

Model-based supervisory control synthesis of cyber-physical
systems
Citation for published version (APA):
Rashidinejad, A. (2021). Model-based supervisory control synthesis of cyber-physical systems. Eindhoven
University of Technology.

Document status and date:
Published: 26/05/2021

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/c4b2cc0d-b3b4-4380-9b5e-ee2b8cd6be26

Model-Based Supervisory Control
Synthesis of Cyber-Physical Systems

Aida Rashidinejad

Department of Mechanical Engineering
EINDHOVEN UNIVERSITY OF TECHNOLOGY

Eindhoven, The Netherlands. 2021

The work described in this thesis was carried out at the Eindhoven University of Technol-
ogy and is part of the research programme “oCPS” funded from the European Union’s
Horizon 2020 Framework Programme for Research and Innovation under grant agreement
No. 674875.

A catalogue record is available from the Eindhoven University of Technology Library.
ISBN: 978-90-386-5277-1

Typeset using LATEX
Reproduction: ADC Dereumaux
Cover photo: Miguel Á. Padriñán
Copyright c© 2021 by Aida Rashidinejad. All Rights Reserved.

Model-Based Supervisory Control Synthesis
of Cyber-Physical Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische
Universiteit Eindhoven, op gezag van de rector magnificus

prof.dr.ir. F.P.T. Baaijens, voor een commissie aangewezen door
het College voor Promoties, in het openbaar te verdedigen op

woensdag 26 mei 2021 om 13:30 uur

door

Aida Rashidinejad

geboren te Tehran, Iran

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de pro-
motiecommissie is als volgt:

voorzitter: prof.dr. H. Nijmeijer
1e promotor: dr.ir. M.A. Reniers
2e promotor: prof.dr. M. Fabian (Chalmers University of Technology)
leden: prof.dr. C.N. Hadjicostis (University of Cyprus)

prof.dr. W.J. Fokkink
prof.dr.ir. J.P.M. Voeten

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeenstemming
met de TU/e Gedragscode Wetenschapsbeoefening.

Dedicated to my parents.

Societal Summary
Cyber-physical systems (CPSs) exist everywhere in human life, from robotics and traffic
control systems to smart grid and manufacturing systems. Generally speaking, any
combination of physical processes, computer-based algorithms, and communication between
those for control purposes makes a cyber-physical system. Many applications of CPSs are
safety-critical such as autonomous vehicles or medical devices. For safety-critical CPSs,
it should always be guaranteed that the system behaves within the specified behavior.
Otherwise, the physical system could hurt itself, the people around it, or the environment.
This thesis offers new methods to improve the supervisory control layer of a CPS, which is
responsible to guarantee the safety of the system.

The communication in a CPS is through a network. Using a network brings many
benefits by eliminating unnecessary wiring. However, it introduces challenges. Consider as
an example a railroad crossing located in Eindhoven and controlled from Rotterdam via a
network. To prevent accidents between trains and passing cars, a safety requirement is to
guarantee that the gate is closed when a train arrives and is opened only after the train
leaves. Using the supervisory control theory, a supervisor is achieved, guaranteeing that
the system behaves within the safety requirement. Similar to other theoretical approaches,
supervisory control theory assumes an ideal practical situation that does not necessarily
exist in real life. For instance, the modeling framework only concerns the sequences of events,
such as the arrival/departure of the train or closing/opening the gate, while the timing of the
event occurrences is neglected. Moreover, the supervisory control theory assumes a control
setup with complete synchronous interactions, i.e., the sensor information is immediately
received by the supervisor, and the control commands are immediately received by the
system. In contrast, when controlling systems over a network, time plays a significant role
as communication delays are unavoidable. Neglecting the communication delays in theory
may result in the failure of the obtained supervisor in implementation. In the railroad
crossing example, the supervisor failure may lead to a catastrophic accident between a
train and passing cars. The work presented in this thesis develops supervisory control
theory for CPS by contributing to two directions; 1) developing networked supervisory
control theory that deals with the effects of communication delays, and 2) developing
the modeling framework for the supervisory control theory by incorporating real-time.
This research is an important step towards more reliable supervisory control of CPS to
guarantee that they behave in a safe manner.

vii

Abstract
Cyber-physical systems (CPSs) integrate physical processes, computer-based algorithms,
and communication between those for control purposes. A CPS has hybrid dynamics; a
combination of both time-driven and event-driven dynamics. In this respect, a CPS usually
involves two layers of control; low-level (continuous-variable) controllers that are mainly
responsible to enhance the performance of the system in terms of exhibiting some desired
behavior, and high-level (supervisory) controllers that are mainly responsible to guarantee
the safety and liveness of the system. There are many applications of CPS for which
the supervisory control layer is of significant importance. For instance, vehicle collision
avoidance is a safety requirement for a platooning system that needs to be satisfied by the
high-level controllers.

To guarantee the safety and liveness of a system, the concept of supervisory control
theory (SCT) has been developed. SCT is based on the synchronous interactions between
the plant and the supervisor. This assumption fails in practice when the supervisor,
synthesized from theory, is implemented. More importantly, although network-based
control in cyber-physical systems brings many advantages, it also involves challenges, as
delays, packet reordering, packet losses, and the risk of cyber-attacks are introduced by
and through network communication. The main objective of this thesis is to guarantee the
safety and liveness of a CPS by developing model-based supervisory control in a setting
where communication imperfections or the risk of cyber-attacks may appear.

As the first contribution, this thesis investigates supervisory control of discrete-event
systems (DESs), represented by finite automata (FA), in an asynchronous setting. A
supervisor, synthesized from conventional SCT, may fail in practice due to communication
delays that may appear in the implementation but are neglected in theory. In this thesis,
a supervisor is synthesized in an asynchronous supervisory control setting, where the
interactions between the plant and the supervisor are not assumed to be synchronous.
Besides delays, interleave-sensitivity and causality are other implementation problems that
are considered by the proposed method.

Second, a networked supervisory control synthesis method is proposed in the modeling
framework of timed DESs (TDESs). TDESs consider discrete-time information in DESs.
The timing information is used to model the effects of communication delays. To synthesize
a networked supervisor, a networked supervisory control framework is provided, where
the supervisor interacts with the plant through communication channels that introduce
delays. Besides delays, the problem of packet reordering is considered. Based on the
proposed framework, a networked plant automaton is achieved, modeling the behavior of
the plant under the effects of communication delays and packet reordering. The networked
supervisor is then synthesized based on the networked plant.

ix

Third, due to the scalability problem of discrete-time modeling, dense/real-time mod-
eling is considered in DESs, where the plant is represented by a timed automaton (TA).
A TA is an FA extended with a finite set of real-valued clocks. To model the timing
behavior of TA, the accepting temporal conditions to switch between different modes,
called locations, or stay in the current one are represented by clock constraints, indicated
by guards and invariants, respectively. To deal with the infinite state space of a TA, the
existing supervisory control approaches rely on abstracting a TA into an FA and apply the
synthesis to the FA. Moreover, they achieve a supervisor that is only able to adjust the
guards of a TA. In this thesis, a synthesis technique is proposed that abstracts a TA into
an FA such that the event set of the FA includes the discrete events of the TA as well as an
event representing a time delay. Time delays are considered to be preemptable by events
from a given set of forcible events. By using the concept of forcible events, the supervisor
is allowed to control a TA by not only adjusting the guards but also the invariants. In this
way, the degree-of-freedom of the supervisor is increased, and so the resulting supervisor is
less conservative compared to other techniques. For many applications, using abstractions
results in finite state-spaces but still risks encountering the state-space explosion problem.
To deal with this issue, this thesis also presents a supervisory control synthesis technique
that is directly applicable to TA without any abstraction. Moreover, the concept of forcible
events is used again to provide the supervisor with more control actions. To synthesize
such a supervisor, an algorithm is proposed that iteratively strengthens the guards of
controllable events and invariants of locations where time progress can be preempted by
forcible events.

Fourth, a networked control system may also face the risk of cyber-attacks, which may
cause catastrophic damage to the system. In this regard, this thesis also studies the effects
of cyber-attacks in networked supervisory control of DES by providing a survey on existing
methods and analyzing them to propose new research directions.

x

List of Publications

The results presented in this thesis are based on the following publications.

Peer-reviewed journal contributions

Aida Rashidinejad, Michel Reniers, and Martin Fabian, Networked Supervisory Control
Synthesis of Timed Discrete-Event Systems. 2020, submitted.

Aida Rashidinejad, Michel Reniers, and Martin Fabian, Supervisory Control Synthesis
of Timed Automata Using Forcible Events. 2020, submitted.

Peer-reviewed conference contributions

Aida Rashidinejad, Michel Reniers, and Lei Feng. Supervisory Control of Timed
Discrete-Event Systems Subject to Communication delays and Non-FIFO Observa-
tions. Proceedings of 14th Workshop on Discrete Event systems, pp. 456-463, 2018,
doi: 10.1016/j.ifacol.2018.06.340.

Aida Rashidinejad, Bart Wetzels, Michel Reniers, Liyong Lin, Yuting Zhu, and Rong
Su. Supervisory Control of Discrete-Event Systems under Attacks: an Overview and
Outlook. Proceedings of 18th European Control Conference, pp. 1732-1739, 2019,
doi: 10.23919/ECC.2019.8795849.

Aida Rashidinejad, Michel Reniers, and Martin Fabian. Supervisory Control of
Discrete-Event Systems in an Asynchronous Setting. Proceedings of IEEE 15th
International Conference on Automation Science and Engineering, pp. 494-501, 2019,
doi: 10.1109/COASE.2019.8843274.

Aida Rashidinejad, Patrick van der Graaf, Michel Reniers, and Martin Fabian. Non-
blocking Supervisory Control of Timed Automata using Forcible Events. Proceedings
of 15th International Workshop on Discrete Event Systems, 2020, to appear.

Aida Rashidinejad, Patrick van der Graaf, and Michel Reniers. Nonblocking Supervi-
sory Control Synthesis of Timed Automata using Abstractions and Forcible Events.
Proceedings of 16th International Conference on Control, Automation, Robotics,
and Vision, pp. 1-8, 2020, doi:10.1109/ICARCV50220.2020.9305312.

xi

Non peer-reviewed conference contributions

Aida Rashidinejad, Michel Reniers, and Maurice Heemels. Networked Supervisory
Control Synthesis of Discrete-Event Systems with Time-Delayed Non-FIFO Com-
munication. Proceedings of 36th Benelux Meeting on Systems and Control, pp. 50,
2017.

Aida Rashidinejad, and Michel Reniers. Networked supervisory control synthesis of
discrete-event systems with time-delayed non-FIFO communication. ICT.OPEN
2017.

Aida Rashidinejad, and Michel Reniers. Examples of networked supervisory control
synthesis. ICT.OPEN 2019.

xii

Contents

Societal Summary vii

Abstract ix

List of Publications xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 3
1.3 Research Questions . 5
1.4 Main Contributions . 6
1.5 Outline of the Thesis . 8

2 Asynchronous Supervisory Control of Discrete-Event Systems 11
2.1 Introduction . 11
2.2 Background . 14
2.3 Asynchronous Supervisory Control Setting 16
2.4 Synthesis . 19
2.5 Conclusions . 26

3 Networked Supervisory Control of Timed Discrete-Event Systems 27
3.1 Introduction . 28
3.2 Basic NSC Problem . 33
3.3 Networked Supervisory Control Synthesis 41
3.4 Requirement Automata . 49
3.5 Conclusions . 53

4 Supervisory Control of Timed Automata using Abstractions 55
4.1 Introduction . 55
4.2 Background . 58
4.3 Synthesis . 63
4.4 Time-Refinement . 65
4.5 Example: Bus-Pedestrian . 67
4.6 Conclusions . 70

5 Supervisory Control of Timed Automata without Abstractions 71

xiii

CONTENTS CONTENTS

5.1 Introduction . 71
5.2 Preliminaries . 74
5.3 Basic TSC Synthesis . 81
5.4 Requirement Automata . 88
5.5 Case Study . 89
5.6 Conclusions . 91

6 Supervisory Control of Discrete-Event Systems under Attacks 93
6.1 Introduction . 93
6.2 Framework . 95
6.3 Classification . 98
6.4 Comparison of Security Approaches . 99
6.5 Related Work . 101
6.6 Topics to Investigate . 103
6.7 Conclusions . 105

7 Conclusion 107
7.1 Concluding Remarks . 107
7.2 Recommendations for Future Work . 109

A Proofs of Chapter 2 113

B Proofs of Chapter 3 117

C Proofs of Chapter 4 129

D Proofs of Chapter 5 131

Bibliography 145

Acknowledgments 155

xiv

Chapter 1

Introduction

In theory, theory and practice are the
same. In practice, they are not.

–Albert Einstein

In this chapter, cyber-physical systems and the motivation of this research are introduced.
Subsequently, the problem of supervisory control synthesis for cyber-physical systems
is described. This chapter continues by providing the research questions and main
contributions. Finally, the outline of this thesis is provided.

1.1 Motivation

A cyber-physical system (CPS) is the integration of physical processes, computer-based algo-
rithms, and communication between those for control purposes. CPSs have widespread prac-
tical applications; from smart manufacturing and robotics to health care and medicine [Ba-
heti and Gill 2011; Gunes et al. 2014; Reniers et al. 2017; Thoben et al. 2017]. Basically,
any complex engineered system, integrating the embedded technologies (cyber part) into
the physical world is a CPS [Gunes et al. 2014].

A system, in general, may have time-driven dynamics, event-driven dynamics, or a
combination of both, which is referred to as a hybrid system [Cassandras and Lafortune
2009; Heemels et al. 2009]. Typically, a CPS has hybrid dynamics; physical processes
are time-driven, represented by dynamical equations, and the cyber part or the control
flow is event-driven, which can be represented by, for instance, a finite-state machine
(FSM) [Derler et al. 2011].

1

CHAPTER 1. INTRODUCTION

As a hybrid system, a CPS involves different layers of control. Inspired from the
definition of a CPS in Gunes et al. [2014] and control layers of a hybrid system in Cassandras
and Lafortune [2009], Figure 1.1 provides a high-level view of the control layers of a CPS,
described as follows:

Figure 1.1: Control layers of a CPS. Note that there is a single communication network between
the control unit and the physical world.

• Continuous-variable control (time-driven): low-level controllers, which are responsible
for low-level control requirements mainly defined to improve the performance of
the system in terms of achieving a desired behavior. Considering a multi-robot
system as an example, following the desired trajectory would be a low-level control
requirement.
• Supervisory control (event-driven): high-level controllers, referred to as supervisors,
which are responsible for high-level control requirements that mainly concern the
safety and liveness of the system. In the example of a multi-robot system, avoiding
the collision between the robots and reaching some target location, may be given as
safety and liveness requirements, respectively.

