease k2it, similarly when Direction(i) = down. To ensure that

the heuristic terminates, we do not allow any k2it to exceed the bounds from Theorem 3.1.12.

Algorithm 8 Eliminate-Negative-Cycles(u,Ku, t)

for all i ∈ Iu do
for all j � i ∈ Iu do

3: kvij ← kuij
end for
kvit ← 0

6: Direction(i)← null
end for
f ← false

9: while f = false do
f ← true
C ← Find-Negative-Cycle(v)

12: if C = null then
return Kv

end if
15: for (i, j) ∈ C do

if j = t and Direction(i) 6= down and kvit <
ni

(ni, nt)
− 1 then

kvit ← kvit + 1
18: f ← false

end if
if i = t and Direction(j) 6= up and kvjt > −

nt
(nj , nt)

and f = true then

21: kvjt ← kvjt − 1
f ← false

end if
24: end for

end while
return null

Note that this routine tries to increase the total weight of a cycle by increasing (or decreasing) the

value of kit by one unit. This may not be sufficient to make the given cycle non-negative, so this

cycle may have to be dealt with again. The routine can be easily modified so that kit is increased (or

decreased) by a sufficient amount to cause the cycle to become non-negative. However this requires

calculating the total weight of the cycle and does not improve the worst-case running time of the

heuristic. In this implementation, the choice was made to only increase kit by one unit per iteration.

The overall routine Cycle-Construction(‹P,�) is shown in Algorithm 9. The routine accepts as

8Note that, while k2it will never decrease again, a new entering index t′ could be chosen later, Direction(i) will
be set to null, and kv

it′ will be free to increase or decrease.
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input a set of linear patterns ‹P = {‹Pi | i ∈ I} and a total ordering � on I. It then selects r, the first

index in I with respect to �, and adds it to I1. The next index t ∈ I, in the order given by �, is

selected and the algorithm tries to add t to the end of set I1. If the routine Eliminate-Negative-

Cycles(1,K1, t) succeeds in finding a set K2 such that G(‹P2,�,K2) has no negative cycles, then

t is added to I1, �1 is updated and the set K1 is replaced with K2. If Eliminate-Negative-

Cycles(1,K1, t) was not successful, then t is not added to I1 and is discarded. We proceed in turn

through all indices of I, updating the sets I1 and K1 as appropriate. The set I keeps track of those

indices already processed.

Algorithm 9 Cycle-Construction(‹P,�)

r ← min�{i ∈ I}
I ← {r}

3: I1 ← {r}
K1 ← null
while I \ I 6= ∅ do

6: t← min�{i ∈ I \ I}
I ← I ∪ {t}
K2 ← Eliminate-Negative-Cycles(1,K1, t)

9: if K2 6= null then
I1 ← I1 ∪ {t}
K1 ← K2

12: end if
end while
return I1,K1

Theorem 5.2.2 Let ‹P = {‹Pi | i ∈ I} and the total order � on I be given. Let I1,K1 be the

sets returned by Cycle-Construction(‹P,�) and define ‹P1 = {‹Pi | i ∈ I1}. Then the network

G(‹P1,�,K1) has no negative cycles.

Proof: Suppose I1 and K1 are returned by Cycle-Construction(‹P,�). If I1 = {r} and K1 =

null then G(‹P1,�,K1) has only one node (and no cycles). Otherwise, no index t was added to I1

without first finding a corresponding K1 such that G(‹P1,�,K1) has no negative cycles.

5.2.1 Implementation

Implementing the cycle heuristic does not require any complicated data structures except those used

by the routine Find-Negative-Cycle(v). This routine is discussed in Section 5.2.1.1 and utilizes
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well-known and documented routines, all of which run in time O(|Iu|3). The running time of the

cycle heuristic is pseudo-polynomial since the selected kit is increased by one unit for each execution.

The routine Eliminate-Negative-Cycles(u,Ku, t) may change each of the |Iu| kit values as many

as max{ni, nt} times. If we define n = max
i∈I
{ni} then the total number of times the while loop in

Eliminate-Negative-Cycles(u,Ku, t) can be executed is O(n|Iu|). Inside that loop, we need to

find a negative cycle, which takes time O(|Iu|3), and walk the cycle to find (i, t) and (t, j), which

takes time O(|Iu|). Thus, the total time taken by the while loop is O(n|Iu|4) which outweighs

the initialization cost of the routine. The main Cycle-Construction(‹P,�) routine executes the

Eliminate-Negative-Cycles(u,Ku, t) routine |I| times. This gives us a total running time of

O(n|I|5).

5.2.1.1 Finding Negative Cycles

There are many different ways to find negative cycles in a network G = (N,A) if they exist. In fact

most shortest path algorithms include a negative cycle detection routine to ensure that the shortest

path distance labels they output are valid. For example the Bellman-Ford algorithm [9], after re-

laxing the distance labels on each arc |N | times, checks the shortest path optimality conditions. If

these are violated, then at least one negative cycle exists in G. An offending cycle can be extracted

using the predecessor array constructed by the algorithm.

Another choice for finding negative cycles in G is the FIFO label-correcting algorithm [1]. This

algorithm can detect a negative cycle during its operation by ensuring that the predecessor array

represents a tree (i.e., is cycle-free). If at any point a cycle is detected using the predecessor array,

then at least one negative cycle exists in G. In fact, the cycle detected by the predecessor array is

one such negative cycle.

Alternatively, one can use the Floyd-Warshall algorithm [1] to find negative cycles in G. During the

algorithm’s operation, we monitor the diagonal entries of the distance matrix (the d[i, i] entries).

If at any point one of these entries becomes negative, we know that at least one negative cycle

exists in G and we can terminate the algorithm at the end of the current iteration. The algorithm’s

predecessor matrix can then be used to extract a negative cycle (if one exists).
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In our cycle heuristic, it may be desirable to find the most negative weight cycle and correct it first.

Unfortunately, finding a cycle of minimum weight in a general network G is NP-hard [12]. However

we can find in polynomial time a cycle of minimum mean weight [1]: i.e., a cycle C that minimizes

w[C]

|C|
. If this cycle has negative mean weight then it has negative total weight. On the other hand,

if a cycle with minimum mean weight has non-negative mean weight, then there must be no cycle

in G with negative total weight. Note that the network G(‹P,�,K) is complete and thus all of

these cycle-detecting algorithms run in time O(|I|3). The experimental results obtained using these

different routines to find negative cycles are presented in Chapter 6.

5.2.1.2 Choosing a Total Order

Another decision that has to be made during the implementation of the cycle heuristic is that of

creating the total order �. This decision matters as it determines the entering pattern at each

iteration of the heuristic. The simplest way to do this would be to order the patterns randomly.

However some improvements can be obtained if the patterns are ordered deliberately. One approach

is to sort the patterns by their usage ratio
nidi
B

. The approach that produced the most success in our

experiments, however, involved selecting an entering index in the same way as the Prim heuristic.

That is, the entering index t was selected using

t = argmin
j∈I\I

{
min
i∈I1
{B′ij}

}
.

This ordering is best determined during run-time using a priority queue in a similar method as

implemented in the Prim heuristic. This approach does not change the asymptotic running time of

the heuristic. An experimental comparison of different orderings is presented in Chapter 6.

