15,815 research outputs found

    Pinwheel Scheduling for Fault-tolerant Broadcast Disks in Real-time Database Systems

    Full text link
    The design of programs for broadcast disks which incorporate real-time and fault-tolerance requirements is considered. A generalized model for real-time fault-tolerant broadcast disks is defined. It is shown that designing programs for broadcast disks specified in this model is closely related to the scheduling of pinwheel task systems. Some new results in pinwheel scheduling theory are derived, which facilitate the efficient generation of real-time fault-tolerant broadcast disk programs.National Science Foundation (CCR-9308344, CCR-9596282

    FairLedger: A Fair Blockchain Protocol for Financial Institutions

    Get PDF
    Financial institutions are currently looking into technologies for permissioned blockchains. A major effort in this direction is Hyperledger, an open source project hosted by the Linux Foundation and backed by a consortium of over a hundred companies. A key component in permissioned blockchain protocols is a byzantine fault tolerant (BFT) consensus engine that orders transactions. However, currently available BFT solutions in Hyperledger (as well as in the literature at large) are inadequate for financial settings; they are not designed to ensure fairness or to tolerate selfish behavior that arises when financial institutions strive to maximize their own profit. We present FairLedger, a permissioned blockchain BFT protocol, which is fair, designed to deal with rational behavior, and, no less important, easy to understand and implement. The secret sauce of our protocol is a new communication abstraction, called detectable all-to-all (DA2A), which allows us to detect participants (byzantine or rational) that deviate from the protocol, and punish them. We implement FairLedger in the Hyperledger open source project, using Iroha framework, one of the biggest projects therein. To evaluate FairLegder's performance, we also implement it in the PBFT framework and compare the two protocols. Our results show that in failure-free scenarios FairLedger achieves better throughput than both Iroha's implementation and PBFT in wide-area settings

    A Dual Digraph Approach for Leaderless Atomic Broadcast (Extended Version)

    Full text link
    Many distributed systems work on a common shared state; in such systems, distributed agreement is necessary for consistency. With an increasing number of servers, these systems become more susceptible to single-server failures, increasing the relevance of fault-tolerance. Atomic broadcast enables fault-tolerant distributed agreement, yet it is costly to solve. Most practical algorithms entail linear work per broadcast message. AllConcur -- a leaderless approach -- reduces the work, by connecting the servers via a sparse resilient overlay network; yet, this resiliency entails redundancy, limiting the reduction of work. In this paper, we propose AllConcur+, an atomic broadcast algorithm that lifts this limitation: During intervals with no failures, it achieves minimal work by using a redundancy-free overlay network. When failures do occur, it automatically recovers by switching to a resilient overlay network. In our performance evaluation of non-failure scenarios, AllConcur+ achieves comparable throughput to AllGather -- a non-fault-tolerant distributed agreement algorithm -- and outperforms AllConcur, LCR and Libpaxos both in terms of throughput and latency. Furthermore, our evaluation of failure scenarios shows that AllConcur+'s expected performance is robust with regard to occasional failures. Thus, for realistic use cases, leveraging redundancy-free distributed agreement during intervals with no failures improves performance significantly.Comment: Overview: 24 pages, 6 sections, 3 appendices, 8 figures, 3 tables. Modifications from previous version: extended the evaluation of AllConcur+ with a simulation of a multiple datacenters deploymen

    Coordination-Free Byzantine Replication with Minimal Communication Costs

    Get PDF
    State-of-the-art fault-tolerant and federated data management systems rely on fully-replicated designs in which all participants have equivalent roles. Consequently, these systems have only limited scalability and are ill-suited for high-performance data management. As an alternative, we propose a hierarchical design in which a Byzantine cluster manages data, while an arbitrary number of learners can reliable learn these updates and use the corresponding data. To realize our design, we propose the delayed-replication algorithm, an efficient solution to the Byzantine learner problem that is central to our design. The delayed-replication algorithm is coordination-free, scalable, and has minimal communication cost for all participants involved. In doing so, the delayed-broadcast algorithm opens the door to new high-performance fault-tolerant and federated data management systems. To illustrate this, we show that the delayed-replication algorithm is not only useful to support specialized learners, but can also be used to reduce the overall communication cost of permissioned blockchains and to improve their storage scalability

    Introduction to the special section on dependable network computing

    Get PDF
    Dependable network computing is becoming a key part of our daily economic and social life. Every day, millions of users and businesses are utilizing the Internet infrastructure for real-time electronic commerce transactions, scheduling important events, and building relationships. While network traffic and the number of users are rapidly growing, the mean-time between failures (MTTF) is surprisingly short; according to recent studies, in the majority of Internet backbone paths, the MTTF is 28 days. This leads to a strong requirement for highly dependable networks, servers, and software systems. The challenge is to build interconnected systems, based on available technology, that are inexpensive, accessible, scalable, and dependable. This special section provides insights into a number of these exciting challenges
    • …
    corecore