2

CHAPTER 1. INTRODUCTION

As depicted in Figure 1.1, the supervisory control layer communicates with the lower
level through an interface. The output signals from the sensors and the continuous-
variable controllers are abstracted to events through the interface. The commands, sent
by the supervisors are also in the form of events, which go through the interface to be
translated as input signals to the actuators or the set-points for the continuous-variable
controllers [Cassandras and Lafortune 2009].

Although generally a CPS has hybrid dynamics, it may be modeled as a system with
only time-driven or event-driven dynamics. Each modeling framework, either time-driven
or event-driven, highlights certain features of a CPS. The choice of the modeling framework
depends on the system analysis purpose [Baheti and Gill 2011].

For some CPSs, it may be enough to solely improve the performance using continuous-
variable controllers. However, there exist many applications of CPSs for which the safety
of the system is of significant importance. Such systems are referred to as safety-critical
applications of CPSs. Medical devices, aircraft, and automobiles are among examples of
such systems [Alur 2015; Sha et al. 2008].

1.2 Problem Description

The focus of this thesis is on the supervisory control layer of a CPS. In this respect, the
lower level of a CPS, indicated in blue in Figure 1.1, is considered to be given as the
(uncontrolled) plant, which is viewed as a system with event-driven dynamics through the
interface. A large amount of literature is available for abstracting a hybrid system into an
event-driven setting [Alur et al. 2000; Koutsoukos et al. 2000; Tiwari 2008].

As discussed in Cassandras and Lafortune [2009], the abstraction could be untimed
(logical), or incorporate timing information and is then referred to as a timed abstraction.
An untimed abstraction results in a modeling framework called a discrete-event system
(DES) in this thesis. A DES is represented by a finite automaton (FA), an automaton
with a finite set of states, and a finite set of events, where the state transitions are based
on the event occurrences. In DESs, only the ordering of events matters, and the timing of
events is neglected. Timed abstraction results in a modeling framework called a real-time
DES (RTDES) [Khoumsi and Nourelfath 2002]. RTDESs may incorporate discrete-time
modeling in DESs, referred to as a timed DES (TDES) [Brandin and Wonham 1994],
or dense-time modeling, referred to as a timed automaton (TA) [Alur and Dill 1994]. A
TDES is a DES in which the passage of a unit of time is represented by an event. A TA is
an FA extended with a finite set of real-valued clocks with time-driven dynamics. In a TA,
state transitions are not only based on event occurrences but also based on clock values or
the time that events occur.

Supervisory control theory (SCT) was initiated by Ramadge and Wonham [1987], which
we may refer to as conventional SCT. Given the model of an (uncontrolled) plant and the
desired behavior for that plant, a supervisor synthesis procedure is developed based on
model-based techniques.

3

CHAPTER 1. INTRODUCTION

As depicted in Figure 1.2, model-based synthesis starts from the system requirements R.
Next, through the document D, these requirements are decomposed for the plant RP and
the supervisor RS, where RS is referred to as control requirements. Based on RP , the plant
model P is designed through the document DP . However, the control requirements RS are
formally modeled. SCT now uses the model of the plant P and the control requirements
RS to synthesize a supervisor. The objective is to restrict the behavior of the plant such
that the supervised plant (plant together with the supervisor) fulfills the desired behavior
(given as control requirements).

Figure 1.2: Model-based synthesis, adapted from [Baeten et al. 2016].

In the conventional supervisory control setting, the plant generates all events, while
the supervisor can disable some of the events and observes synchronously the execution of
events in the plant [Cassandras and Lafortune 2009; Ramadge and Wonham 1984]. In
other words, conventional SCT assumes full synchronization between the supervisor and
the plant. A more in-depth discussion on conventional SCT is given in Chapter 2 and
Chapter 6 in the framework of DES, in Chapter 3 in the framework of TDES, and in
Chapter 4 and Chapter 5 in the framework of TA.

Model-based supervisory control appeared in many industrial applications, including
manufacturing systems [Balemi 1992; Hellgren et al. 2001], healthcare systems [The-
unissen et al. 2013], automated service composition [Atampore et al. 2016], waterway
lock systems [Reijnen et al. 2020], baggage handling systems [Swartjes et al. 2017], and
lithography systems [van Putten et al. 2020]. In most of these applications, the supervisor
is implemented in a programmable logic controller (PLC).

Supervisory control of CPSs is an ongoing research topic among researchers from both
academia and industry as it involves challenges in both theory and practice, mainly intro-
duced by network-based communication. This thesis aims to address these challenges and
provide solutions to them by using model-based supervisory control synthesis techniques.

4

CHAPTER 1. INTRODUCTION

1.3 Research Questions
This thesis investigates model-based supervisory control synthesis of CPSs. Considering
Figure 1.1, the questions that may arise in this respect could be mostly related to the
supervisory control layer (Research Question 1), the communication network (Research
Question 2 and Research Question 3), and the level of model abstraction through the
interface (Research Question 2). In the following, the questions to which this thesis tries
to find answers are discussed in more detail.

Research Question 1: How can the supervisory control theory be improved
in such a way that the synthesized supervisor copes with the problems that may
appear in the PLC-implementation?

As previously mentioned, the conventional SCT is developed based on the assumption
that the plant and the supervisor communicate synchronously. Moreover, it is assumed
that the plant generates all the events, and the supervisor may only disable some of
them [Fabian and Hellgren 1998]. As reported in the literature of SCT, a supervisor,
synthesized from the theory may face several problems when implemented in practice,
specifically in a PLC, mainly because these assumptions fail [Balemi 1992; Basile and
Chiacchio 2007; Fabian and Hellgren 1998; Leal et al. 2009; Prenzel and Provost 2018;
Zaytoon and Riera 2017]. As a result, the implemented supervisor may fail to satisfy
the control requirements as it is promised to do in theory. The question here is how to
synthesize a supervisor that will not fail in implementation, where these problems may
occur. By providing an answer to Research Question 1, this research aims to close the gap
between the supervisor, obtained from theory with its implementation in real-life.

Research Question 2: How can a supervisor be synthesized that is able to
control a system over a communication network?

As depicted in Figure 1.1, the communication between the physical world and the
control unit in a CPS is via a network. The internet of things (IOT) brings many
advantages. However, it also introduces challenges. In a networked control system, time
delays are unavoidable, and they have a high impact on the performance of the control
system [Heemels et al. 2010]. So far, extensive research has been performed on networked
control for systems with time-driven dynamics [Antsaklis and Baillieul 2007; Gupta and
Chow 2010; Heemels et al. 2010]. However, networked supervisory control is a relatively
new emerging topic in the literature [Balemi 1992; Lin 2014, 2020; Park and Cho 2006;
Xu et al. 2017; Zhu et al. 2019b]. To handle the effects of communication delays, it is first
required to model them. In this regard, the main question is how to incorporate timing
information in the networked supervisory control synthesis of an event-driven system.
While the main issue is handling the effects of communication delays, there might be other
problems introduced by the communication network like packet reordering 1 or packet
losses. Here, the question is whether these problems can also be taken care of in networked

1The effect of packet reordering is studied as the interleave sensitivity problem in Chapter 2 and
non-FIFO communication in Chapter 3.

5

CHAPTER 1. INTRODUCTION

supervisory control synthesis approaches.

Research Question 3: How can networked supervisory control be affected by
cyber-attacks?

Besides communication delays, dealing with the effects of cyber-attacks is of significant
importance in the area of networked control. Developing attack-prevention techniques in
the area of supervisory control has recently gained considerable attention [Carvalho et al.
2018; Lima et al. 2018; Meira-Góes et al. 2020; Su 2018; Wakaiki et al. 2017]. The question
here is whether the effects of attacks can be similar to the impact of communication delays.
If so, how the methods proposed to handle the communication delays and cyber-attacks
can be inspired by each other.

To clarify how these research questions are answered throughout the thesis, we put
them in a framework consisting of the following dimensions:

• Supervisory control robustness: questioning how the conventional SCT can be
improved in order to deal with the problems that the communication network may
introduce in a CPS.
• Modeling framework: questioning whether the level of abstraction, provided by
the interface, preserves enough information to take care of the problems that the
communication network may introduce in a CPS.

1.4 Main Contributions
As a CPS is hybrid, ideally, a networked supervisory control approach is required for a
CPS, modeled as a hybrid automaton (HA); a modeling framework that involves both
event-driven and time-driven dynamics. Moreover, the main issues that should be taken
care of by the networked supervisor are communication delays and cyber-attacks; packet
reordering and packet losses are other minor problems. This thesis makes the first steps
to further develop to the ideal situation by the following contributions.

Contribution 1 (From Implementation to Theory): While providing supervisory
control synthesis techniques, one should be aware of the issues that may cause the
synthesized supervisor to fail in practice. In conventional SCT, the plant communicates
with the supervisor synchronously. The main issue that arises in practice is related to the
inexact synchronization introduced by the PLC-implementation of the supervisor [Fabian
and Hellgren 1998]. In this thesis, an asynchronous supervisory control theory is proposed
in the framework of DES. Besides inexact synchronization, the problems of interleave
sensitivity and causality are taken care of by the proposed technique. This contribution
relates to Research Question 1.

Contribution 2 (Delays in Networked Supervisory Control): As previously mentioned,
a CPS is a hybrid system in general, which is abstracted to an event-driven system for

6

CHAPTER 1. INTRODUCTION

supervisory control purposes. Existing networked supervisory control approaches usually
work with DES [Balemi 1992; Lin 2014; Park and Cho 2006; Xu et al. 2017; Zhu et al.
2019b]. However, this level of abstraction may not be enough to consider the effects
of communication delays as they need to be modeled based on time. To incorporate
discrete-time modeling in a DES, the concept of TDESs has been introduced in Brandin
and Wonham [1994]. For TDESs, the conventional supervisory control theory has already
been proposed in Brandin and Wonham [1994], in which again the plant communicates
with the supervisor synchronously. In this thesis, a networked supervisory control theory is
proposed in the framework of TDES. The timing information is used to model the effects of
communication delays. Besides communication delays, the problem of packet reordering is
taken care of by the proposed technique. This contribution relates to Research Question 2.

Contribution 3 (Real-Time Supervisory Control): To make the model of time more
realistic and make a step closer to the goal, dense-time information is incorporated in DESs,
given as TA. Supervisory control of TA has already been studied in Alur and Dill [1994],
Asarin et al. [1998], Maler et al. [1995], Tripakis and Altisen [1999], and Wong-Toi and
Hoffmann [1991]. However, it still needs to be improved to be suited for CPS applications
with respect to the following issues:

• Conservative Supervisor: the available techniques usually result in a supervisor that
restricts the behavior of the plant much more than needed.
• State-space explosion: as a TA may have an infinite state space, the available

methods use abstraction to obtain a finite state space. Using this abstraction often
results in a very large state space.

In this thesis, two supervisory control approaches are proposed for TA. First, we focus on
solving only the conservativeness problem. Being inspired by what we achieved in the first
step, we come up with the second approach, which solves both the conservativeness and
state-space explosion problems at the same time. These contributions relate to Research
Question 2.

Contribution 4 (Attacks in Networked Supervisory Control): Besides communication
delays, cyber-attacks may occur in controlling systems over a network, which could cause
catastrophic damage to the system [Pasqualetti et al. 2013; Teixeira et al. 2012]. Depending
on attack types, cyber-attacks could have similar effects as communication delays or packet
losses. This thesis provides an overview of the existing approaches, dealing with the
effects of cyber-attacks in the context of supervisory control of DES [Carvalho et al. 2018;
Góes et al. 2017; Lima et al. 2017; Meira-Góes et al. 2020; Su 2018; Wakaiki et al. 2017;
Yao et al. 2020]. It provides a framework to categorize these approaches. Based on the
proposed framework, it identifies missing pieces, possible links to networked supervisory
control methods that deal with delays or losses, and also determine new directions for
further research to improve the existing literature on networked supervisory control. This
contribution relates to Research Question 3.

7

CHAPTER 1. INTRODUCTION

These main contributions complete the framework introduced in Section 1.3 by adding
the following sub-categories, ordered in terms of complexity:

• Supervisory control robustness: based on the level of robustness of the supervisor,
supervisory control of CPS is divided into the following sub-categories:
1. Conventional supervisory control: plant and supervisor communicate in a

synchronous manner.
2. Supervisory control under delays: plant and supervisor communicate over a

network, introducing delays.
3. Supervisory control under attacks: plant and supervisor communicate over a

network, introducing the risk of cyber-attacks.
• Modeling framework: based on the level of abstraction of a CPS provided by the

interface, supervisory control of a CPS may be performed in the following frameworks:
1. DESs: systems with a finite set of discrete states and a finite set of discrete

events in which the state transitions depend entirely on event occurrences.
2. TDESs: DESs that incorporate discrete-time information of event occurrences,

so that the tick of the clock is also considered as a discrete event.
3. TA: DESs that incorporate dense-time information of event occurrences, so

that states include timing information, and state transitions depend not only
on event occurrences but also on the time that events occur.

4. HA: DES that incorporate time-driven dynamics to the evolution of events, so
that states include dynamical equations and state transitions depend not only
on event occurrences but also on the system time-driven dynamics.

1.5 Outline of the Thesis

The structure of this thesis is as follows. Chapter 2 investigates asynchronous supervi-
sory control synthesis. In this chapter, the PLC-implementation issues, namely inexact
synchronization, interleave sensitivity, and causality are taken care of by the synthesized
supervisor in the framework of discrete-event systems. In Chapter 3, the problem of
networked supervisory control synthesis is studied. To deal with the effects of commu-
nication delays, a networked supervisory control synthesis approach is presented in the
framework of timed discrete-event systems. Besides communication delays, the networked
supervisor deals with the packet reordering problem. Chapter 4 and Chapter 5 focus
on supervisory control synthesis in the framework of timed automata (TA). Chapter 4
provides a synthesis approach on the basis of abstracting time. Although the synthesis
is provided on the abstracted level, the synthesized supervisor is translated back into
a TA by introducing a time-refinement method. As abstraction may result in a large
state-space for many practical applications, the method proposed in Chapter 4 is further
improved in Chapter 5. There, a synthesis method is proposed for timed automata that
does not need any abstraction. Chapter 6 provides an overview of the supervisory control
synthesis approaches, in the framework of discrete-event systems, aiming to take care of the

8

CHAPTER 1. INTRODUCTION

effects of cyber-attacks. This chapter also investigates possible links to other supervisory
control methods that deal with problems with similar effects to cyber-attacks and provides
new research directions. Finally, Chapter 7 answers the research questions and gives
recommendations for future research.