5.2.1.3 Modifications for General Patterns

The major advantage of the cycle heuristic is that, although we have designed it to solve the Lin-

earized Maximum Template problem, at its core it is simply a heuristic to eliminate negative cycles

from a network with variable arc lengths. Because of this, it can not only be used to eliminate

negative cycles from the network G(‹P,�,K), but from the network G(P,�,K) as well. In fact,

because of the similarities between patterns and linearized patterns, the only thing that needs to be

changed is the routine Find-Negative-Cycle(v), which should return a negative weight cycle in
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the network G(Pv,�,Kv) where Pv = {Pi | i ∈ Iv}. Everything else about the heuristic can remain

the same and it will output I1 and K1 so that valid starting positions for Pv can be obtained from

shortest paths from (or to) some given root node r in the network G(P1,≺,K1).

5.3 Bin-Based Heuristics

Recall that in Section 2.1 we made a connection between the Minimum Templates Problem and

the well-known Bin Packing Problem. The Bin Packing Problem in its simplest form takes a set

of items I and finds a partition of I into disjoint sets I = {Iu | u ∈ U} such that some feasibility

constraint is satisfied for each set (or bin). In Chapter 2 we claimed that what separated the prob-

lem of distributing patterns to templates from other bin packing instances, was that it is difficult

to determine whether adding a pattern to an existing template violates that template’s feasibility.

In fact, as we saw in Chapter 4, this problem is in itself NP-hard. However, we have at this point

developed heuristics which attempt to decide whether a pattern will fit into an existing template.

Such a heuristic can be used as a subroutine for a standard bin packing procedure to find approxi-

mate solutions for the Minimum Templates Problem.

Algorithm 10 First-Fit(I)

I ← ∅
n← 0

3: f ← false
for all t ∈ I do
u← 1

6: while u ≤ n and f = false do
if Fit(u, t) then
Iu ← Iu ∪ {t}

9: f ← true
end if
u← u+ 1

12: end while
if f = false then
n← n+ 1

15: In ← {t}
I ← I ∪ {In}

end if
18: end for

return I
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A common heuristic for the Bin Packing Problem is known as the First-Fit heuristic [8]. A general

routine for this strategy is shown in Algorithm 10. It starts with an empty collection of bins. Then,

for each element t ∈ I it tries to fit t in one of the existing bins in I. The routine Fit(u, t) is used to

determine whether t can fit feasibly in bin Iu. The first time this routine returns true, t is added

to Iu and the heuristic moves on to the next element of I. If no bin Iu is found such that Fit(u, t)

returns true then a new bin is created solely for t and is added to the collection of bins I.

This heuristic can be modified for use with either the Prim heuristic in the case of linearized pat-

terns, or the cycle heuristic in the case of either general patterns or linearized patterns. For the

Prim heuristic, this involves using the routine Prim-Check-All-Feasibility(t) in place of the

Fit(u, t) routine in line 7 of the First-Fit heuristic, and then maintaining the correct zero-feasible

(or contiguous) ordering when adding t to Iu. Finally, for the cycle heuristic, we need to maintain

the set Ku for each bin Iu and then we can use the routine Eliminate-Negative-Cycles(u,Ku, t)

in place of the Fit(u, t) routine.

A final modification to the standard First-Fit heuristic that has performed well in our experience9

is to sort the bins in order of increasing number of patterns. This way, each pattern t goes into the

bin with the fewest patterns selected from those bins in which it can feasibly fit. This sorting needs

to be done once for each execution of the for loop in First-Fit(I).

9See Chapter 6 for detailed experimental results.
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Chapter 6

Computational Results

We now discuss the empirical performance of the heuristics developed in Chapter 5. We will evaluate

their performance under a number of different test scenarios, where they will be compared with

each other and also with some competing approaches. These latter approaches include a heuristic

developed by Korst, et al. [17] (which we will refer to as the Korst heuristic) and the Mixed Integer

Programming (MIP) formulations given in Comment 3.1.13. Before presenting any results, however,

we discuss how the test problems were generated.

6.1 Generating Test Problems

We decided to focus our attention on testing these heuristics for linear patterns. This allows us to

consider heuristics that only work on linearized patterns (i.e., Prim and Kruskal) and to compare

these against heuristics for the equivalent Periodic Scheduling Problem. Consequently, almost all of

the results presented will be for linear patterns, with the exception of Section 6.3 which deals with

the industrial data set that first inspired this research.

Fitting together two linear patterns ‹Pi and ‹Pj with ni = nj = n is relatively easy. In fact, ‹Pi and ‹Pj
will fit together iff

B

n
≥ di + dj . Moreover, if a large set of linear patterns ‹P = {‹Pi | i ∈ I} includes

a subset of patterns ‹P1 = {‹Pi | i ∈ I1} in which ‹Pi = (B,n, di) for all i ∈ I1 and
B

n
≥
∑
`∈I1

d`, then

the entire subset ‹P1 can be replaced with a single linear pattern ‹P1 =
(
B,n,

∑
`∈I1

d`

)
. Because of
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this simplicity, we decided that our test data should contain no pairs of patterns ‹Pi and ‹Pj with

ni = nj .

Moreover, patterns ‹Pi and ‹Pj with ni | nj are also relatively easy to fit together as shown in Lemma

2.2.1. In fact the entire approach to testing whether two patterns fit together or not involves reducing

any two patterns to the case of ‹Pj and ‹Pij where nj | [ni, nj ]. Additionally, the heuristic developed

by Korst, et al. [17] is specifically designed to exploit divisibilities (including multiplicities) amongst

the ni’s. Thus, because this ground has already been covered, we decided to evaluate our heuristics

on sets that contain no patterns ‹Pi and ‹Pj such that ni | nj .

Recall that two patterns ‹Pi and ‹Pj cannot be fit on the same template if Bij < di + dj . Thus, if

we have a set of patterns containing two such patterns, then the Linearized Feasible Fit problem

(LinFit) can be answered quickly. Also some preprocessing techniques [17] can be carried out on a

set of patterns ‹P before solving the Linearized Minimum Templates problem; these can speed up

solution times and provide robust lower bounds on the optimal solution. To remove the influence of

preprocessing and to make the problems more challenging to solve, we only consider sets of patterns

such that Bij ≥ di + dj for all pairs. Additionally, enlarging B for all patterns enlarges Bij for

all pairs of patterns. As discussed in Section 5.1, larger Bij ’s make patterns easier to fit together.

Consequently we will design test sets such that B is as small as feasibly possible.

Our objective then is to generate a set of patterns ‹P = {‹Pi | i ∈ I} that would achieve all of these

aims. For the Linearized Feasible Fit tests, we produced 10,000 replicated sets with m patterns,

where m = |I| ∈ {3, 4, ..., 10}. To generate each such set, we performed the following steps:

• Create the set N = [3, 100] ∩ Z of possible ni values.

• For i = 1..m:

– randomly select ni from N ,

– remove all factors and multiples of ni from N .

• For i = 1..m randomly select di from [1, 30] ∩ Z.
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• Set B = max
i∈I

{
(di + dj)[ni, nj ]

}
+ 11

This procedure was repeated 10,000 times to generate sets each having m patterns. We call this

complete data set the Small Pattern-Set Collection.

