4 research outputs found

    Guaranteed state estimation using a bundle of interval observers with adaptive gains applied to the induction machine

    Get PDF
    he scope of this paper is the design of an interval observer bundle for the guaranteed state estimation of an uncertain induction machine with linear, time-varying dynamics. These guarantees are of particular interest in the case of safety-critical systems. In many cases, interval observers provide large intervals for which the usability becomes impractical. Hence, based on a reduced-order hybrid interval observer structure, the guaranteed enclosure within intervals of the magnetizing current’s estimates is improved using a bundle of interval observers. One advantage of such an interval observer bundle is the possibility to reinitialize the interval observers at specified timesteps during runtime with smaller initial intervals, based on previously observed system states, resulting in decreasing interval widths. Thus, unstable observer dynamics are considered so as to take advantage of their transient behavior, whereby the overall stability of the interval estimation is maintained. An algorithm is presented to determine the parametrization of reduced-order interval observers. To this, an adaptive observer gain is introduced with which the system states are observed optimally by considering a minimal interval width at variable operating points. Furthermore, real-time capability and validation of the proposed methods are shown. The results are discussed with simulations as well as experimental data obtained with a test bench

    Model-based supervisory control synthesis of cyber-physical systems

    Get PDF

    Fault-Tolerant Control for Safety of Discrete-Event Systems

    No full text
    corecore