An overview of the thesis is depicted in Figure 1.3. It categorizes the existing methods,
contributions provided in the thesis, and research that still needs to be conducted based on
the dimensions and subcategories introduced in Section 1.3 and Section 1.4, respectively.

Chapter 2 is based on Rashidinejad et al. [2019a], Chapter 3 is based on Rashidinejad
et al. [2021a], Chapter 4 is based on Rashidinejad et al. [2020a], Chapter 5 is based
on Rashidinejad et al. [2021b], and Chapter 6 is based on Rashidinejad et al. [2019b], where
extra examples have been used to enhance understanding of the approaches. Moreover,
to enhance readability, all technical lemmas and proofs are given in the appendices. As
depicted in Figure 1.3, each chapter is related to a specific modeling framework and
supervisory control robustness level. Each chapter provides its introduction to the existing
methods and the relevant preliminaries. Consequently, each chapter can independently be
studied by readers of this thesis.

Figure 1.3: Overview of thesis in the proposed framework.

9

Chapter 2

Asynchronous Supervisory Control
of Discrete-Event Systems

In conventional supervisory control theory, a plant and supervisor are supposed to work
synchronously such that enabling an event by the supervisor, execution of the event in
the plant, and observation of the executed event by the supervisor all occur at once.
Therefore, these occurrences are all captured by means of a single event. However, when a
supervisor synthesized from conventional supervisory control theory is implemented in real
life, it will face problems since exact synchronization can hardly happen in practice due to
delayed communications. In this chapter, we propose a synthesis technique to achieve a
supervisor that does not face the problems caused by inexact synchronization. For this
purpose, we first introduce an asynchronous setting in which enablement, execution, and
observation of an event do not occur simultaneously but with some delay. We present a
model representing the behavior of the plant in the asynchronous setting, which we call the
asynchronous plant. For the asynchronous plant, we present an algorithm synthesizing an
asynchronous supervisor that satisfies (asynchronous) controllability and nonblockingness.

2.1 Introduction
Discrete-event systems (DESs) are systems with a discrete set of states in which transitions
take place in association with instantaneous events. Many types of physical systems can be
modeled as DESs, including manufacturing systems, traffic systems, and communication
networks [Cassandras and Lafortune 2009; Wonham 2015]. Such systems are typically

This chapter is based on Rashidinejad et al. [2019a]

11

CHAPTER 2. ASYNCHRONOUS SUPERVISORY CONTROL

supervised in order to satisfy some control requirements. Supervisory control theory
(SCT) has been developed to automatically synthesize such a supervisor from models of
the uncontrolled system and the control requirements [Cassandras and Lafortune 2009;
Wonham 2015]. In a supervisory control setting, control commands are sent from the
supervisor to the actuators in the plant through the control channel, and events occurring
in the plant are observed by the sensors and sent to the supervisor through the observation
channel. Several problems that arise in implementation of supervisors have been reported
in the literature as briefly discussed in the following [Basile and Chiacchio 2007; Fabian
and Hellgren 1998; Leal et al. 2009; Prenzel and Provost 2018; Zaytoon and Riera 2017]:

• Avalanche effect: this is the problem of multiple state transitions occurring on the
same event leading to instantaneously passing through intermediate states so that
actions from those states are not executed.
• Interleave sensitivity: this problem occurs when different interleavings of events can
be executed at a state, and the supervisor needs to make decisions based on the
order of events that it observes. The problem arises when events may not necessarily
be observed in the same order as they have been executed in the plant.
• Causality: SCT assumes all events can occur spontaneously in the plant, and the

supervisor may only disable a subset of them. However, in practice, events that are
controllable need to be commanded by the supervisor, otherwise they cannot occur.
• Choice: SCT achieves a supervisor that is maximally permissive, meaning that it
gives the plant the greatest amount of freedom within the control requirements.
Therefore, in many cases, the supervisor should make a choice between alternative
transitions that are possible at a state, and this will be highly dependent on the
implementation.
• Inexact synchronization: in SCT, a supervisor is synthesized based on the assumption
of synchronous interactions between the plant and supervisor. In other words, a
supervisor is assumed to immediately observe an event as it is executed by the
plant, and the plant receives a control command immediately after it has been
sent from a supervisor. However, such a supervisor will be implemented in an
asynchronous setting, where sending and receiving data are subject to delays. Hence,
the synchronous assumption does not typically hold.

Here, we focus on the problem caused by inexact synchronization. Additionally, we
take into account the problems of causality and interleave sensitivity by allowing the plant
to execute a controllable event only if it is enabled (commanded) by a supervisor, and also
allowing consecutive events to be observed in any possible order.

The problem caused by inexact synchronization was first addressed in Balemi [1992].
It arises in the situation where the occurrence of an uncontrollable event invalidates a
control command (or the selection of a controllable event). This problem is caused by
a communication delay where the occurrence of an uncontrollable event is interpreted
as a communication delay unit. Consider a state of the plant where both a controllable
event and an uncontrollable event are enabled. If there is a communication delay, the
supervisor might send the controllable event while the plant transits to another state on

12

CHAPTER 2. ASYNCHRONOUS SUPERVISORY CONTROL

the uncontrollable event. Then, the control command may arrive when the plant is in a
state that invalidates that command.

To solve the problem caused by communication delays, Balemi introduced the notion
of delay insensitive language. A language is delay insensitive if a control command is not
invalidated by an uncontrollable event. In other words, any control command sent by the
supervisor should be acceptable by the plant both before and after the uncontrollable
event. If a supervised plant is delay insensitive, then the achieved supervisor does not face
any problem caused by inexact synchronization. However, this condition is not met by
most applications.

The condition of delay insensitivity was also used in Malik [2002] called Σu − Σc-
commuting condition. This condition has been further generalized in Basile and Chiacchio
[2007] and Park and Cho [2006] for a sequence of uncontrollable events, representing a
bounded observation delay.

Besides the inexact synchronization, the causality problem was also considered by Balemi
as he uses an input/output semantics for the plant [Balemi 1992]. In this input/output
perspective, controllable events are considered as inputs to the plant and uncontrollable
events are the outputs or responses generated by the plant.

In Fabian and Hellgren [1998], a condition for interleave insensitivity was introduced.
In this case, having an implementable supervisor is limited to applications that require
the same control command after any interleaving of a sequence of uncontrollable events.
In Basile and Chiacchio [2007], delay insensitivity and interleave insensitivity are captured
in a single definition as delay interleave insensitivity.

If we assume that a control command is enabled until a disablement command is received
from a supervisor, then delays in control and observation channels may have different effects
and need to be investigated separately [Lin 2014; Xu and Kumar 2008]. To consider the
effect of delays, in Xu and Kumar [2008], a condition called bounded-delay implementability
has been introduced. This condition takes into account the effects of observation and
control delays on a requirement behavior by achieving a delayed version of the requirement.
In the case that the delayed version of the requirement stays within the requirement
(without delays), it can be satisfied in an asynchronous setting as well. Furthermore, in Lin
[2014], new observability and controllability conditions under delays are introduced as
delay observability and delay controllability, respectively. A supervisor can be synthesized
for a requirement that satisfies these conditions. However, the drawback of imposing
conditions on the requirement is that these conditions disqualify many applications.

The method presented in this chapter does not consider any restrictive condition to
be satisfied by the plant or the requirement. The objective is to present a method to
synthesize a supervisor taking into account the following situations that may exist in
practice:

1. A controllable event can be executed in the plant only if it is commanded (enabled) by
the supervisor. Also, any event executed in the plant is observable to the supervisor.

2. An uncontrollable event is not commanded (enabled) by a supervisor, and it only
occurs spontaneously in the plant.

13

CHAPTER 2. ASYNCHRONOUS SUPERVISORY CONTROL

3. A control command sent by the supervisor may not necessarily be accepted by the
plant, and in this case the command will stay in the control channel since in the
asynchronous setting there is no deadline for an enabling event to reach the plant.

4. The observation of an event, controllable as well as uncontrollable, may occur
immediately after being executed in the plant or at some point in the future.

5. Consecutive events that occur in the plant may be observed by the supervisor in any
possible order.

The rest of the chapter is organized as follows. The conventional supervisory control
approach is summarized in Section 2.2. In Section 2.3, we present the asynchronous
supervisory control setting, and we introduce an asynchronous composition operator to
achieve an asynchronously supervised plant in this setting. Afterwards, in Section 2.4,
we present a method for transforming a plant into an asynchronous plant modeling the
behavior of the plant as asynchronously observed and controlled by the supervisor. Based
on the asynchronous plant, an algorithm is proposed to synthesize an asynchronous
supervisor that guarantees (asynchronous) controllability and nonblockingness. Finally,
Section 2.5 concludes this chapter.

2.2 Background

A DES G is an automaton that is formally represented as a quintuple

G = (A,Σ, δ, a0, Am), (2.1)

where A,Σ, δ : A × Σ → A, a0 ∈ A, and Am ⊆ A stand for the set of states, the set of
events, the (partial) transition function, the initial state, and the set of marked states,
respectively. An automaton with a finite set of states and a finite set of events is called a
finite automaton [Hopcroft et al. 2006]. The notation δ(a, σ)! denotes that δ is defined
for state a and event σ, i.e., there is a transition from state a with label σ to some state.
The transition function is generalized to words in the usual way: δ(a, w) = a′ means
that there is a (possibly empty) sequence of subsequent transitions from state a to the
state a′ that together make up the word w ∈ Σ∗. Note that for the empty sequence of
subsequent transitions w = ε: δ(a, w) = a. Starting from the initial state, the set of
all possible words that may occur in G is called the language of G and is denoted by
L(G) := {w ∈ Σ∗ | δ(a0, w)!}. Furthermore, for a state a ∈ A, the function Reach(a)
gives the set of states reachable from state a; Reach(a) := {a′ | ∃w ∈ Σ∗, δ(a, w) = a′}.
States from which it is possible to reach a marked state are said to be nonblocking. An
automaton is nonblocking when each state reachable from the initial state is nonblocking;
for each a ∈ Reach(a0), Reach(a) ∩ Am 6= ∅. Moreover, in this chapter, we frequently use
the natural projection operator [Cassandras and Lafortune 2009].

14

CHAPTER 2. ASYNCHRONOUS SUPERVISORY CONTROL

Definition 2.1 (Natural projection). For sets of events Σ and Σ′ ⊆ Σ, PΣ′ : Σ∗ → Σ′∗ is
defined as follows: for e ∈ Σ and w ∈ Σ∗

PΣ′(ε) := ε,

PΣ′(we) :=

PΣ′(w)e if e ∈ Σ′,
PΣ′(w) if e ∈ Σ \ Σ′.

The definition of the natural projection can be extended to languages; given a language
L ⊆ Σ∗, PΣ′ : Σ∗ → Σ′∗ maps it to a set of words from Σ′∗ where Σ′ ⊆ Σ such that
PΣ′(L) := {w′ ∈ Σ′∗ | ∃w ∈ L, PΣ′(w) = w′} [Cassandras and Lafortune 2009]. �

Note that, although natural projection is an operation that is generally defined for
languages, it is also possible to apply it on automata [Ware and Malik 2008]. For an
automaton with event set Σ, PΣ′ first replaces all events not from Σ′ by ε. Then, the
achieved automaton becomes deterministic again, using a determinization algorithm such
as the one introduced in Hopcroft et al. [2006].

From now on, we assume that the plant is given as a deterministic finite automaton
G in which all events are observable. However, a subset of events may be uncontrollable,
denoted by Σuc ⊆ Σ. The set of controllable events is then given by Σc = Σ \ Σuc. To
satisfy nonblockingness, a supervisor is required to be synthesized for the plant G. A
conventional supervisor S is also a DES with the same event set as G. The conventional
supervisory control setting is depicted in Figure 2.1.

Figure 2.1: Conventional supervisory control (synchronous setting).

Here we focus on solving the basic synthesis problem to achieve a supervisor satisfying
controllability and nonblockingness. As described in Flordal et al. [2007], control require-
ments can be translated to the plant. By applying the basic synthesis, a supervisor is
achieved that fulfills the requirements, and it satisfies controllability and nonblockingness.

In conventional SCT, the plant and supervisor are supposed to work synchronously,
and the automaton modeling the supervised plant is obtained by applying the synchronous
composition operator denoted by S||G. Generally, in the synchronous composition of two
automata, a shared event can be executed only when it is enabled by both automata, and
a non-shared event can be executed if it is enabled by one of the automata. Since S is
assumed to have the same event set as G, each event will be executed in S||G only if the
supervisor allows it. Since uncontrollable events enabled in G can never be disabled by

15

CHAPTER 2. ASYNCHRONOUS SUPERVISORY CONTROL

S, they should always be allowed in S||G, and this can be checked by the controllability
condition given in Definition 2.2.
Definition 2.2 (Conventional Controllability [Wonham 2015]). For any DES G controlled
by a conventional supervisor S, S||G is controllable w.r.t. G if for any w ∈ L(S||G) and
u ∈ Σuc, whenever wu ∈ L(G) then wu ∈ L(S||G). �

Note that the statement S||G is controllable w.r.t. G is equivalent to S itself being
controllable w.r.t. G.

In the following example, we explain the problem caused by inexact synchronization.
Example 2.1 (Motivating example from [Fabian and Hellgren 1998]). Consider the plant
G, given in Figure 2.2a, for which u1 and u2 are uncontrollable events (indicated by dashed
lines), and c1 and c2 are controllable events (indicated by solid lines). The state a4 is
blocking (marked states are indicated by double circles) and needs to be avoided by a
supervisor. Using conventional supervisory control synthesis, the supervisor depicted in
Figure 2.2b is obtained. As described in Fabian and Hellgren [1998], the problem appears
when after the execution of u1, S enables c1; however, u2 occurs in G, which invalidates
the control command sent by S (because G cannot accept c1 after executing u2). Clearly,
this problem does not occur if c1 could occur after u2 as well. This is actually the delay
insensitive language condition introduced in Balemi [1992].

a0 a1 a2

a3 a4

u1 u2

c1 c2

(a) Plant

a0 a1 a2

a3

u1 u2

c1

(b) Supervisor

Figure 2.2: The plant and the conventional supervisor from [Fabian and Hellgren 1998].

In order to synthesize a supervisor dealing with the problems that may arise in practice,
we need to take into account the five conditions mentioned in Section 2.1 while synthesizing
a supervisor.