In addition, we wanted sets containing a large number of patterns to test heuristics for solving the

Linearized Maximum Template problem (LinMaxTemp) and the Linearized Minimum Templates

problem (LinMinTemp). Here the number of patterns m in each set ranges from 25 through 250

patterns in increments of 25. Because of the increase in running times for these large sets, we could

no longer generate such a large number of replications. As a result, we only generated 10 sets of

patterns for each set size m. The values ni were generated as described earlier, except N was ini-

tialized as [3, 1000] ∩ Z. We will call this complete data set the Large Pattern-Set Collection.

All random data was generated using the Mersenne Twister Algorithm [21]. All tests were run on

an Intel Pentium E2140 1.6GHz CPU with 2 GiB of RAM. The machine was running Ubuntu Linux

11.10 64-bit. Code was written in Java and run using the OpenJDK 1.6.0 23 64-bit virtual machine.

6.2 Evaluation of Heuristics

We begin our analysis of the heuristics presented with a comparison of the different algorithmic

options used. In particular, we first consider approaches for solving the Linearized Feasible Fit

problem.

6.2.1 Prim Heuristic - Starting Positions

As discussed in Section 5.1.3.1 the quality of the solutions produced by the Prim heuristic is sensitive

to how we choose the initial index r in the template I1. The different initialization techniques tried

were:

• Smallest Start: select r to be one of the patterns p, q ∈ I such that B′pq = min
i,j∈I
{B′ij}.

• Random Start: choose a random index r ∈ I.

1The extra unit in the length of B is added to prevent computational rounding errors that arose during preliminary
testing.
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• All Start: try each r ∈ I in turn and report the best solution found.

The test involved solving the Linearized Feasible Fit problem for the Small Pattern-Set Collection,

generated as described earlier. We focus here on the number of sets for which the Prim heuristic was

able to find a contiguous ordering that included all patterns in the given set: that is, the number of

sets for which the Prim heuristic answered the Linearized Feasible Fit problem to the affirmative.

0

2000

4000

6000

8000

10000

N
u

m
b

er
o
f

su
cc

es
se

s

3 4 5 6 7 8 9 10
Number of patterns in each set

Random start

Smallest start

All starts

Total contiguous solutions

Figure 6.2.1: Success rates of different initialization techniques for the Prim heuristic

These results are displayed in Figure 6.2.1 and are compared with the total number of sets such

that a contiguous ordering exists using all patterns in the set; this total number was determined by

checking inequality (3.2.6) from Theorem 3.2.7 for every permutation of the patterns. The results

indicate that choosing a initial pattern with the smallest B′ij gives somewhat better results than a

random choice. However, as would be expected, trying all possible indices r yields the best results.

The All Start approach does take longer than the other two approaches, but it still only requires

a fraction of a second per set. Trying all possible permutations takes significantly longer, especially

once we reach 10 patterns per set. This consideration limited our range for m to a maximum of 10

patterns.
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In this experiment only 54% of sets with 10 patterns had a contiguous solution. So even though the

All Start option of the Prim heuristic only found solutions for 32% of the sets with 10 patterns, it

did find 60% of all possible contiguous solutions. This leads us to consider the density of zero-feasible

and contiguous solutions.

6.2.2 Zero-Feasible vs. Contiguous Orderings

Here we compare the number of generated sets of patterns with zero-feasible solutions to the num-

ber of sets with contiguous solutions. We would also like to gauge the effectiveness of the Prim

and Kruskal heuristics in finding those solutions. As before, the test involved solving the Linearized

Feasible Fit problem for the Small Pattern-Set Collection, generated as described earlier.
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Figure 6.2.2: Density of special orderings and success rates of Prim and Kruskal heuristics

Figure 6.2.2 shows the number of zero-feasible and contiguous solutions found using the brute force

approach of testing inequalities (3.2.4) and (3.2.6) respectively for every permutation. The figure

also shows the number of each type of solution that the Prim (using the All Start approach) and

Kruskal heuristics were able to find. Additionally, it is evident from Figure 6.2.2 that there are
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more sets of patterns that have just a contiguous ordering, than have a zero-feasible ordering; this is

more clearly pronounced as the number of patterns m increases. Also, both the Prim and Kruskal

heuristics are able to find more contiguous orderings than zero-feasible orderings. However, they

are able to find a larger percentage of possible zero-feasible solutions than of possible contiguous

solutions as summarized in Table 6.2.1.

Number of patterns per set

P
ri

m
(A

ll
st

a
rt

)

% of zero-feasible

orderings found

% of contiguous

orderings found

K
ru

sk
al

% of zero-feasible

orderings found

% of contiguous

orderings found

3 4 5 6 7 8 9 10

100% 100% 100% 100% 100% 100% 99% 98%

100% 100% 99% 95% 88% 80% 70% 60%

100% 99% 97% 94% 89% 85% 80% 75%

100% 99% 95% 87% 76% 64% 51% 41%

Table 6.2.1: Percentage of feasible orderings found by Prim and Kruskal heuristics

6.2.3 Cycle Heuristic - Negative Cycle Finders

We now consider the cycle heuristic, which also had several options that could affect the quality of

the solutions. The first option we will address is that of the negative cycle finding routine. For this

we tested three different options [1]:

• FIFO label-correcting algorithm,

• Floyd-Warshall algorithm, and

• minimum mean cycle algorithm.2

All of these negative cycle finding options were tested by solving the Linearized Feasible Fit problem

for the Small Pattern-Set Collection, generated as described earlier. The cycle heuristic used a

random insertion order for all options. Data was collected on the number of sets where the heuristic

2See Section 5.2.1.1 for more details on these algorithms.
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was able to fit all patterns in the set on the same feasible template. The results, shown in Figure

6.2.3, indicate that in our experiments, the FIFO label-correcting algorithm was a better choice

than the Floyd-Warshall algorithm. Additionally, both of these options produce results that are far

superior to those produced when using the minimum mean cycle algorithm.
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Figure 6.2.3: Success rates of different negative cycle finders for the cycle heuristic

6.2.4 Cycle Heuristic - Insertion Orders

Continuing with the cycle heuristic, we now consider the difference that the insertion order makes

on the quality of the solutions. This is the order which determines the choice of entering index t.

We considered four options:

• increasing size ratio
nidi
B

,

• decreasing size ratio
nidi
B

[17],

• random order, and
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• Prim heuristic ordering.3

As usual, these options were tested by solving the Linearized Feasible Fit problem for the Small

Pattern-Set Collection, generated as described earlier. The FIFO label-correcting algorithm was

used as the negative cycle finder for all tests. The results, displayed in Figure 6.2.4, show that in our

experiments, using the Prim order gave the best performance in terms of fitting patterns on a single

template. In fact, this combination of options allowed the cycle heuristic to find solutions for no

fewer than 98.8% of all sets of size m ≤ 10. Sorting the patterns by decreasing size also performed

well, returning better solutions than the reverse order. Interestingly, even a random order proved

better than using the increasing size order.
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Figure 6.2.4: Success rates of different insertion orders for the cycle heuristic

3See Section 5.2.1.2 for more details.
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6.2.5 Linearized Feasible Fit Problem

Finally, we wish to compare the best options for our three heuristics head-to-head. These heuristics

are:

• the Kruskal heuristic, finding contiguous orderings,

• the Prim heuristic, finding contiguous orderings and trying all possible starts, and

• the cycle heuristic, using the FIFO label-correcting algorithm to find negative cycles and the

Prim insertion order.