2.3 Asynchronous Supervisory Control Setting
In the synchronous setting, enabling, execution, and observation of events are assumed to
occur simultaneously, and so all of these are indicated by one and the same event.

As depicted in Figure 2.3, to indicate that the enabling, execution, and observation of
events do not occur simultaneously in an asynchronous setting, for each event executed in
the plant we introduce unique events representing the related enabling events and observed
events.
Definition 2.3 (Enabling and Observed Events). For a plant G = (A,Σ, δ, a0, Am), to
each controllable event σ ∈ Σc an enabling event σe ∈ Σe and to any event σ ∈ Σ an

16

CHAPTER 2. ASYNCHRONOUS SUPERVISORY CONTROL

Figure 2.3: Asynchronous supervisory control setting.

observed event σo ∈ Σo are associated. �

As is clear from Figure 2.3, the plant and supervisor do not have the same event set in
the proposed asynchronous setting. The event set of an asynchronous supervisor includes
only the enabling and observed events. To achieve the supervised plant in the asynchronous
setting, we need to define an asynchronous composition operator. To indicate how events
may be observed in a supervisory control system, we assume that an event σ ∈ Σ executed
in the plant will be stored in the observation channel until being observed as σo ∈ Σo.
Since it is assumed that events may not necessarily be observed in the same order as they
have been executed in the plant, the observation channel is represented as a multiset. The
size of the observation channel is considered to be limited to No. The multiset given in
Definition 2.4 is a representation of the contents of the observation channel, which will be
used in determining the occurrences of the observed events.
Definition 2.4 (Observation Channel Representation). The set M is defined as M =
{m |m : Σ → N | |m| ≤ No}, where each element m ∈ M is a multiset. Moreover, we
define the following operations for all m ∈M , and σ, σ′ ∈ Σ:

• m(σ) denotes the number of events σ in m.
• [] denotes the empty multiset, i.e, the function m with m(σ) = 0 for all σ ∈ Σ.
• |m| = ∑

σ∈Σm(σ) denotes the number of events in the observation channel represented
by m.
• m] [σ] inserts σ to m if |m| < No (the observation channel is not full). Formally, it

denotes the function m′ for which m′(σ) = m(σ) + 1 and m′(σ′) = m(σ′) for σ′ 6= σ.
If |m| = No (the observation channel is full), then the channel stays the same, i.e.,
m′ = m.
• m \ [σ] removes σ from m once. Formally, it denotes the function m′ for which
m′(σ) = max(m(σ)− 1, 0) and m′(σ′) = m(σ′) for σ′ 6= σ.
• σ ∈ m denotes that σ is present in m, it holds if m(σ) > 0. �

Similarly, enabling events sent by a supervisor are assumed to be stored in a control
channel until being executed in the plant. However, since events will be executed based on

17

CHAPTER 2. ASYNCHRONOUS SUPERVISORY CONTROL

the order that they have been commanded, the control channel is represented by a list as
given in Definition 2.5. Similar to the observation channel, the size of the control channel
is considered to be limited to Nc.
Definition 2.5 (Control Channel Representation). The set L is defined as L = {l ∈
Σ∗, |l| ≤ Nc}. Moreover, we define the following operations for all σ ∈ Σ, and l ∈ L:

• app(l, σ) adds the element σ to the end of l if |l| < Nc (the channel is not full).
For instance, for l = σ0 σ1 . . . σn, app(l, σ) = σ0 σ1 . . . σn σ. If |l| = Nc (the control
channel is full), then the channel stays the same.
• head(l) gives the first element of l (for nonempty lists). For instance, for l =
σ0 σ1 . . . σn, head(l) = σ0. head(ε) is undefined.
• tail(l) denotes the list after removal of its head (for nonempty lists). For instance,

for l = σ0 σ1 . . . σn, tail(l) = σ1 . . . σn. tail(ε) is undefined. �

Based on the representations of observation and control channels, the asynchronous
composition operator is presented in Definition 2.6 to obtain the asynchronously supervised
plant.

Note that this asynchronous composition operator is only meaningful if G and AS are
in accordance with the asynchronous supervisory control setting presented in this section.
Definition 2.6 (Asynchronous Composition Operator). Consider the plant G = (A,Σ, δ,
a0, Am) controlled by the supervisor AS = (Y,ΣAS, δAS, y0, Ym) in an asynchronous set-
ting. Then, the asynchronous composition of G and AS, denoted AS|/|G, gives the
asynchronously supervised plant as the following automaton

AS|/|G = (Z,ΣASP , δASP , z0, Zm),

where
Z = A× Y ×M × L,

ΣASP = ΣAS ∪ Σ,
z0 = (a0, y0, [], ε),
Zm = Am × Ym ×M × L.

ASP stands for asynchronously supervised plant. Moreover, for a ∈ A, y ∈ Y , m ∈ M ,
and l ∈ L, δASP : Z × ΣASP → Z is defined as follows:

1. When an enabling event σe ∈ Σe is executed in AS, it will be stored in l until being
received by G. If δAS(y, σe)!:

δASP((a, y,m, l), σe) = (a, δAS(y, σe),m, app(l, σ)).

2. A controllable event σ ∈ Σc can be executed in AS|/|G if the enabling event σe was
sent by the supervisor, and it is the first enabling event in the control channel to be
executed. In addition, the event will be put in the observation channel. If δ(a, σ)!
and head(l) = σ:

δASP((a, y,m, l), σ) = (δ(a, σ), y,m] [σ], tail(l)).

18

CHAPTER 2. ASYNCHRONOUS SUPERVISORY CONTROL

3. An uncontrollable event σ ∈ Σuc can be executed in AS|/|G only if it is executed in
G. In addition, the event will be put in the observation channel to be received by
AS later. If δ(a, σ)!:

δASP((a, y,m, l), σ) = (δ(a, σ), y,m] [σ], l).

4. An observed event σo ∈ Σo can be executed in AS|/|G if σ ∈ m, subsequently σ is
removed from m. If δAS(y, σo)! and σ ∈ m:

δASP((a, y,m, l), σo) = (a, δAS(y, σo),m \ [σ], l). �

Note that the definition of nonblockingness and controllability stays the same as
given in Section 2.2. However, because of introducing new sets of enabling and observed
events, the formal definition of conventional controllability needs to be adapted for the
asynchronous setting given as asynchronous controllability in Definition 2.7. A supervisor
is (asynchronously) controllable for the plant if any uncontrollable event that could occur
in the plant can be executed in the asynchronously supervised plant.
Definition 2.7 (Asynchronous Controllability). Consider the plant G with event set Σ.
Then, supervisor AS is asynchronously controllable for G if for all w ∈ L(AS|/|G) and
u ∈ Σuc, if PΣ(w)u ∈ L(G) then wu ∈ L(AS|/|G). �

In the proposed asynchronous setting, by definition, an uncontrollable plant event can
occur whenever it is enabled in the plant, even though the plant is controlled by a supervisor
(see Definition 2.6). Therefore, as we prove in Property 2.1, the asynchronous controllability
condition is always guaranteed by the definition of the asynchronous composition operator.
Note that, although the Σo events are uncontrollable, they are not enabled in the plant
and therefore not considered as such in asynchronous controllability.
Property 2.1 (Controllable Asynchronous Supervisor). For any AS and G, AS is asyn-
chronously controllable for G.

Proof. See Appendix A.2.1. �

Problem Statement: Given plant G, provide an asynchronous supervisor AS such that
AS|/|G is nonblocking.

2.4 Synthesis
In a real implementation, a supervisor determines which enabling events have to be sent
based on what it has observed. Moreover, it could be possible that although the supervisor
has sent an enabling event, the plant executes an uncontrollable event (or simply ignores
the command because it cannot execute it). The enabling event will then stay in the
control channel and block other enabling events waiting in the control channel to be
executed in the plant. To achieve an asynchronous supervisor providing controllability
and nonblockingness in the asynchronous setting, we do the synthesis on the asynchronous
plant, indicated in Figure 2.4.

19

CHAPTER 2. ASYNCHRONOUS SUPERVISORY CONTROL

The asynchronous plant is a model for how events are executed in the plant based
on enabling events, and also how observations of the executed events may occur in the
asynchronous setting. To achieve the asynchronous plant automaton, we need to determine
all possible cases that the enabling events could have been sent in the asynchronous
setting. Since enabling events are based on observations, we first start by presenting a
model for how the plant is actually observed in an asynchronous setting, which we call the
observed plant, see Figure 2.4. The formal definition of the observed plant is presented in
Definition 2.8.

Figure 2.4: Asynchronous plant and observed plant.

Definition 2.8 (Observed Plant). For a plant G = (A, Σ, δ, a0, Am), we define

Υ(G,No) := (Q,ΣOP , δOP , q0, Qm),

where
Q = A×M, ΣOP = Σ ∪ Σo,

q0 = (ao, []), Qm = Am ×M.

OP stands for observed plant. The states of Υ(G,No) depend on the current states of the
plant and of the observation channel. Initially, no event has occurred yet, and thus the
observation channel is empty. Whenever an event occurs in the plant, it will be stored in
the observation channel until it is observed by the asynchronous supervisor.

For a ∈ A, m ∈ M and σ ∈ Σ, the transition function δOP : Q× ΣOP → Q is defined
as follows:

1. If δ(a, σ)!
δOP((a,m), σ) = (δ(a, σ),m] [σ]).

2. If σ ∈ m
δOP((a,m), σo) = (a,m \ [σ]).

20

CHAPTER 2. ASYNCHRONOUS SUPERVISORY CONTROL

Note that when there are multiple events in the medium, these can be observed in any
possible order. �

Example 2.2. Let us again consider the plant from Example 2.1. For No = 4, the
observed plant obtained from Definition 2.8 is given in Figure 2.5. Note that each state is a
pair of (a,m) with a referring to a state of the plant (given inside the circles in Figure 2.5)
and m referring to the current status of the observation channel (given close to the circles
in Figure 2.5).

a0

[]

a1

[u1]

a2

[u1, u2]

a2

[u1]

a4

[u1, u2, c2]

a4

[u1, c2]

a4[u1, u2]

a4[u1] a4[u2]a4[c2]

a4[]

a4[u2, c2]

a3

[u1, c1]

a1

[]

a2

[u2]

a2 []

a3

[c1]

a3

[]

a3

[u1]

u1 u2 u2o

c1 u1o u1o u1o

u2 u2o

u1o c1

c1o

c1o

u1o

c2

c2 u2o c2o

c2o u2o u1ou1o

u1o

u2o

c2o
u1o

c2o
u2oc2

c2

Figure 2.5: Observed plant for G from Example 2.1.

The next step is to determine all feasible enabling events that could have been sent in
the asynchronous setting based on the observed plant. However, since enabling events are
only related to controllable events, we leave out the uncontrollable events of the observed
plant. We also use the plant model to determine how events will be executed in the
plant, and how the observations can occur in the asynchronous plant. The asynchronous
plant automaton is achieved using the operator given in Definition 2.9. To obtain a
finite automaton, the size of observation and control channels are limited to No and Nc,
respectively. These limitations are required to guarantee the finiteness of the set of states
in the presence of an event-loop.
Definition 2.9 (Asynchronous Plant Operator). Given a plant G = (A,Σ, δ, a0, Am) and
constants Nc and No, Π gives the asynchronous plant as the following automaton:

Π(G,Nc, No) = (X,ΣASP , δAP , x0, Xm), (2.2)

21

CHAPTER 2. ASYNCHRONOUS SUPERVISORY CONTROL

Let OP ′ = PΣOP\Σuc(Υ(G,No)) = (Q′,ΣOP , δOP′ , q′0, Q
′
m), and

X = A×Q′ ×M × L,
x0 = (a0, q

′
0, [], ε),

Xm = Am ×Q′ ×M × L.

For a ∈ A, q′ ∈ Q′, m ∈M and l ∈ L, the transition function δAP : X × ΣASP → X is
defined as follows:

1. If δOP′(q′, σ)!, σ ∈ Σc

δAP((a, q′,m, l), σe) = (a, δOP′(q′, σ),m, app(l, σ)).
2. If δ(a, σ)!, head(l) = σ, σ ∈ Σc

δAP((a, q′,m, l), σ) = (δ(a, σ), q′,m] [σ], tail(l)).
3. If δ(a, σ)!, σ ∈ Σuc

δAP((a, q′,m, l), σ) = (δ(a, σ), q′,m] [σ], l).
4. If σ ∈ m, δOP′(q′, σo)!

δAP((a, q′,m, l), σo) = (a, δOP′(q′, σo),m \ [σ], l).
5. If σ ∈ m, ¬δOP′(q′, σo)!

δAP((a, q′,m, l), σo) = (a, q′,m \ [σ], l). �

Property 2.2 (Finite Asynchronous Plant). For a given plant G, which is being supervised
and observed through the control and observation channels with limited capacities Nc and
No, respectively, Π(G,Nc, No) is a finite automaton.

Proof. See Appendix A.2.2. �

Example 2.3. For the plant given in Example 2.1, we use the projected observed plant
OP ′ depicted in Figure 2.6 to determine the occurrences of the enabling events in the asyn-
chronous plant for which we do not need the state information of OP . The asynchronous
plant is given in Figure 2.7. Each state indicates the current states of G and OP ′, and
also the events existing in the control and observation channels, which are not shown in
the figure due to lack of space. Note that the plant is free to execute a control command
sent by the supervisor or ignore it. For instance, after the execution of u1 u2, the event c1e
may occur. However, this enabling event is ignored as the event c1 will never be executed.

The asynchronous plant determines all the feasible enabling events, executions of events
in the plant, and observations of them. An asynchronous supervisor is then synthesized for
the asynchronous plant to determine which of the enabling events need to be disabled. The
synthesis algorithm is presented in Algorithm 2.1 in which we use the following additional
concepts for some automaton AP with event set ΣASP :

22

CHAPTER 2. ASYNCHRONOUS SUPERVISORY CONTROL

q′0 q′1 q′11

q′10 q′12

q′14 q′13q′9

q′15

q′8

q′4 q′2 q′3

q′6q′7

q′5

u2o

c1 u1o u1o

u2o

u1o c1

c1o

c1o

u1o

c2

c2 u2o c2o

c2o u2o u1ou1o

u1o

u2o

c2o
u1o

c2o
u2oc2

c2

Figure 2.6: OP ′ for G from Example 2.1.

• Blocking(AP) is the set of blocking states in AP.
• For a set of states BS , UnconAP(BS) is the smallest set of states such that

1. BS ⊆ UnconAP(BS);
2. if δAP(x, σ) ∈ UnconAP(BS) for some x ∈ X and σ ∈ Σ ∪ Σo, then x ∈

UnconAP(BS);
Intuitively this set provides all the states from which a state from BS can be reached
in an uncontrollable way.
• Events executed in the plant are unknown to a supervisor until it receives the

observations. Therefore, while doing synthesis we need to be careful that the plant
events are unobservable in the asynchronous plant, and a supervisor should make the
same decision for any two words that it cannot distinguish between. To consider this
issue in the synthesis algorithm, we use the function OBSAP(x) = {x′ ∈ X | ∃w,w′ ∈
Σ∗AP , δAP(x0, w) = x ∧ δAP(x0, w

′) = x′ ∧ PΣe∪Σo(w) = PΣe∪Σo(w′)}, which gives the
set of states reachable through the same observation (observationally equivalent
states). For instance, OBSAP(x0) = {x0, x1, x2} in Figure 2.7.

Additionally, we could also have assumed that some events from Σe are unobservable.
In this case, there would be more states that become observationally equivalent, and so the
resulting supervisor could be more restrictive since a control command should be disabled
at all observationally equivalent states if it needs to be disabled at one of them.

23

CHAPTER 2. ASYNCHRONOUS SUPERVISORY CONTROL

x0 x1 x2 x3

x22 x23

x4 x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15

x16 x17

x18 x19 x20 x21

x24 x25 x26 x27 x28

x29 x30 x31

u1

c1e

c2e

u2

u1o

c1e

c2e

u2o

u1o

c1e

c2e c2

u1o

c2o

u1e u1o

u1 u2

u1o c1 u2o u1o

u1o

u2

c1 u1o
c1o u1o u2o

c1o u1o

u2o

u1 u2

u1o u1o

c2

u2o

u1o

u2o

u2 c2

u2o

u2o c2o

c1e

u2

c2

u2o

Figure 2.7: Asynchronous plant for G from Example 2.1.

Starting from AS = AP , Algorithm 2.1 changes AS at line 7 by disabling transitions
labeled by enabling events that lead to states from UnconAP(BS), and delivering the
reachable part at line 11.
Example 2.4. Let us reconsider the plant from Example 2.1. By applying Algorithm 2.1,
we achieve the asynchronous supervisor given in Figure 2.8. Note that if c2 was replaced by
c1 in the plant (Figure 2.2a), then no result exists, precisely because in the asynchronous
setting observation of u2 is not immediate.

Note also that for any asynchronous supervisor resulting from Algorithm 2.1, the
asynchronously supervised plant is a finite automaton. Moreover, as mentioned in Prop-
erty 2.1, controllability of the synthesized asynchronous supervisor is already guaranteed.

24

CHAPTER 2. ASYNCHRONOUS SUPERVISORY CONTROL

Algorithm 2.1 Asynchronous supervisory control synthesis
Input: AP = (X,ΣASP , δAP , x0, Xm), Σuc, Σc

Output: AS = (Y,ΣAS, δAS, y0, Ym) or no result
1: AS ← AP
2: BS ← Blocking(AS)
3: while x0 /∈ BS ∧ BS 6= ∅ do
4: for y ∈ Y ∧ σ ∈ Σe do
5: if δAS(y, σ) ∈ UnconAS(BS) then
6: for y′ ∈ OBSAS(y) do
7: δAS(y′, σ)← undefined
8: end for
9: end if

10: end for
11: AS ← Reach(AS)
12: BS ← Blocking(AS)
13: end while
14: if x0 ∈ BS then
15: no result
16: end if
17: AS ← PΣASP\Σ(AS)

y0 y1 y2

y3

y5y4 y6 y7

y8 y9

c1e

u2o u1o

u2o

u1o

c1o

u1o

u1o u2o

c1e

c1o

u2o

u1o

Figure 2.8: Asynchronous supervisor for G from Example 2.1.

In Theorem 2.1, we prove that the asynchronous supervisor obtained from Algorithm 2.1
guarantees nonblockingness.
Theorem 2.1 (Nonblocking Asynchronous Supervisor). For G = (A,Σ, δ, a0, Am) and
AS = (Y,ΣAS, δAS, y0, Ym) achieved from Algorithm 2.1, AS|/|G is nonblocking.

Proof. See Appendix A.2.3 �

25

CHAPTER 2. ASYNCHRONOUS SUPERVISORY CONTROL

2.5 Conclusions
In this chapter, we investigate the problem of inexact synchronization that may cause a
conventionally synthesized supervisor to fail in practice. For this purpose, we first present
an asynchronous supervisory control setting in which control commands may arrive in the
plant after some delay, and events executed in the plant may not be immediately observed.
We also assume that events executed in the plant in some order could be observed in
a different order. Moreover, we assume that the plant can execute controllable events
only if they are commanded by the supervisor. On the other hand, the plant is free to
execute a control command sent by the supervisor or ignore it. In the asynchronous setting,
uncontrollable events may be executed in the plant spontaneously, and a supervisor has
no role in the occurrence of them. Therefore, controllability is always guaranteed by the
definition of asynchronous composition. Furthermore, we present a method for achieving
an automaton called the asynchronous plant representing the behavior of the plant in
the asynchronous setting. Finally, a synthesis algorithm is presented for obtaining an
asynchronous supervisor guaranteeing nonblockingness. We solved the basic synthesis
problem to provide nonblockingness. To synthesize an asynchronous supervisor satisfying
control requirements, we can first translate the requirements to the plant, and then apply
the basic synthesis technique.

26

Chapter 3

Networked Supervisory Control of
Timed Discrete-Event Systems

Conventional supervisory control theory assumes full synchronization between the supervi-
sor and the plant. This assumption is violated in a networked-based communication setting
due to the presence of delays, and this may result in incorrect behavior of a supervisor
obtained from conventional supervisory control theory. This chapter presents a technique
to synthesize a networked supervisor handling communication delays. For this purpose,
first, a networked supervisory control framework is provided, where the supervisor interacts
with the plant through control and observation channels, both of which introduce delays.
The control channel is FIFO, but the observation channel is assumed to be non-FIFO
so that the events may not necessarily be observed by the supervisor in the same order
as they occurred in the plant. It is assumed that a global clock exists in the networked
control system, and so the communication delays are represented in terms of clock ticks.
Based on the proposed framework, a networked plant automaton is achieved, which mod-
els the behavior of the plant under the effects of communication delays and disordered
observations. Based on the networked plant, the networked supervisor is synthesized,
which is guaranteed to be (timed networked) controllable, nonblocking, time-lock free,
(timed networked) maximally permissive, and satisfies control requirements for the plant.

This chapter is based on Rashidinejad et al. [2021a] with an earlier version as Rashidinejad et al.
[2018].

27

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

3.1 Introduction
Networked control of systems has gained a lot of attention in recent years. By eliminating
unnecessary wiring, the cost and complexity of a control system are reduced, and nodes
can more easily be added to or removed from the system. More importantly, there are
applications in which the system is required to be controlled over a distance such as
telerobotics, space explorations, and working in hazardous environments [Gupta and Chow
2010].

Networked control of systems is challenging due to network communication problems
among which delays have the highest impact [Heemels et al. 2010]. In this regard, many
works have appeared in the literature investigating the effects of communication delays on
the performance of a control system with time-based dynamics [Antsaklis and Baillieul
2007; Gupta and Chow 2010; Heemels et al. 2010]. However, there is less work considering
networked control of discrete-event systems (DESs).

A DES consists of a set of discrete states where state transitions depend only on the
occurrence of instantaneous events. DESs are used for modeling many types of systems,
e.g., manufacturing processes, traffic, and queuing systems [Cassandras and Lafortune
2009]. In DESs, time is typically neglected meaning that events can occur independently
of time. However, there are control applications in which time is an important factor
to be considered, such as minimizing the production-cycle time in a manufacturing
process [Wonham 2015]. To consider time in control of a DES, the concept of a timed
discrete-event system (TDES) has been introduced, in which the passage of a unit of time
is indicated by an event called tick [Brandin and Wonham 1994].

Supervisory control theory is the main control approach developed for DESs [Ramadge
and Wonham 1987]. To achieve desired (safe) behavior, a supervisor observes events
executed in the plant and determines which of the next possible events must be disabled.
Supervisory control theory synthesizes nonblocking supervisors that ensure safety, control-
lability, and nonblockingness for the plant and do not unnecessarily restrict the behavior
of the plant (maximal permissiveness) [Cassandras and Lafortune 2009].

In conventional supervisory control theory [Cassandras and Lafortune 2009; Ramadge
and Wonham 1987], the plant generates all events, while the supervisor can disable some
of the events and observes synchronously the execution of events in the plant. Based on
this synchronous interaction, a model of the controlled plant behavior can be obtained
by synchronous composition of the respective models of the plant and the supervisor.
However, the synchronous interaction assumption fails in a networked supervisory control
setting, due to the presence of delays in the communication channels between the plant
and supervisor.

There are several works in the literature investigating supervisory control of DES under
communication delays. There are three important properties that these works may focus
on:

• Nonblockingness. For many applications, it is important to guarantee that the
supervised plant does not block (as an additional control requirement) [Cassandras
and Lafortune 2009; Xu et al. 2017; Yin and Lafortune 2015].

28

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

• Maximal permissiveness. A supervisor must not restrict the plant behavior more
than necessary so that the maximal admissible behavior of the plant is preserved [Cas-
sandras and Lafortune 2009; Wonham 2015].
• Modeling delays based on time. In most of the existing approaches such as in Balemi

[1992], Lin [2014], Liu et al. [2019], Park [2012], Park and Cho [2006], Rashidinejad
et al. [2019a], Shu and Lin [2017a], and Xu et al. [2017], communication delays
are measured in terms of a number of consecutive event occurrences. As stated
in Rashidinejad et al. [2018], Shu and Lin [2017a], and Zhao et al. [2017], it is not
proper to measure time delay only based on the number of event occurrences since
events may have different execution times. Here, as in TDES [Wonham 2015], the
event tick is used to represent the passage of a unit of time, which is the temporal
resolution for modeling purposes.

Supervisory control synthesis under communication delays was first investigated by
Balemi [Balemi 1992]. To solve the problem, Balemi defines a condition called delay
insensitive language. A plant has a delay insensitive language whenever any control
command, enabled at a state of the plant, is not invalidated by an uncontrollable event.
In other words, any control command sent by the supervisor is acceptable by the plant
both before and after the uncontrollable event. Under this condition, supervisory control
under communication delays can be reduced to the conventional supervisory control
synthesis [Balemi 1992]. In other words, if a given plant has a delay insensitive language,
then the conventional supervisor is robust to the effects of delays. The benefit of this
method is that nonblockingness and maximal permissiveness are already guaranteed by
the supervisor if it exists (as they are guaranteed in the conventional supervisory control
theory). However, the imposed condition restricts the applications for which such a
supervisor exists.

In Park [2012] and Park and Cho [2006], a condition called delay observability is defined
for the control requirement. If the control requirement is delay observable, then a networked
supervisor exists. The delay observability condition is similar to the delay insensitivity
condition generalized for a sequence of uncontrollable events so that a control command is
not invalidated by a sequence of consecutive uncontrollable events. In Park [2012] and
Park and Cho [2006], nonblockingness is guaranteed. However, maximal permissiveness
is not guaranteed. Also, no method is proposed to obtain the supremal controllable and
delay observable sublanguage of a given control requirement [Park 2012].

In a more recent study, Lin introduced new observability and controllability conditions
considering the effects of communication delays called network controllability and network
observability [Lin 2014]. The approach presented by Lin has been further modified in
[Alves et al. 2017; Lin 2014; Shu and Lin 2015, 2017a,b; Xu et al. 2017; Zhao et al. 2017]. In
all these works, the problem of supervisory control synthesis under communication delays is
defined under certain conditions (network controllability and network observability or the
modified versions of them). When the conditions are not met (by the control requirement),
it is not guaranteed to have a (networked) supervisor [Alves et al. 2017; Lin 2014; Shu
and Lin 2015; Xu et al. 2017; Zhao et al. 2017]. As discussed in Shu and Lin [2017a],
delayed observations and delayed control commands make it (more) challenging to ensure

29

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

nonblockingness of the supervised plant (compared to the conventional non-networked
setting when there is no delay). To guarantee nonblockingness, additional conditions are
imposed on the control requirement in Xu et al. [2017], but maximal permissiveness is not
investigated.

In Liu et al. [2019], an online predictive supervisory control synthesis method is presented
to deal with control delays. The supervisor is claimed to be maximally permissive. However,
this is not formally proved. This is also the case in Shu and Lin [2015] as they do not
formally prove the maximal permissiveness although they establish the steps to achieve
it. In Shu and Lin [2017b], a predictive synthesis approach is proposed to achieve a
networked supervisor that is guaranteed to be maximally permissive if it satisfies the
conditions. Nonblockingness is yet not investigated in Shu and Lin [2017b]. None of
the works following Lin’s method consider simultaneously nonblockingness and maximal
permissiveness. Moreover, as discussed in a recent study by Lin, in the case that the
conditions are not met by the control requirement, there is no method so far to compute
the supremal sublanguage satisfying the conditions [Lin 2020].

In Chapter 2 and in Rashidinejad et al. [2018], a new synthesis algorithm is proposed in
which the effects of communication delays are taken into account in the synthesis procedure
instead of in extra conditions to be satisfied by the plant/control requirement.

The asynchronous setting, proposed in Chapter 2, does not take time into account, but
it is guaranteed that the synthesized (asynchronous) supervisor satisfies nonblockingness.
Maximal permissiveness is still an open issue.

The networked supervisory control setting, presented in this chapter, is close to the
asynchronous supervisory control framework introduced in Chapter 2. We use the same
notations for enabling, execution, and observation of events. However, the networked
supervisory control setting presented here is different from the asynchronous supervisory
control technique presented in Chapter 2 mainly because here we quantify the amount of
delay. Rashidinejad et al. [2018] focuses on modeling delays based on time, but it does not
formally prove nonblockingness or maximal permissiveness.

In Zhu et al. [2019b] as a more recent study, first, the control and observation channels are
modeled. Then, both the plant and control requirements are transformed into a networked
setting. Using these transformations, the problem of networked supervisory control
synthesis is reduced to conventional supervisory control synthesis. Using conventional
supervisory control synthesis, the resulting supervisor is controllable and nonblocking
for the transformed plant and the transformed control requirements. However, it is not
discussed if the supervisor satisfies these conditions for the (original) plant.

Furthermore, although it is important to consider time in the presence of delays, only a
few papers investigate networked supervisory control of TDES [Alves et al. 2017; Miao et al.
2019; Park and Cho 2008; Rashidinejad et al. 2018; Zhao et al. 2017] (where communication
delays are modeled based on a consistent unit of time) as it introduces new complexities
and challenges.