These three heuristics were again tested by solving the Linearized Feasible Fit problem for the Small

Pattern-Set Collection, generated as described earlier. In addition, we used Gurobi [14], a commer-

cial mixed integer program solver, to find solutions to Fit(‹P), the MIP formulation described in

Comment 3.1.13, for each set of patterns in the Small Pattern-Set Collection. Gurobi was given a

10 minute time limit to find a solution to each set. It returned solutions for most sets that were

deemed feasible for the MIP formulation to machine precision, but unfortunately such solutions did

not always represent truly feasible solutions.

The results, displayed in Figure 6.2.5, show that for this experiment, the cycle heuristic is far supe-

rior to the other two heuristics, which are hamstrung by the decreasing density of possible contiguous

orderings. The results also indicate that the Prim heuristic produces consistently better results for

this problem than the Kruskal heuristic. Also, we observe that, while Gurobi returned solutions

for most sets of patterns, the vast majority of those solutions were actually infeasible. This shows

that, in addition to the normal problems associated with the running time of MIP solvers, Gurobi

is unsuited to solving the Linearized Feasible Fit problem formulation because of machine precision

issues. Additionally, we were able to modify the Korst heuristic [17] to solve the Linearized Feasible

Fit problem, but it was unable to find solutions to a single set.
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Figure 6.2.5: Heuristic performance for Linearized Feasible Fit problem

6.2.6 Linearized Maximum Template Problem

We now switch our focus to the Linearized Maximum Template Problem. For this problem, we

evaluated the following heuristics:

• the Kruskal heuristic, finding contiguous orderings,

• the Prim heuristic, finding contiguous orderings and trying all possible starting indices r,

• the cycle heuristic, using the FIFO label-correcting algorithm to find negative cycles and the

Prim insertion order,

• Gurobi, solving the Mixed Integer Programming formulation of the LinMaxTemp problem,

with a 60 minute time limit, and

• the Korst heuristic [17].

130



Each heuristic was tested by solving the Linearized Maximum Template Problem on the Large

Pattern-Set Collection, generated as described earlier. The results, displayed in Figure 6.2.6, show

that surprisingly, the Prim heuristic performs almost as well as the cycle heuristic as the number

of patterns per set grows. This may be an indication that, for large numbers of patterns per set,

the cycle heuristic faces a saturation problem that the Prim heuristic does not, despite the lessen-

ing density of contiguous solutions. It is also noteworthy that, although the solutions produced by

Gurobi in 60 minutes are reasonably competitive for sets of size up to 150 patterns, the quality of the

solutions obtained actually deteriorates for larger problems. We believe that this is due to the fact

that the time taken to solve the linear programming relaxation at each node increases to the point

where considerably fewer nodes of the branch-and-bound tree are searched, negatively affecting the

solution quality. The results of the Korst heuristic were quite disappointing as no solution with

more than 10 patterns in a template were produced.
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Figure 6.2.6: Heuristic performance for Linearized Maximum Template problem
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Figure 6.2.7: Heuristic processing time for Linearized Maximum Template problem

Another consideration is the time taken to produce these results. Figure 6.2.7 shows the average

processing time (in seconds) taken by each heuristic4. While the cycle heuristic does produce better

results when there are fewer than 150 patterns per set, the extra time taken is significant. Once

the number of patterns per set reaches 175, the Prim heuristic produces comparable results with

far less processing time. It should also be noted that, while the quality of the solutions produced

by the Kruskal heuristic is not as high, the processing time never exceeds 0.25 seconds, even when

processing a set of 250 patterns. Thus, use of the Kruskal heuristic might be desirable in a real-time

environment. Note that the Korst heuristic had processing times similar to those for the Kruskal

heuristic, so their graphs are hard to differentiate in Figure 6.2.7.

6.2.7 Linearized Minimum Templates Problem

The last problem associated with linear patterns that we consider is the Linearized Minimum Tem-

plates problem. For this problem, we used the following heuristics:

• the Kruskal heuristic, finding contiguous orders,

4The time taken by Gurobi was always the maximum 3600 seconds allowed, and this value would not fit on the
scale of this chart.
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• the Modified First-Fit bin packing heuristic, using the contiguous ordering version of the

Prim-Check-All-Feasibility(t) routine in place of Fit(u, t),

• the Modified First-Fit bin packing heuristic, using the FIFO label-correcting algorithm version

of the Eliminate-Negative-Cycles(u,Ku, t) routine in place of Fit(u, t),

• Gurobi, solving the Linearized Minimum Templates MIP with a 60 minute time limit, and

• the Korst heuristic [17].

Each heuristic was tested by solving the Linearized Minimum Template problem on the Large

Pattern-Set Collection, generated as described earlier. The results, displayed in Figure 6.2.8, show

that the cycle heuristic consistently achieves the smallest average number of templates. Also, though

the Prim heuristic has been superior to the Kruskal heuristic for every previous test, here the Kruskal

heuristic is clearly better for the problem it was designed to solve (generating a disjoint set of tem-

plates). The results for the Korst heuristic are only shown for 25 and 50 patterns per set because

it would not reasonably fit on the graph. However the slope shown in Figure 6.2.8 for the Korst

heuristic data is indeed maintained once leaving the bounds of the graph. Finally, results for Gurobi

are also only shown for 25 and 50 patterns. Recall that this MIP formulation requires an initial

upper bound on the number of templates. For each set, we used the Kruskal heuristic’s solution to

produce an upper bound for the MIP. Unfortunately, once the number of patterns per set reached

75, Gurobi was unable to find a feasible solution for any MIP in the 60 minutes allotted. As before,

we believe that this is due to the enormous size of the resulting linear programming relaxation of

the MIP.

Once again we consider the processing time of each heuristic. These results, displayed in Figure 6.2.9,

show that, as before, the cycle heuristic takes the longest time for processing. However, the Kruskal

heuristic again produces reasonable solutions in well under a second. Similar times were achieved

by the Prim heuristic which lead to their nearly identical graphs appearing in Figure 6.2.9. Notice

that the processing times for all heuristics are significantly shorter than those for the Linearized

Maximum Template problem, even for sets of the same size. This occurs because the running time

of all heuristics is dependent on the size of the template. Whereas the largest template reached sizes

in excess of 50 patterns in the LinMaxTemp problem, here the largest templates are of the order of

10 patterns, significantly reducing the processing time.
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Figure 6.2.8: Heuristic performance for Linearized Minimum Template problem

0

10

20

30

40

50

A
ve

ra
ge

p
ro

ce
ss

in
g

ti
m

e
(s

ec
)

(L
ow

er
n
u
m
b
er
s
a
re

b
et
te
r)

25 50 75 100 125 150 175 200 225 250

Number of patterns in each set

Kruskal heuristic

Prim heuristic
Cycle heuristic

Korst heuristic

Figure 6.2.9: Heuristic processing time for Linearized Minimum Template problem
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6.2.7.1 Comparison to the Korst Heuristic

The Korst heuristic [17] has not performed well in the experiments presented so far. This is mainly

due to the fact that we specifically constructed data sets that did not possess the qualities that the

Korst heuristic was designed to exploit. In fact our heuristics are competitive, even when used in an

experimental setting similar to that used by Korst [17] to show the effectiveness of their heuristic.

This experiment was designed to solve the Periodic Scheduling Problem (PSP) for 100 sets of m

tasks where the period p(i) of each task i ∈ {1, ...,m} is selected uniformly from [1, pmax] ∩ Z. The

processing time e(i) of task i is then selected uniformly from [1, p(i)] ∩ Z.