Table 3.1 gives an overview of the existing works. To the best of our knowledge,
none of these works study supervisory control synthesis of discrete-event systems under

30

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

communication delays such that delays are modeled based on time, and the delivered
supervisor guarantees both nonblockingness and maximal permissiveness as is done here.

Synthesis Method Nonblocking Permissive Delays

Balemi [1992] conventional supervisory control
for delay-insensitive plant 3 3 event-based

Park [2012] and Park and
Cho [2006]

conventional supervisory con-
trol for delay-observable require-
ment

3 7 event-based

Lin [2014], Liu et al. [2019],
and Shu and Lin [2015]

networked supervisory control
for network controllable and net-
work observable requirement

7 7 event-based

Xu et al. [2017]
networked supervisory control
for network controllable and net-
work observable requirement

3 7 event-based

Rashidinejad et al. [2019a] new algorithm under the effects
of delays 3 7 event-based

Shu and Lin [2017b]
networked supervisory control
for network controllable and net-
work observable requirement

7 3 event-based

Park and Cho [2008]
conventional supervisory control
for delay-nonconflicting require-
ment

7 7 time-based

Alves et al. [2017], Miao et
al. [2019], and Zhao et al.
[2017]

networked supervisory control
for network controllable and net-
work observable requirement

7 7 time-based

Rashidinejad et al. [2018] new algorithm under the effects
of delays 7 7 time-based

Our Approach new algorithm under the effects
of delays 3 3 time-based

Table 3.1: Overview of existing works.

Our work is close to Rashidinejad et al. [2018] in terms of the networked supervisory
control setting and to Chapter 2 in terms of the synthesis technique. Similar to Rashidinejad
et al. [2018] and Chapter 2, the following practical conditions are taken into account:

1. A controllable event can be executed in the plant only if it is commanded (enabled)
by the supervisor.

2. An uncontrollable event is not commanded (enabled) by the supervisor; it occurs
spontaneously in the plant.

3. Any event, controllable or uncontrollable, executed in the plant is observable to the
supervisor.

4. A control command sent by the supervisor reaches the plant after a constant amount
of time delay. The command may not necessarily be accepted by the plant, in which
case it will be removed from the control channel when the next tick occurs. Also, the
observation of a plant event, controllable or uncontrollable, occurs after a constant
amount of time delay. See Section 3.3.3 for discussions on how the proposed solution
is adjusted for situations where 1) delays are specified to events (specific amounts
of control and observation delays are specified to each event), and 2) delays are
bounded (not constant).

5. The control channel is assumed to be FIFO, so control commands sent by the
supervisor will reach the plant in the same order as they have been sent. However,

31

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

the observation channel is non-FIFO 2, and so consecutive events that occur in the
plant may be observed by the supervisor in any possible order. For instance, if
the events a and b occur in that order between two ticks in the plant, they may
be observed in the other order. Here, we investigate the situation where only
the observation channel is non-FIFO. See Section 3.3.3 for a discussion on how the
proposed solution is adapted for a non-FIFO control channel.

This chapter differs from Chapter 2 and Rashidinejad et al. [2018] in the following
aspects:

1. Modeling purposes. In [Wonham 2015], a TDES is a DES in which the execution
of each event, called an active event transition, is restricted within a lower and an
upper time bound specified to the event. The time bounds are given as natural
numbers. From such a TDES, a timed transition graph (TTG) is derived based on
the active event transitions in the DES and the given time bounds for each event.
At the end, a TTG is just a transition graph that explicitly includes transitions
labeled by the event tick as well as active event transitions. The kind of TDES
considered in this paper (see Section 3.2) is a TTG that is formally represented by
an automaton. Unlike TDES proposed by Wonham in [Wonham 2015], there is no
specific relationship between the occurrences of tick and other events in the TDES
of this paper. As a result, the TDES in this paper includes the one proposed by
Wonham in [Wonham 2015] and is a more general modeling framework than that. To
take the time progress of the system into account, the concept of time-lock freeness is
introduced as a property for a TDES. Time-lock freeness, similar to nonblockingness,
is guaranteed by the networked supervisor.

2. Synthesis technique. Inspired from the idea introduced in Chapter 2 to synthesize an
asynchronous supervisor for DES, the synthesis method proposed in Rashidinejad et
al. [2018] for networked supervisory control of TDES is improved. For this purpose,
first, the networked supervisory control (NSC) framework is modeled. Then, a
networked plant automaton is proposed, modeling the behavior of the plant in the
NSC framework. Based on the networked plant, a networked supervisor is synthesized.
It is guaranteed that the networked supervisor provides nonblockingness, time-lock
freeness, and maximal permissiveness.

3. Control requirement. The control requirement in Chapter 2 and in Rashidinejad et al.
[2018] is limited to the avoidance of illegal states. Here, the networked supervisory
control synthesis is generalized to control requirements modeled as automata.

The rest of the chapter is organized as follows. The NSC framework is introduced
in Section 3.2. For the NSC framework, an operator is proposed to give the networked
supervised plant. Moreover, the conventional controllability and maximal permissiveness
conditions are modified to timed networked controllability and timed networked maximal
permissiveness conditions suitable for the NSC framework. Then, the basic networked
supervisory control synthesis problem is formulated, which aims to find a timed networked
controllable and timed networked maximally permissive networked supervisor guaranteeing

2Non-FIFO observation is related to the interleave sensitivity problem from Chapter 2.

32

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

nonblockingness and time-lock freeness of the networked supervised plant. In Section 3.3,
first, the networked plant is defined as an automaton representing the behavior of the
plant under communication delays and disordered observations. Furthermore, a technique
is presented to synthesize a networked supervisor that is a solution to the basic networked
supervisory control problem. In Section 3.4, the basic networked supervisory control
synthesis problem is generalized to satisfy a given set of control requirements. Relevant
examples are provided in each section. Finally, Section 3.5 concludes this chapter.

3.2 Basic NSC Problem

3.2.1 Conventional Supervisory Control Synthesis of TDES
A TDES T is formally represented as a quintuple

T = (A,Σ, δ, a0, Am),

where A,Σ, δ : A × Σ → A, a0 ∈ A, and Am ⊆ A stand for the set of states, the
set of events, the (partial) transition function, the initial state, and the set of marked
states, respectively. The set of events of any TDES is assumed to contain the event
tick ∈ Σ. The set Σa = Σ \ {tick} is called the set of active events. The notation
δ(a, σ)! denotes that δ is defined for state a and event σ, i.e., there is a transition from
state a with label σ to some state. The transition function is generalized to words in
the usual way: δ(a, w) = a′ means that there is a sequence of subsequent transitions
from state a to the state a′ that together make up the word w ∈ Σ∗. Starting from the
initial state, the set of all possible words that may occur in T is called the language
of T and is denoted by L(T); L(T) := {w ∈ Σ∗ | δ(a0, w)!}. Furthermore, for any
state a ∈ A, the function Reach(a) gives the set of states reachable from the state a;
Reach(a) := {a′ ∈ A | ∃w ∈ Σ∗, δ(a, w) = a′}. States from which it is possible to reach
a marked state are called nonblocking. An automaton is nonblocking when each state
reachable from the initial state is nonblocking; for each a ∈ Reach(a0), Reach(a)∩Am 6= ∅.
Lm(T) denotes the marked language of T ; Lm(T) := {w ∈ L(T) | δ(a0, w) ∈ Am}. States
from which time can progress are called time-lock free (TLF). An automaton is TLF when
each state reachable from the initial state is TLF; for each a ∈ Reach(a0), there exists a
w ∈ Σ∗ such that δ(a, w tick)!.
Definition 3.1 (Natural Projection [Cassandras and Lafortune 2009]). For sets of events
Σ and Σ′ ⊆ Σ, PΣ′ : Σ∗ → Σ′∗ is defined as follows: for e ∈ Σ and w ∈ Σ∗,

PΣ′(ε) := ε,

PΣ′(we) :=

PΣ′(w)e if e ∈ Σ′,
PΣ′(w) if e ∈ Σ \ Σ′.

The definition of natural projection is extended to a language L ⊆ Σ∗; PΣ′(L) := {w′ ∈
Σ′∗ | ∃w ∈ L, PΣ′(w) = w′} [Cassandras and Lafortune 2009]. �

Natural projection is an operation that is generally defined for languages. However,
it is also possible to apply it on automata [Ware and Malik 2008]. For an automaton

33

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

with event set Σ, PΣ′ first replaces all events not from Σ′ by the silent event τ . Then,
using a determinization algorithm (such as the one introduced in Hopcroft et al. [2006]),
the resulting automaton is made deterministic. A state of a projected automaton is then
marked if it contains at least one marked state from the original automaton (see [Hopcroft
et al. 2006] for more details). Using the notation δP for the transition function of the
projected automaton, we state the following properties of this construction: (1) for any
w ∈ Σ∗, if δ(a0, w) = ar then δP (A0, PΣ′(w)) = Ar where A0 is the initial state of
the projected automaton, and Ar ⊆ A is a set with ar ∈ Ar, (2) for any w ∈ Σ∗, if
δ(a0, w) ∈ Am, then δP (A0, PΣ′(w)) is a marked state in the projected automaton.

In the rest of the chapter, the plant is given as the TDES G represented by the
automaton (A,ΣG, δG, a0, Am) with ΣG = Σa ∪ {tick} and Σa ∩ {tick} = ∅. Also, as it
holds for many applications, G is a finite automaton [Wonham 2015]. A finite automaton
has a finite set of states and a finite set of events [Carroll and Long 1989].

Here, it is assumed that all events in G are observable. A subset of the active events
Σuc ⊆ Σa is uncontrollable. Σc = Σa \ Σuc gives the set of controllable active events. The
event tick is uncontrollable by nature. However, as in Brandin and Wonham [1994], it
is assumed that tick can be preempted by a set of forcible events Σfor ⊆ Σa. Note that
forcible events can be either controllable or uncontrollable. For instance, closing a valve to
prevent overflow of a tank, and the landing of a plane are controllable and uncontrollable
forcible events, respectively [Wonham 2015]. Note that for synthesis, the status of the event
tick lies between controllable and uncontrollable depending on the presence of enabled
forcible events. To clarify, when the event tick is enabled at some state a and also there
exists a forcible event σ ∈ Σfor such that δG(a, σ)!, then tick is considered as a controllable
event since it can be preempted. Otherwise, tick is an uncontrollable event. In the figures,
forcible events are underlined. The transitions labelled by controllable (active or tick)
events are indicated by solid lines and the transitions labelled by uncontrollable (active or
tick) events are indicated by dashed lines.

If the plant G is blocking, then a supervisor S needs to be synthesized to satisfy
nonblockingness of the supervised plant. S is also a TDES with the same event set as G.
Since the plant and supervisor are supposed to work synchronously in a conventional non-
networked setting, the automaton representing the supervised plant behavior is obtained
by applying the synchronous product denoted by S||G [Cassandras and Lafortune 2009].
Generally, in the synchronous product of two automata, a shared event can be executed
only when it is enabled in both automata, and a non-shared event can be executed if it
is enabled in the corresponding automaton. Since the conventional supervisor S has the
same event set as G, each event will be executed in S||G only if the supervisor enables
(allows) it. S is controllable if it allows all uncontrollable events that may occur in the
plant. This is captured in conventional controllability for TDES, which is reformulated
from [Wonham 2015].
Definition 3.2 (Conventional Controllability for TDES). Given a plant G with uncon-
trollable events Σuc and forcible events Σfor , a TDES S, is controllable w.r.t. G if for all
w ∈ L(S||G) and σ ∈ Σuc ∪ {tick}, if wσ ∈ L(G),

1. wσ ∈ L(S||G) , or

34

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

2. σ = tick and wσf ∈ L(S||G) for some σf ∈ Σfor . �

Item (1) in the above definition is the standard controllability property (when there
is no forcible event to preempt tick); S cannot disable uncontrollable events that G may
generate. However, if a forcible event is enabled, this may preempt the time event, which
is captured by item (2).

A supervisor S is called proper for a plant G whenever S is controllable w.r.t. G, and
the supervised plant S||G is nonblocking.
Definition 3.3 (Conventional Maximal Permissivenesss). A proper supervisor S is maxi-
mally permissive for a plant G, whenever S preserves the largest behavior of G compared
to any other proper supervisor S ′; for any proper S ′: L(S ′||G) ⊆ L(S||G). �

For a TDES, a proper and a maximally permissive supervisor can be synthesized by
applying the synthesis algorithm proposed in Wonham [2015].

3.2.2 Motivating Examples
This section discusses the situations where a proper and maximally permissive conventional
supervisor S fails in the presence of observation delay (Example 3.1), non-FIFO observation
(Example 3.2), or control delay (Example 3.3).
Example 3.1 (Observation Delay). Consider the plant depicted in Figure 3.1. To be
maximally permissive, S must not disable a at a0, and to be nonblocking, S must disable a
at a2. Now, assume that the observation of the events executed in G are not immediately
received by S due to observation delay. Starting from a0, imagine that u occurs, and G
goes to a2. Since S does not observe u immediately, it supposes that G is still at a0 where
it enables a. Then, a will be applied at the real state where G is, i.e., a2, and so G goes to
a3, which is blocking.

a0 a1

a2 a3

a

u

a

tick

ticktick

Figure 3.1: Plant for Example 3.1.

Example 3.2 (Non-FIFO Observation). Consider the plant G depicted in Figure 3.2.
To be nonblocking, S must disable a at a3, and to be maximally permissive, S must not
disable a at a6. Now, assume that the observation channel is non-FIFO, i.e., events may
be observed in a different order as they occurred in G. Starting from a0, imagine that
G executes tick a b and goes to a3. Since the observation channel is non-FIFO, S may
receive the observation of tick a b as tick b a after which it does not disable a. However, G
is actually at a3 and by executing a, it goes to a4, which is blocking.
Example 3.3 (Control Delay). Consider the plant depicted in Figure 3.3. To be maximally
permissive, S must not disable a at a1, and to be nonblocking S must disable a at a3.
Now, assume that control commands are received by G after one tick. Starting from a0, S

35

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

a0 a1 a2 a3 a4

a5 a6 a7

tick a b a tick

b

a a tick

Figure 3.2: Plant for Example 3.2.

does not disable a after one tick (when G is at a1). However, the command is received
by G after the passage of one tick (due to the control delay) when G is at a3. So, by
executing a at a3, G goes to a4, which is blocking.

a0 a1 a2

a3 a4

tick a

tick

atick tick

tick

Figure 3.3: Plant for Example 3.3.

Remark. Conventional supervisory control synthesis of a TDES guarantees nonblocking-
ness [Wonham 2015]. However, as can be seen in Example 3.2, it cannot guarantee time-lock
freeness; a3 is not TLF, and it is not removed by S. This is not an issue in Wonham [2015]
since a TDES is assumed to satisfy the ALF condition. Here, to guarantee time progress,
the TLF property must be considered in synthesis.

As is clear from the examples, a supervisor is required that can deal with the problems
caused by communication delays and disordered observations. To achieve such a supervisor,
first, the networked supervisory control framework is established.

3.2.3 NSC Framework
In the presence of delays in the control and observation channels, enabling, executing
and observing events do not happen at the same time. Figure 3.4 depicts the networked
supervisory control (NSC) framework that is introduced in this chapter. Figure 3.4 is
inspired from the representation of the plant, supervisor, and the transmitted data between
them in [Cassandras and Lafortune 2009]. To recognize the differences between the
enablement and observation of events and their execution in the plant, as in Chapter 2
and in Rashidinejad et al. [2018], a set of enabling events Σe and a set of observed events
Σo are introduced.
Definition 3.4 (Enabling and Observed Events). Given a plant G, to each controllable
active event σ ∈ Σc an enabling event σe ∈ Σe, and to each active event σ ∈ Σa an
observed event σo ∈ Σo are associated such that Σe ∩ Σa = ∅ and Σo ∩ Σa = ∅ (clearly
Σe ∩ Σo = ∅). �

36

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

Note that all events executed in the plant are supposed to be observable so that the
observed event σo is associated to any σ ∈ Σa. However, not all the events are supposed
to be controllable. Uncontrollable events such as disturbances or faults occur in the plant
spontaneously. In this regard, enabling events σe are associated only to events from Σc.

Figure 3.4: NSC framework.

Considering Figure 3.4, a networked supervisor for G that fits in the proposed framework
is a TDES given as:

NS = (Y,ΣNS , δNS , y0, Ym),

for which the event set ΣNS = Σe ∪ Σo ∪ {tick}, and the event tick is produced by the
global clock in the system so that ΣNS ∩ ΣG = {tick}.

For the proposed NSC framework, the behavior of the plant under the control of a
networked supervisor is achieved through timed asynchronous composition operator. This
operator is inspired from the asynchronous composition operator introduced in Chapter 2
and in Rashidinejad et al. [2018], where similar representations are proposed for observation
and control channels.

To define timed asynchronous composition, we first need to consider the effects of delays
on events sent through the control and observation channels. It is assumed that the control
(observation) channel has a finite capacity denoted by Lmax (Mmax), which introduces a
constant amount of delay represented by a natural number Nc (No). Since the control
channel is supposed to be FIFO, a list or sequence is used to consider the journey of events
through the control channel. As given in Definition 3.5 below, l ∈ (Σc × [0, Nc])∗ provides
us with the current situation of the control channel. The interpretation of l[i] = (σ, n) is
that the ith enabling event present in the control channel is σe, which still requires n ticks
before being received by the plant.
Definition 3.5 (Control Channel Representation). The control channel is represented by
the set L = {l ∈ (Σc× [0, Nc])∗ | |l| ≤ Lmax}. Moreover, we define the following operations
for all σ ∈ Σc, the time counter n ∈ [0, Nc] and l ∈ L:

37

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

• ε denotes the empty sequence.
• app(l, (σ, n)) adds the element (σ, n) to the end of l if |l| < Lmax (the channel is not

full), otherwise l stays the same.
• head(l) gives the first element of l (for nonempty lists). Formally, head((σ, n) l) gives

(σ, n) and head(ε) is undefined.
• tail(l) gives the list after removal of its leftmost element. Formally, tail((σ, n) l)

gives l, and tail(ε) is undefined.
• l − 1 decreases the natural number component of every element in l by one (if

possible). It is defined inductively as follows ε− 1 = ε, ((σ, 0) l)− 1 = l− 1 removes
the element with integer 0, and ((σ, n+ 1) l)− 1 = (σ, n) (l − 1). �

Due to the assumption that the observation channel is non-FIFO, we use a multiset
to consider the journey of each event through the observation channel. As given in
Definition 3.6 below, the multiset m : Σa× [0, No]→ N is a total function that provides us
with the current situation of the observation channel. The interpretation of m(σ, n) = k is
that currently there are k events σ in the observation channel that still require n ticks
before reaching the (networked) supervisor.
Definition 3.6 (Observation Channel Representation). The observation channel is rep-
resented by the set M = {m |m : Σa × [0, No] → N | |m| ≤ Mmax}, where each element
m ∈ M is a multiset. Moreover, we define the following operations for all m ∈ M ,
σ, σ′ ∈ Σa and the time counters n, n′ ∈ [0, No]:

• [] denotes the empty multiset, i.e., the functionm withm(σ, n) = 0. Often, a multiset
is represented by enumerating the elements that occur in it a positive number of
times. For instance, assuming an event set containing only events σ, σ′ and σ′′,
a multiset m with m(σ, n) = 2, m(σ′, n′) = 1 and m(σ′′, n′′) = 0 is represented
as [(σ, n), (σ, n), (σ′, n′)]. Also note that the ordering of elements in a multiset is
immaterial, e.g., [(σ, n), (σ′, n), (σ, n)] denotes the same multiset.
• |m| = ∑

(σ,n)∈Σa×[0,No] m(σ, n) denotes the number of events in the observation channel
represented by m.
• m] [(σ, n)] inserts (σ, n) to m if |m| < Mmax (the observation channel is not
full). Formally, it denotes the function m′ for which m′(σ, n) = m(σ, n) + 1 and
m′(σ′, n′) = m(σ′, n′) otherwise. If |m| = Mmax (the observation channel is full),
then the channel stays the same, i.e., m′ = m.
• m \ [(σ, n)] removes (σ, n) from m once. Formally, it denotes the function m′ for
which m′(σ, n) = max(m(σ, n)− 1, 0) and m′(σ′, n′) = m(σ′, n′) otherwise.
• m− 1 decreases the integer number component of every element by one as long as it
is positive. Formally, it denotes the function m′ for which m′(σ, n) = m(σ, n + 1)
for all n < No and m′(σ,No) = 0. Note that as a consequence [] − 1 = [] and
[(σ, 0)]− 1 = [].
• (σ, n) ∈ m denotes that the pair (σ, n) exists in m, it holds if m(σ, n) > 0. �

In the rest of the chapter, a networked supervisor for the plant G is given as the TDES
NS represented by the automaton (Y,ΣNS , δNS , y0, Ym).

38

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

Considering the representation of control and observation channels, a timed asyn-
chronous composition operator is defined to achieve a networked supervised plant.
Definition 3.7 (Timed Asynchronous Composition Operator). Given a plant G and a
networked supervisor NS (for G), the asynchronous product of G and NS , denoted by
NSNc‖No G, is given by the automaton

NSNc‖No G = (Z,ΣNSP , δNSP , z0, Zm),

where
Z = A× Y ×M × L, ΣNSP = ΣNS ∪ Σ,
z0 = (a0, y0, [], ε), Zm = Am × Ym ×M × L.

Moreover, for a ∈ A, y ∈ Y , m ∈M , and l ∈ L, δNSP : Z × ΣNSP → Z is defined only
in the following cases:

1. If δNS(y, σe)!:

δNSP((a, y,m, l), σe) = (a, δNS(y, σe),m, app(l, (σ,Nc))).

When an event σe ∈ Σe occurs in NS , it is sent through the control channel. This is
represented by adding (σ,Nc) to l where Nc is the remaining time for σe until being
received by G.

2. If δG(a, σ)! and head(l) = (σ, 0):

δNSP((a, y,m, l), σ) = (δG(a, σ), y,m] [(σ,No)], tail(l)).

An active controllable event σ ∈ Σc can occur if the plant enables it, and the
corresponding control command (enabling event) is received by the plant as (σ, 0)
(as the enabling event finished its journey through the control channel). When σ
occurs, it will be stored in m with the remaining time No until being observed by
NS .

3. If δG(a, σ)!:
δNSP((a, y,m, l), σ) = (δG(a, σ), y,m] [(σ,No)], l).

An uncontrollable event σ ∈ Σuc can occur if it is enabled in G. When σ occurs, it
will be stored in m with the remaining time No until being observed by NS .

4. If δG(a, tick)!, δNS(y, tick)!, (σ, 0) /∈ m for all σ ∈ Σa

δNSP((a, y,m, l), tick) = (δG(a, tick), δNS(y, tick),m− 1, l − 1).

Event tick can occur if both NS and G enable it, and there is no event ready to be
observed by NS . Upon the execution of tick, all the time counters in m and l are
decreased by one.

5. If δNS(y, σo)! and (σ, 0) ∈ m:

δNSP((a, y,m, l), σo) = (a, δNS(y, σo),m \ [(σ, 0)], l).

The observation of an active event σ ∈ Σa can occur when it finishes its journey
through the observation channel (and so it is received by NS), and σo is enabled by
NS . When σo occurs, (σ, 0) is removed from m. �

39

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

In the rest of the chapter, the timed asynchronous composition NSNc‖No G of the plant
G and the networked supervisor NS (for that plant) is assumed to be the TDES NSP
represented by the automaton (Z,ΣNSP , δNSP , z0, Zm).

Note that the networked supervised plant models the behavior of a plant controlled by
a networked supervisor, and so for the proposed operator, we need to prove that the result
does not enlarge the behavior of the plant.
Property 3.1 (NSP and Plant). Given a plant G and networked supervisor NS (for that
plant): PΣG(L(NSP)) ⊆ L(G).

Proof. See Appendix B.2.1. �

A networked supervisor is controllable with respect to a plant if it never disables any
uncontrollable event that can be executed by the plant. To have a formal representation
of controllability in the NSC framework, Definition 3.2 is adapted to timed networked
controllability.
Definition 3.8 (Timed Networked Controllability). Given a plant G with uncontrollable
events Σuc and forcible events Σfor , a networked supervisor NS , is controllable w.r.t. G if
for all w ∈ L(NSP) and σ ∈ Σuc ∪ {tick}, whenever PΣG(w)σ ∈ L(G):

1. wσ ∈ L(NSP) , or
2. σ = tick and wσf ∈ L(NSP) for some σf ∈ Σ̂for ∪ Σo, where Σ̂for = Σfor ∪ Σe.

�

When there is no network, i.e., ΣNS = ΣG, timed networked controllability coincides
with conventional controllability for TDES (Definition 3.2).
Remark. Considering Definition 3.7, tick does not occur if there is an event ready to be
observed ((σ, 0) ∈ m). In other words, observed events always preempt tick since they
occur once they finish their journey in the observation channel. The enabling events are
assumed to be forcible as well. This gives the opportunity to the networked supervisor to
preempt tick by enabling an event whenever it is necessary. In Section 3.3.3, we discuss
other possible cases.

A networked supervisor NS is called proper in NSC framework if NS is timed networked
controllable, and NSP is nonblocking and TLF. Similar to controllability, the definition
of maximal permissiveness (in the conventional setting) is adapted to timed networked
maximal permissiveness (for NSC Framework).
Definition 3.9 (Timed Networked Maximal Permissiveness). A proper networked su-
pervisor NS is timed networked maximally permissive for a plant G, if for any other
proper networked supervisor NS ′ in the same NSC framework (with event set ΣNS):
PΣG(L(NS ′Nc‖No G)) ⊆ PΣG(L(NSP). In other words, NS preserves the largest admissible
behavior of G. �

Again, when there is no network, this notion coincides with conventional maximal
permissiveness (Definition 3.3).

Problem Statement: The Basic NSC Problem is defined as follows. Given a plant
model G as a TDES, observation (control) channel with delay No (Nc) and maximum

40

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

capacity Mmax (Lmax), provide a networked supervisor NS such that

• NSP is nonblocking,
• NSP is time-lock free
• NS is timed networked controllable for G, and
• NS is timed networked maximally permissive.

3.3 Networked Supervisory Control Synthesis

To achieve a proper and maximally permissive networked supervisor (in the NSC frame-
work), the synthesis is applied on the networked plant, as indicated in Figure 3.5. The
networked plant is a model for how events are executed in the plant according to the
enabling events, and how the observations of the executed events may occur in a net-
worked supervisory control setting. Based on the networked plant, a synthesis algorithm is
proposed to obtain a networked supervisor, which is a solution to the basic NSC problem.
Example 3.4 is used to illustrate each step of the approach.

Figure 3.5: Networked plant.

Example 3.4. (Endangered Pedestrian) Let us consider the endangered pedestrian ex-
ample from [Wonham 2015]. The plant G is depicted in Figure 3.6. Both the bus and
pedestrian are supposed to do single transitions denoted by p for passing and j for jumping.
The requirement considered in Wonham [2015] is that the pedestrian should jump before
the bus passes. However, since we do not consider requirements here (yet), we adapt
the plant from [Wonham 2015] such that if the bus passes before the pedestrian jumps,
then G goes to a blocking state. The control channel is FIFO, the observation channel is
non-FIFO, Nc = No = 1, Lmax = 1, and Mmax = 2. We aim to synthesize a proper and
maximally permissive networked supervisor for G.

41

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

a0 a1 a2 a3 a4

a5 a6 a7

tick tick p j

j j

tick p

tick

tick

tick

Figure 3.6: Endangered pedestrian from Example 3.4.

3.3.1 Networked Plant

The behavior of the plant communicating through the control and observation channels
is captured by the networked plant. As is clear from Figure 3.5, if we do not consider
enabling and observation of events, what is executed in the networked plant is always a
part of the plant behavior. Let us denote by NP the networked plant automaton, then
PΣG(L(NP)) ⊆ L(G).

Moreover, note that a networked supervisor is synthesized for a plant on the basis of
the networked plant. The networked plant should represent all the possible behavior of the
plant in the networked supervisory control setting, and it is only the networked supervisor
that may prevent the occurrence of some plant events by disabling the relevant enabling
event. This means that NP should be such that L(G) ⊆ PΣG(L(NP)). The latter property
relies on the following assumptions.

Assumption 1: The plant enables enough ticks in the beginning; there are at least
Nc ticks (there can be uncontrollable events occurring between ticks) enabled before the
first controllable event.