Recall that, as shown in Chapter 3, the Periodic Scheduling Problem is equivalent to the Linearized

Minimum Templates problem. Thus, all heuristics for the Linearized Feasible Fit problem can be

used to solve PSP instances. To do this, we calculate Bij =
(
p(i), p(j)

)
and set di = e(i). Thus, we

were able to generate a similar data set using the same parameters as in [17] to test our heuristics.

We also implemented some of the preprocessing ideas from [17] before running our heuristics. We

then used the Modified First-Fit bin packing heuristic, with the contiguous ordering version of the

Prim-Check-All-Feasibility(t) routine in place of Fit(u, t), to solve the PSP instances in this

data set5.

The results presented in [17] are given as the average percentage by which the heuristic exceeded a

calculated lower bound. These results are reproduced in Table 6.2.2 while the equivalent results from

our experiment are shown in Table 6.2.3. The two entries highlighted in red represent the largest

deviation between the two tables, where the Korst heuristic slightly improves upon the Modified

First-Fit heuristic. Thus, not only do our heuristics represent a significant improvement upon that

of Korst [17] when dealing with sets of patterns with no multiplicities among the ni’s, but they are

competitive with that heuristic even when multiplicities do arise.

5The cycle heuristic was also used in combination with the Modified First-Fit heuristic in this experiment and
yielded results similar to those seen here.
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0 pmax

m 10 20 30 40 50 60 70 80 90 100

10 0.55 0.43 0.41 0.27 0.00 0.29 0.13 0.39 0.00 0.00
20 1.23 0.93 0.89 0.46 0.50 0.27 0.24 0.36 0.32 0.55
30 2.29 1.61 1.21 1.19 0.56 0.51 0.54 0.54 0.33 0.50
40 2.29 1.72 1.50 1.22 1.19 1.17 0.93 0.56 0.85 0.50
50 2.70 2.50 1.76 1.70 1.22 1.35 1.29 0.91 0.52 0.86
60 3.48 2.69 2.07 1.64 1.44 1.34 1.16 1.00 0.78 0.88
70 3.86 3.28 2.89 2.01 2.06 1.78 1.19 1.20 1.03 0.62
80 4.20 3.71 2.84 2.44 2.22 1.62 2.18 1.26 1.14 1.03
90 3.95 4.04 3.90 3.02 2.46 1.99 1.31 1.54 1.15 1.34
100 4.16 4.63 3.77 3.09 2.32 2.16 1.92 1.59 1.89 1.52
110 4.16 4.42 4.14 3.23 2.69 2.42 2.21 1.88 1.37 1.51
120 4.43 5.10 4.45 3.79 3.43 2.53 2.75 2.17 1.88 1.94
130 4.53 4.78 4.51 4.02 2.94 2.76 2.95 2.10 2.39 1.81
140 4.33 5.02 4.67 4.70 3.79 3.42 3.20 2.18 2.01 1.78
150 4.39 5.15 4.90 4.48 3.77 3.37 3.13 2.57 2.64 2.11
160 4.40 5.42 5.48 4.63 4.14 3.58 2.84 3.07 2.27 2.29
170 4.60 5.45 5.63 5.03 4.23 3.66 3.49 3.01 2.77 2.47
180 4.53 5.71 5.55 5.39 5.02 4.11 3.78 3.05 2.49 2.86
190 4.24 5.44 6.09 5.36 4.17 4.44 3.89 3.61 3.57 3.08
200 4.24 6.10 5.77 5.27 4.73 4.01 4.04 3.49 3.10 2.84

Table 6.2.2: Periodic Scheduling Problem: Korst heuristic results

0 pmax

m 10 20 30 40 50 60 70 80 90 100

10 0.25 0.17 0.39 0.00 0.14 0.31 0.00 0.00 0.00 0.00
20 0.99 0.79 0.72 0.39 0.21 0.18 0.09 0.39 0.26 0.00
30 1.09 1.17 1.02 0.73 0.57 0.42 0.21 0.37 0.16 0.36
40 1.97 2.00 1.51 1.20 0.59 0.49 0.82 0.53 0.40 0.54
50 2.06 1.95 1.64 1.31 1.05 1.02 0.73 0.58 0.71 0.39
60 2.71 2.56 1.63 1.52 1.26 1.31 0.72 0.88 0.92 0.90
70 2.73 2.69 2.55 2.08 1.53 1.39 1.47 1.03 1.08 0.87
80 3.08 2.76 3.05 1.86 2.11 2.15 1.34 1.45 1.10 1.27
90 3.02 3.21 3.24 2.63 2.25 1.98 1.79 1.84 1.25 1.36
100 3.21 3.70 3.40 3.34 2.56 2.29 2.05 1.73 1.58 1.39
110 3.55 3.85 4.15 3.04 3.00 2.79 2.13 2.21 1.51 1.47
120 3.44 3.96 4.50 3.75 3.09 3.23 2.52 2.72 1.86 1.81
130 3.56 4.34 4.46 3.71 3.39 3.49 2.66 2.66 2.27 2.35
140 3.65 4.63 4.52 3.93 3.81 3.34 2.70 2.36 2.41 2.29
150 3.29 4.36 4.87 4.55 3.97 3.47 3.00 2.86 2.74 2.21
160 3.62 4.95 5.14 4.60 3.99 3.65 3.51 3.07 2.85 2.46
170 3.67 5.12 5.88 5.08 4.27 3.95 3.51 3.17 2.87 2.81
180 3.28 4.90 5.64 5.03 4.68 4.35 3.70 3.22 3.45 3.15
190 3.47 5.24 5.60 5.39 4.64 4.59 3.79 3.92 3.21 3.09
200 3.63 5.08 5.52 5.83 5.18 4.67 4.21 3.69 3.71 2.91

Table 6.2.3: Periodic Scheduling Problem: Modified First-Fit (Prim) heuristic results
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6.3 Industrial Example

Finally, since we have extended our cycle heuristic to solve problems involving sets of general patterns

P, we were able to apply this heuristic to a data set supplied by the industry that first motivated

this research. This data set is comprised of sixty-three patterns defined by values in the following

sets

Ri ∈ [47.625, 167.5]

ni ∈ {3, 4, 5, 6, 7, 8, 10}

ρi ∈ {4.5, 8}.

We seek a minimum number of feasible templates that will hold all sixty-three patterns in the data

set. To achieve this, we applied the Modified First-Fit bin packing heuristic to this data set using

the cycle heuristic to determine bin fit. The cycle heuristic used the FIFO label-correcting algo-

rithm to find negative cycles in G(P,�,K). This combination found a solution using five templates

for the sixty-three patterns in under 0.1 seconds. This solution is shown in Figure 6.3.1. Notice

that the patterns are fairly equitably distributed amongst the templates. This is not unexpected

as our modifications to the First-Fit heuristic encourage this outcome. Namely, we always try to

put a new pattern into a template with the fewest patterns first. This avoids the scenario where

one template contains most of the patterns. This equitability feature may be desirable if, for ex-

ample, we are trying to minimize the number of times workers would have to change these templates.

By comparison, we were able to use the Mixed Integer Programming formulation presented in Section

2.3.2 to attempt to find a solution for this same data set using the Gurobi commercial MIP solver.

Recall that this formulation requires an upper bound on the number of templates for efficient solution.

When given an upper bound of five templates, Gurobi is able to find such a solution in about 220

seconds6. However, it was not able to reduce the number of templates even when given two weeks

of uninterrupted processing time. As a result, we feel that our heuristic is very competitive with the

commercial alternatives.

6By comparison, when given an upper bound of 6 templates, it finds a solution with 5 templates after 1,142
seconds, and when given an upper bound of 7 templates it takes 8,762 seconds (about 2.4 hours) to find the same 5
template solution.
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6.3.1(a): Template #1: 12 patterns 6.3.1(b): Template #2: 12 patterns

6.3.1(c): Template #3: 12
patterns

6.3.1(d): Template #4: 14
patterns

6.3.1(e): Template #5: 13 patterns

Figure 6.3.1: Industrial example solution
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Chapter 7

Conclusions

In this dissertation we examined three related geometric packing problems (initially motivated by

an industrial situation), derived conditions for the problems’ feasibility and established their com-

putational complexity. We were then able to connect those feasibility constraints with a network

formulation. If we can eliminate negative cycles from this parameterized network, we are able to

find shortest paths from (or to) any given node in the network, and these shortest path distances

will yield feasible packings.

We then considered an approximation of the geometric packing problem and transferred most of

the previous results, including the network formulation, to this approximation. Two special cases

of the approximation, zero-feasible and contiguous orderings, were then analyzed, and we were able

to provide feasibility conditions for the existence of these orderings. Additionally, we proved the

computational complexity of finding zero-feasible orderings. We further showed that this approx-

imate packing problem is equivalent to the Periodic Scheduling Problem. This equivalence allows

some of our more general developments – such as the kij bounds from Theorem 3.1.12, the network

formulation, and the special orderings – to be applied to the many problems arising in the periodic

scheduling literature.

Moreover, we were able to exploit two special orderings and our network formulation to design

heuristics for the solution of these provably difficult packing problems. These heuristics can also be

applied to existing periodic scheduling examples and, in the case of the cycle heuristic, to the problem
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of packing general geometric patterns. The heuristics performed favorably when compared with other

heuristics developed for the Periodic Scheduling Problem and a state-of-the-art commercial mixed

integer program solver.

7.1 Future Work

Additional avenues of research on this topic still remain to be pursued. Some of these are theoretical

and include establishing the complexity of obtaining a contiguous ordering. On the other hand,

there are several options to consider for improving the heuristics we have developed. For example,

the Prim and Kruskal heuristics were motivated by seeking zero-feasible orderings and many of

their design decisions were made with this in mind. These heuristics were only later adapted in a

rudimentary way to contiguous orderings. This fact is evident when you consider the percentage of

zero-feasible orderings that they are able to discover, compared with the percentage of contiguous

orderings they can find1. We believe that further modifications to the fundamental workings of

these heuristics can improve their performance overall, especially considering the larger number of

available contiguous orderings.

There are also changes that can be considered for implementing the cycle heuristic. When this

heuristic inserts a new index t into a feasible template, it uses a very simple heuristic to find integer

values kit for all i in the current template such that the expanded template is also feasible. This

problem can in fact be formulated as an integer program with two variables per constraint. Such

integer programs are known as 2VIP problems [15] and there are existing pseudo-polynomial algo-

rithms that will solve them exactly. Since the Eliminate-Negative-Cycles(u,Ku, t) routine is

already pseudo-polynomial, it would be useful to know how the running times of the 2VIP algorithms

compare to that for the heuristic currently used in Eliminate-Negative-Cycles(u,Ku, t). More

importantly, it would be valuable to assess how using the exact solution at each iteration would affect

the quality of the solutions produced by Cycle-Construction(‹P,�) and the Modified First-Fit

heuristic.

Another area of possible future study is that of bin equitability. When solving a bin packing problem

1See Table 6.2.1 for supporting experimental data.
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such as the Minimum Templates problem, we only insist that our heuristic maintain the feasibility

of each bin. However, as results from the industrial example show, it may be desirable to have

the patterns evenly distributed across the templates so that workers do not have to change them

as often. We believe that our heuristics could be modified to produce solutions that distribute the

patterns more evenly over the templates. Moreover, this line of study could be extended to the more

general Bin Packing Problem as well.

In this research we have successfully developed construction heuristics that build feasible solutions to

the problem of packing patterns into templates. However, it is well known that construction heuris-

tics can make decisions early in the construction that later limit choices to undesirable options. A

common approach to correct this situation is the development of improvement heuristics. These

take an existing feasible solution and attempt to improve it by suitable interchanges. In our case,

this approach should be explored for the problem of finding special orderings, as well as the more

general problem of packing patterns into templates. Improvement heuristics could also be developed

that focus on improving the equitability of distribution among templates.

Korst, et al. [17] introduced the notion of an overlap graph for a set of periodic tasks (or equivalently,

linear patterns). This graph has a node for each task (pattern) and an edge between them iff the

constraint from Corollary 3.1.11 holds for those two tasks (patterns). They then find a maximal

independent set in that graph and point out that the size of this set provides a lower bound on

the number of servers needed to feasibly accomplish all tasks (since no two tasks in the set can

fit together). We have elsewhere [24] developed a condition similar to that in Corollary 3.1.11 for

determining the existence of valid starting positions for sets of three patterns. It would be of interest

to study whether this constraint could be added to the overlap graph to improve the quality of the

resulting lower bound.

141



Appendices

142



Appendix A Proof of Theorem 2.2.4

For clarity, we restate Theorem 2.2.4:

Let patterns Pi = (Ri, ni, ρi) and Pj = (Rj , nj , ρj) be given. Then {Pi(ϕi), Pj(ϕj)} is feasible iff

there exists k ∈ Z such that

kβij + δij ≤ ϕj − ϕi ≤ (k + 1)βij − δij .

Moreover, if δij > 0 for i ≺ j then k is unique.

Proof: Let patterns Pi = (Ri, ni, ρi) and Pj = (Rj , nj , ρj) be given. First note that if |Ri −Rj | ≥

ρi + ρj then δij = 0, so the requirement is that there exists some k such that

kβij ≤ ϕj − ϕi ≤ (k + 1)βij

which in fact holds for all ϕi, ϕj . This aligns with the results of Theorem 2.2.3. Thus, for the rest

of this proof we will assume that |Ri −Rj | < ρi + ρj .

Recall that we have assumed that ni > 1 for all i ∈ I, thus [ni, nj ] ≥ 2 for all i 6= j ∈ I. De-

fine Pij =
(
Ri, [ni, nj ], ρi

)
as before. Recall that Lemmas 2.2.1 and 2.2.2 together imply that

{Pi(ϕi), Pj(ϕj)} is a feasible template iff Pij(ϕi) ∩ Pj(ϕj , 0) = ∅.

(⇒)

Assume that {Pi(ϕi), Pj(ϕj)} is feasible. Thus Pij(ϕi) ∩ Pj(ϕj , 0) = ∅. Let

k =

õ
ϕj − ϕi
βij

û
.

Thus

kβij ≤ ϕj − ϕi < (k + 1)βij .

Now if Pij(ϕi) ∩ Pj(ϕj , 0) = ∅, then Pij(ϕi, `) ∩ Pj(ϕj , 0) = ∅ for all ` ∈ Z. Specifically, Pij(ϕi, k) ∩

Pj(ϕj , 0) = ∅. Thus the distance between the center of Pij(ϕi, k), (Ri, ϕi + kβij), and the center of
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Pj(ϕj , 0), (Rj , ϕj), must be at least ρi + ρj . Using the law of cosines we get

R2
i +R2

j − 2RiRj cos(ϕj − (ϕi + kβij)) ≥ (ρi + ρj)
2

R2
i − 2RiRj +R2

j + 2RiRj − 2RiRj cos(ϕj − ϕi − kβij) ≥ (ρi + ρj)
2

(Ri −Rj)2 + 2RiRj(1− cos(ϕj − ϕi − kβij)) ≥ (ρi + ρj)
2

4RiRj

1− cos

Å
2

ï
ϕj − ϕi − kβij

2

òã
2

≥ (ρi + ρj)
2 − (Ri −Rj)2

sin2

Å
ϕj − ϕi − kβij

2

ã
≥ (ρi + ρj)

2 − (Ri −Rj)2

4RiRj
> 0. (A.1)

At this point, note that since

kβij ≤ ϕj − ϕi < (k + 1)βij

0 ≤ ϕj − (ϕi + kβij) < βij

0 ≤ ϕj − ϕi − kβij <
2π

[ni, nj ]

0 ≤
ϕj − ϕi − kβij

2
<

π

[ni, nj ]
≤ π

2

inequality (A.1) yields

sin

Å
ϕj − ϕi − kβij

2

ã
≥
 

(ρi + ρj)2 − (Ri −Rj)2
4RiRj

ϕj − ϕi − kβij
2

≥ arcsin

 
(ρi + ρj)2 − (Ri −Rj)2

4RiRj

ϕj − ϕi − kβij ≥ 2 arcsin

 
(ρi + ρj)2 − (Ri −Rj)2

4RiRj

ϕj − ϕi ≥ kβij + 2 arcsin

 
(ρi + ρj)2 − (Ri −Rj)2

4RiRj

ϕj − ϕi ≥ kβij + δij . (A.2)

Similarly, we know that Pij(ϕi, k + 1) ∩ Pj(ϕj , 0) = ∅ so their centers, (Ri, ϕi + (k + 1)βij) and
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(Rj , ϕj), must also be distance at least ρi + ρj apart. Thus

R2
i +R2

j − 2RiRj cos(ϕi + (k + 1)βij − ϕj) ≥ (ρi + ρj)
2

2RiRj − 2RiRj cos(ϕi + (k + 1)βij − ϕj) ≥ (ρi + ρj)
2 − (R2

i − 2RiRj +R2
j )

2RiRj(1− cos(ϕi − ϕj + (k + 1)βij)) ≥ (ρi + ρj)
2 − (Ri −Rj)2+

4RiRj

1− cos

Å
2

ï
ϕi − ϕj + (k + 1)βij

2

òã
2

≥ (ρi + ρj)
2 − (Ri −Rj)2

sin2

Å
ϕi − ϕj + (k + 1)βij

2

ã
≥ (ρi + ρj)

2 − (Ri −Rj)2

4RiRj
> 0. (A.3)

As before, note that since

kβij ≤ ϕj − ϕi < (k + 1)βij

−βij ≤ ϕj − ϕi − (k + 1)βij < 0

0 < ϕi − ϕj + (k + 1)βij ≤ βij

0 < ϕi − ϕj + (k + 1)βij ≤
2π

[ni, nj ]

0 <
ϕi − ϕj + (k + 1)βij

2
≤ π

[ni, nj ]
≤ π

2

inequality (A.3) yields

sin

Å
ϕi − ϕj + (k + 1)βij

2

ã
≥
 

(ρi + ρj)2 − (Ri −Rj)2
4RiRj

ϕi − ϕj + (k + 1)βij

2
≥ arcsin

 
(ρi + ρj)2 − (Ri −Rj)2

4RiRj

ϕi − ϕj + (k + 1)βij ≥ 2 arcsin

 
(ρi + ρj)2 − (Ri −Rj)2

4RiRj

ϕi − ϕj ≥ −(k + 1)βij + 2 arcsin

 
(ρi + ρj)2 − (Ri −Rj)2

4RiRj

ϕj − ϕi ≤ (k + 1)βij − 2 arcsin

 
(ρi + ρj)2 − (Ri −Rj)2

4RiRj

ϕj − ϕi ≤ (k + 1)βij − δij . (A.4)
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Combining (A.2) and (A.4) gives

kβij + δij ≤ ϕj − ϕi ≤ (k + 1)βij − δij

as required.

To prove the uniqueness of k, consider the family of intervals

[
`βij + δij , (`+ 1)βij − δij

]
, ` ∈ Z.

We know that these intervals are all the same length, βij − 2δij , and that they must be non-empty

since

ϕj − ϕi ∈
[
kβij + δij , (k + 1)βij − δij

]
.

We also know, assuming δij > 0, that the intervals are disjoint. Thus ϕj − ϕi only lies in one of

these intervals, that corresponding to k.

(⇐)

For the remainder of this proof, let 〈a, b〉 denote the Euclidian distance between points a and b.

Let ϕi, ϕj ∈ R and k ∈ Z be given such that

kβij + δij ≤ ϕj − ϕi ≤ (k + 1)βij − δij .

First note that by definition δij ≥ 0. The above then gives

kβij ≤ ϕj − ϕi ≤ (k + 1)βij

ϕi + kβij ≤ ϕj ≤ ϕi + (k + 1)βij . (A.5)

Note that (Ri, ϕi + kβij) and (Ri, ϕi + (k + 1)βij) are the centers of Pij(ϕi, k) and Pij(ϕi, k + 1)

respectively and (Rj , ϕj) is the center of Pj(ϕj , 0). Then (A.5) implies that the center of Pj(ϕj , 0)

lies between the centers of sequential disks of Pij(ϕi). Before we continue, we bound the distances
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between these center points.

By our assumption,

ϕj − ϕi ≥ kβij + δij

ϕj − ϕi ≥ kβij + 2 arcsin

 
(ρi + ρj)2 − (Ri −Rj)2

4RiRj

ϕj − ϕi − kβij ≥ 2 arcsin

 
(ρi + ρj)2 − (Ri −Rj)2

4RiRj

ϕj − ϕi − kβij
2

≥ arcsin

 
(ρi + ρj)2 − (Ri −Rj)2

4RiRj

sin

Å
ϕj − ϕi − kβij

2

ã
≥
 

(ρi + ρj)2 − (Ri −Rj)2
4RiRj

.

Squaring both sides gives

sin2

Å
ϕj − ϕi − kβij

2

ã
≥ (ρi + ρj)

2 − (Ri −Rj)2

4RiRj

4RiRj

1− cos

Å
2

ï
ϕj − ϕi − kβij

2

òã
2

≥ (ρi + ρj)
2 − (Ri −Rj)2

(Ri −Rj)2 + 2RiRj(1− cos(ϕj − ϕi − kβij)) ≥ (ρi + ρj)
2

R2
i − 2RiRj +R2

j + 2RiRj − 2RiRj cos(ϕj − ϕi − kβij) ≥ (ρi + ρj)
2

R2
i +R2

j − 2RiRj cos(ϕj − (ϕi + kβij)) ≥ (ρi + ρj)
2〈

(Rj , ϕj), (Ri, ϕi + kβij)
〉
≥ ρi + ρj . (A.6)
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Also by our initial assumption,

ϕj − ϕi ≤ (k + 1)βij − δij

ϕj − ϕi ≤ (k + 1)βij − 2 arcsin

 
(ρi + ρj)2 − (Ri −Rj)2

4RiRj

ϕj − ϕi − (k + 1)βij ≤ −2 arcsin

 
(ρi + ρj)2 − (Ri −Rj)2

4RiRj

ϕi + (k + 1)βij − ϕj
2

≥ arcsin

 
(ρi + ρj)2 − (Ri −Rj)2

4RiRj

sin

Å
ϕi + (k + 1)βij − ϕj

2

ã
≥
 

(ρi + ρj)2 − (Ri −Rj)2
4RiRj

.

Squaring both sides gives

sin2

Å
ϕi + (k + 1)βij − ϕj

2

ã
≥ (ρi + ρj)

2 − (Ri −Rj)2

4RiRj

4RiRj

1− cos

Å
2

ï
ϕi + (k + 1)βij − ϕj

2

òã
2

≥ (ρi + ρj)
2 − (Ri −Rj)2

(Ri −Rj)2 + 2RiRj(1− cos(ϕi + (k + 1)βij − ϕj)) ≥ (ρi + ρj)
2

R2
i − 2RiRj +R2

j + 2RiRj − 2RiRj cos(ϕi + (k + 1)βij − ϕj) ≥ (ρi + ρj)
2

R2
i +R2

j − 2RiRj cos(ϕi + (k + 1)βij − ϕj)) ≥ (ρi + ρj)
2〈

(Ri, ϕi + (k + 1)βij), (Rj , ϕj)
〉
≥ ρi + ρj . (A.7)

Now, let (r, θ) ∈ Pij(ϕi) be given. Without loss of generality, assume that ϕj − π ≤ θ < ϕj + π. We

will now prove that the distance between the center of Pj(ϕj , 0) and (r, θ) is greater than ρj . This

will show that Pj(ϕj , 0) ∩ Pij(ϕi) = ∅. To do this, we need to break into cases depending on the

value of θ. In an attempt to clarify these cases, Figure A.1 shows the partition of Pij(ϕi).
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ϕi + kβij

ϕi + (k + 1)βij

ϕj

Case 1A

Case 1B

Case 2

Case 3

Figure A.1: Breakdown of possible (r, θ) ∈ Pij(ϕi) into cases

Case 1 (ϕi + kβij ≤ θ ≤ ϕi + (k + 1)βij):

Note that, since Pij(ϕi, k) and Pij(ϕi, k + 1) are sequential disks of Pij , if

ϕi + kβij ≤ θ ≤ ϕi + (k + 1)βij

then (r, θ) must be in one of these two disks.

Case 1A ((r, θ) ∈ Pij(ϕi, k)):

Recall from (A.6) that the distance between the centers of disks Pij(ϕi, k) and Pj(ϕj , 0) is

〈
(Rj , ϕj), (Ri, ϕi + kβij)

〉
≥ ρi + ρj .

Also, since (r, θ) ∈ Pij(ϕi, k), 〈
(r, θ), (Ri, ϕi + kβij)

〉
< ρi.

Thus, using the triangle inequality, we get

〈
(Rj , ϕj), (r, θ)

〉
≥
〈

(Rj , ϕj), (Ri, ϕi + kβij)
〉
−
〈

(r, θ), (Ri, ϕi + kβij)
〉
> ρj .
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Thus (r, θ) 6∈ Pj(ϕj , 0).

Case 1B ((r, θ) ∈ Pij(ϕi, k + 1)):

Recall from (A.7) that the distance between the centers of disks Pij(ϕi, k + 1) and Pj(ϕj , 0) is

〈
(Ri, ϕi + (k + 1)βij), (Rj , ϕj)

〉
≥ ρi + ρj .

Also, since (r, θ) ∈ Pij(ϕi, k + 1),

〈
(r, θ), (Ri, ϕi + (k + 1)βij)

〉
< ρi.

Thus, using the triangle inequality, we get

〈
(Rj , ϕj), (r, θ)

〉
≥
〈

(Rj , ϕj), (Ri, ϕi + (k + 1)βij)
〉
−
〈

(r, θ), (Ri, ϕi + (k + 1)βij)
〉
> ρj .

Thus (r, θ) 6∈ Pj(ϕj , 0).

Case 2 (θ < ϕi + kβij):

Combining our assumptions and δij ≥ 0, we get

ϕj − π ≤ θ < ϕi + kβij ≤ ϕj

−π ≤ θ − ϕj < ϕi + kβij − ϕj ≤ 0

0 ≤ ϕj − (ϕi + kβij) < ϕj − θ ≤ π

cos
(
ϕj − (ϕi + kβij)

)
> cos(ϕj − θ)

since cosine is strictly decreasing on the interval (0, π).
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Now consider the point (Ri, θ).

〈
(Rj , ϕj), (Ri, θ)

〉2
= R2

i +R2
j − 2RiRj cos(ϕj − θ)

> R2
i +R2

j − 2RiRj cos
(
ϕj − (ϕi + kβij)

)
=
〈

(Rj , ϕj), (Ri, ϕi + kβij)
〉2

≥ (ρi + ρj)
2

by (A.6). Finally,

〈
(r, θ), (Ri, θ)

〉2
= r2 +R2

i − 2rRi cos(θ − θ)

= r2 +R2
i − 2rRi

= (Ri − r)2

< ρ2i

by Property 2.1.3(d). Thus, once again by the triangle inequality,

〈
(Rj , ϕj), (r, θ)

〉
≥
〈

(Rj , ϕj), (Ri, θ)
〉
−
〈

(r, θ), (Ri, θ)
〉
> ρj .

Case 3 (θ > ϕi + (k + 1)βij):

Combining our assumptions and δij ≥ 0, we get

ϕj ≤ ϕi + (k + 1)βij < θ < ϕj + π

0 ≤ ϕi + (k + 1)βij − ϕj < θ − ϕj ≤ π

cos
(
ϕi + (k + 1)βij − ϕj

)
> cos(θ − ϕj)

since cosine is strictly decreasing on the interval (0, π).
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Again, consider the point (Ri, θ).

〈
(Rj , ϕj), (Ri, θ)

〉2
= R2

i +R2
j − 2RiRj cos(θ − ϕj)

> R2
i +R2

j − 2RiRj cos
(
ϕi + (k + 1)βij − ϕj

)
=
〈

(Rj , ϕj),
(
Ri, ϕi + (k + 1)βij

)〉2
≥ (ρi + ρj)

2

by (A.7). Finally,

〈
(r, θ), (Ri, θ)

〉2
= r2 +R2

i − 2rRi cos(θ − θ)

= r2 +R2
i − 2rRi

= (Ri − r)2

< ρ2i

by Property 2.1.3(d). Thus, by the triangle inequality,

〈
(Rj , ϕj), (r, θ)

〉
≥
〈

(Rj , ϕj), (Ri, θ)
〉
−
〈

(r, θ), (Ri, θ)
〉
> ρj .

In all cases (r, θ) 6∈ Pj(ϕj , 0). This implies that Pij(ϕi)∩Pj(ϕj , 0) = ∅ which, by Lemmas 2.2.1 and

2.2.2, gives us Pi(ϕi) ∩ Pj(ϕj) = ∅ as required.
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