Assumption 2: The control channel provides enough capacity for all enabling com-
mands being sent to the plant. Imagine that tick σ tick∗ ∈ L(G), and Lmax = 0. Then, σe
may occur in NP, but the plant will never execute σ as it does not receive the relevant
enabling command. To avoid this situation, the size of the control channel should be
such that it always has the capacity for all enabling events. An enabling event will be
removed from the control channel after Nc ticks. So, considering all substrings w that
can appear in the plant (after an initial part, say w0 ∈ Σ∗G), which are no longer (in the
time sense) than Nc ticks, then the control channel capacity should be at least equal
to the number of controllable events occurring in w; Lmax ≥ maxw∈W |PΣc(w)| where
W = {w ∈ Σ∗G | ∃w0w ∈ L(G), |P{tick}(w)| ≤ Nc − 1}.

To obtain the networked plant, we present the function Π in Definition 3.10. In order
to determine enabling commands we look Nc ticks ahead for only the controllable active
events enabled in G′ = PΣG\Σuc(G). We use a list L to store the controllable events that
have been commanded and a medium M to store the events that were executed.
Definition 3.10 (Networked Plant Operator). For a given plant, G, Π gives the networked
plant as:

Π(G,Nc, No, Lmax ,Mmax) = (X,ΣNSP , δNP , x0, Xm),

42

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

Let G′ = PΣG\Σuc(G) = (A′,ΣG, δ
′
G, a

′
0, A

′
m), and

X = A× A′ ×M × L,
x0 = (a0, δ

′
G(a′0, tickNc), [], ε),

Xm = Am × A′ ×M × L.

For a ∈ A, a′ ∈ A′, m ∈ M and l ∈ L, the transition function δNP : X × ΣNSP → X is
defined as follows:

1. If δ′G(a′, σ)!, σ ∈ Σc

δNP((a, a′,m, l), σe) = (a, δ′G(a′, σ),m, app(l, (σ,Nc))).

2. If δG(a, σ)!, head(l) = (σ, 0), σ ∈ Σc

δNP((a, a′,m, l), σ) = (δG(a, σ), a′,m] [(σ,No)], tail(l)).

3. If δG(a, σ)!, σ ∈ Σuc

δNP((a, a′,m, l), σ) = (δG(a, σ), a′,m] [(σ,No)], l).

4. If δG(a, tick)! and (σ, 0) /∈ m for all σ ∈ Σa

δNP((a, a′,m, l), tick) = (δG(a, tick), δ′G(a′, tick),m− 1, l − 1) if δ′G(a′, tick)!,
(δG(a, tick), a′,m− 1, l − 1) otherwise.

5. If (σ, 0) ∈ m
δNP((a, a′,m, l), σo) = (a, a′,m \ [(σ, 0)], l).

�

Note that due to Assumption 1, δ′G(a′0, tickNc) is always defined. In the rest of the
chapter, the networked plant of the plant G is assumed to be the TDES NP represented
by the automaton (X,ΣNSP , δNP , x0, Xm).
Property 3.2 (NP and Plant). For any plant G:

1. PΣG(L(NP)) ⊆ L(G), and
2. L(G) ⊆ PΣG(L(NP)) whenever assumptions 1 and 2 hold.

Proof. See Appendix B.2.2. �

Example 3.5. For the endangered pedestrian from Example 3.4, G′ and NP are given in
Figure 3.7 and Figure 3.8, respectively.

43

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

a′0 a′1 a′2 a′3 a′4

a′5 a′6 a′7a′8 a′9

tick tick j tick tick

j
tick

j
tick

tick

tick
tick tick

Figure 3.7: G′ for the endangered pedestrian from Example 3.4.

x0 x1 x2 x3 x4 x5 x6

x7 x8 x9 x10 x11 x12 x13

x20x14 x15 x16 x17 x18 x19

x26x21 x22 x23 x24 x25

x32x27 x28 x29 x30 x31

x33 x34 x35 x36 x37 x38

x39 x40 x41 x42 x43

tick

je

tick

je

p

je

tick

je

po

je je

tick tick

tick tick

p

tick

po tick

tick

j

ticktickj

p

j j

tick

po

po

j po

jotick p
p

tick tick

tick
p

jo

tick

po tick jo po

p
jo

tick

po
jo

po
jo

tick po jo

tick

tick

Figure 3.8: Networked plant for the endangered pedestrian from Example 3.4 (Nc = No = 1).

3.3.2 Synthesis

As is clear from Figure 3.5, enabling events are the only controllable events that can be
disabled by the networked supervisor. All other events in the networked plant (active
events and observed events) are uncontrollable. Moreover, controllability of tick depends
on the forcible events of the plant as well as the enabling events (as we assume that they are
forcible). To clarify, uncontrollable events are indicated by dashed lines in Figure 3.8. Note
also that the observed events are observable to the networked supervisor. Also, events from
Σe are observable, as the networked supervisor knows about the commands that it sends to

44

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

the plant. However, the events from Σa are now unobservable to the networked supervisor.
To consider these issues in the current step of the approach, the sets of unobservable events
Σ̂uo, observable events Σ̂o, uncontrollable active events Σ̂uc, and controllable active events
Σ̂c of the networked plant are given by Σ̂uo = Σa, Σ̂o = Σe ∪ Σo ∪ {tick}, Σ̂uc = Σa ∪ Σo,
Σ̂c = Σe. Also, note that forcing is an issue that is related to the modelling of the plant.
A supervisor only decides whether forcing events is appropriate or not [Wonham and Cai
n.d.]. Therefore, the forcing nature of the plant events is not changed in a networked
supervisory control setting. So, Σ̂for = Σfor ∪ Σe. The event tick is always observable to
the networked supervisor. Moreover, it is uncontrollable unless there exists an event from
Σ̂for enabled in parallel to tick. Regarding the new sets of events, the synthesis algorithm
takes into account the TDES conventional controllability (in Definition 3.2) and is inspired
from the weak observability condition introduced in Cai et al. [2016] and Takai and Ushio
[2006].

Algorithm 3.1 presents the synthesis procedure in which we use the following additional
concepts and abbreviations:

• BS(NS) = BLock(NS) ∪ TLock(NS) where BLock(NS) gives the set of blocking
states of NS , and TLock(NS) gives the set of time-lock states of NS .
• Due to the fact that events from Σa are unobservable in the networked plant, one

should be careful that the same control command is applied on the states reachable
through the same observations. To take this issue into account, the following function
is used in the synthesis algorithm; OBS(x) = {x′ ∈ X | ∃w,w′ ∈ Σ∗NP , δNP(x0, w) =
x ∧ δNP(x0, w

′) = x′ ∧ PΣ̂o(w) = PΣ̂o(w
′)} gives the set of states observationally

equivalently reachable as x. The function OBS can be applied on a set of states
X ′ ⊆ X as well such that OBS(X ′) = ⋃

x∈X′ OBS(x).
• F (y) = {σ ∈ Σ̂for | δNS(y, σ)!} is the set of forcible events enabled at state y.
• Besides blocking and time-lock states, we should take care of states from which a

state from BS(NS) can be reached in an uncontrollable way, taking preemption of
tick events into account. Uncon(BS(NS)) is the smallest set of states, called bad
states, such that
1. BS ⊆ Uncon(BS(NS));
2. if δNS(y, σ) ∈ Uncon(BS(NS)) for some y ∈ Y and σ ∈ Σ̂uc, then y ∈

Uncon(BS(NS));
3. if δNS(y, tick) ∈ Uncon(BS(NS)) for some y ∈ Y such that for all y′ ∈ OBS(y),
F (y) ∩ F (y′) = ∅, then y ∈ Uncon(BS(NS)). This is to make sure that the
supervisor behaves the same towards all observationally equivalent transitions.

• BPre(NS) = {y ∈ Y | F (y) = 0 ∧ ¬δNS(y, tick)! ∧ δNP(y, tick)!} contains states
(still in NS) from which no forcible events and no tick are enabled while there was a
tick event enabled in the networked plant.
• Reach(NS) restricts an automaton to those states that are reachable from the initial

state.

45

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

Algorithm 3.1 Networked supervisory control synthesis
Input: NP = (X,ΣNSP , δNP , x0, Xm), Σ̂uo, Σ̂uc, Σ̂c, Σ̂for
Output: NS = (Y,ΣNS , δNS , y0, Ym)
1: i← 0
2: ns(0)← NP
3: bs(0)← BS(ns(0))
4: while y0 /∈ Uncon(bs(i)) ∧ bs(i) 6= ∅ do
5: for y ∈ Y \ Uncon(bs(i)) and σ ∈ Σ̂c ∪ {tick} do
6: if δNS(y, σ) ∈ OBS(Uncon(bs(i))) then
7: for y′ ∈ OBS(y) do
8: δNS(y′, σ)← undefined
9: end for
10: end if
11: end for
12: Y ← Y \ Uncon(bs(i))
13: i← i+ 1
14: ns(i)← Reach(ns(i− 1))
15: bs(i)← BPre(ns(i)) ∪BS(ns(i))
16: end while
17: if y0 ∈ Uncon(bs(i)) then
18: no result
19: end if
20: NS ← PΣNSP\Σa(ns(i))

Starting from NS = NP , Algorithm 3.1 changes NS by disabling transitions at line 8
and delivering the reachable part at line 14. For the proposed algorithm, the following
property and theorems hold.
Property 3.3 (Algorithm Termination). The synthesis algorithm presented in Algo-
rithm 3.1 terminates.

Proof. See Appendix B.2.3. �

Theorem 3.1 (Nonblocking NSP). Given a plant G and the networked supervisor NS
computed by Algorithm 3.1: NSP is nonblocking.

Proof. See Appendix B.2.4. �

Theorem 3.2 (TLF NSP). Given a plant G and the networked supervisor NS computed
by Algorithm 3.1: NSP is TLF.

Proof. See Appendix B.2.5. �

Theorem 3.3 (Controllable NS). Given a plant G and the networked supervisor NS
computed by Algorithm 3.1: NS is timed networked controllable w.r.t. G.

Proof. See Appendix B.2.6. �

46

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

Theorem 3.4 (Timed Networked Maximally Permissive NS). For a plant G, the networked
supervisor NS computed by Algorithm 3.1 is timed networked maximally permissive.

Proof. See Appendix B.2.7. �

3.3.3 Possible Variants
The proposed synthesis approach can be adjusted for the following situations.

Nonblockingness or time-lock freeness

Algorithm 3.1 can easily be adapted to either only provide nonblockingness or time-lock
freeness by removing TLock(NS) and BLock(NS) from BS(NS), respectively.

Unobservable enabling events

We could have assumed that some events from Σe are unobservable. In this case, Σa ⊆
Σ̂uo ⊆ Σa ∪ Σe, and so there would be more states that become observationally equivalent.
Hence, the resulting supervisor could be more restrictive since a control command should
be disabled at all observationally equivalent states if it needs to be disabled at one of them.
Also if the observation channel does not provide enough capacity, more states become
observationally equivalent, resulting in a more conservative solution. To not introduce
any observation losses, the observation channel needs to be such that it has the capacity
for all observations of events executed in the plant; Mmax ≥ maxw∈W{|PΣa(w)|} where
W = {w ∈ Σ∗G | ∃w0w ∈ L(G), |P{tick}(w)| ≤ No} as all events are observed after No ticks.

Non-forcible enabling events

We could have assumed that some events from Σe are not forcible. In this case, Σfor ⊆
Σ̂for ⊆ Σfor∪Σe. Providing less forcible events makes the synthesis result more conservative
since if the non-preemptable tick leads to a bad state, the current state where tick is
enabled must be avoided as well (illustrated by Example 3.6).
Example 3.6. Consider the endangered pedestrian from Example 3.5. With the assump-
tion that events from Σe are forcible, the networked supervisor is given in Figure 3.9.
Without this assumption, there exists no networked supervisor.

y0

y2 y3 y4 y5 y6

y7 y8 y9

je

tick tick tick po

jo jo

tick po

jo

tick

Figure 3.9: Networked supervisor for the endangered pedestrian from Example 3.4 (Nc = No = 1).

47

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

Non-FIFO control channel

Our proposed framework can easily be extended to the case that the control channel is
non-FIFO by applying the following changes. Similar to the observation channel, the
control channel is represented by L = {l | l : Σ× [0, Nc]→ N} where l is a multiset. So,
for each l ∈ L and the time counter n, we define the operators l] [(σ, n)] and l \ [(σ, 0)]
instead of app(l, (σ, n)) and tail(l), respectively. This affects item 1) of both Definition 3.7
and Definition 3.10 such that (σ,Nc) is simply added to l without taking into account the
order of elements. Also, in item 2) of both definitions, head(l) is replaced by ∃(σ, 0) ∈ l.
This may change the result pretty much as the enabling events can now be received by G
in any possible order. As Example 3.7 illustrates, this may increase the chance of reaching
blocking or time-lock states and result in very conservative solutions for many applications.
Example 3.7. Given a plant G indicated in Figure 3.10, Nc = No = 1, and Lmax =
Mmax = 1, NP is obtained as in Figure 3.11. The networked supervisor computed by
Algorithm 3.1 only disables the event be at x0. Now, assume that the control channel is
non-FIFO as well. Then, at x3 = (δG(a0, tick), δ′(a′0, tick a b tick), [], (a, 0)(b, 0)), b can be
executed as well as a. By executing b at x3, NP goes to a blocking state. In this case,
Algorithm 3.1 returns no result since x0 becomes a blocking state and needs to be removed.
Note that this example aims to show how the synthesis result would be conservative if the
control channel is FIFO. So, having no result conveys a positive message here.

a0 a1 a2 a3

a4

tick a b tick

b

tick

Figure 3.10: Plant from Example 3.7.

x0 x1 x2 x3 x4 x5 x6

x7

x8

x9x10 x11 x12 x13 x14

ae be tick a b tick

bo
ao

ao
bo

tick

be

tick b tick bo

tick

Figure 3.11: Networked plant from Example 3.7.

48

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

Delays specified to events

Our proposed approach can be adjusted to a setting with control delay Nσ
c and observation

delay Nσ
o specified to each event σ ∈ Σa. The situation where events have different

amounts of delays usually introduces similar effects as non-FIFO channels since the events
may overtake each other. For instance, assume tick tick a b tick tick ∈ L(G), where Na

o = 2,
N b
o = 1, Na

c = 1, and N b
c = 2. Then, in the observation channel, b overtakes a, and bo

occurs before ao. In the control channel, b needs to be enabled before a as be tick ae tick,
which results in l = (b, 0)(a, 0). To have a networked pant satisfying Property 3.2, the
execution of a should overtake the execution of b. Otherwise, the synthesis result would
become very conservative. So, to adjust our approach, similar to the observation channel,
the control channel is represented by a multiset mc as well instead of a list. Then, the timed
asynchronous composition operator (Definition 3.7) and the networked plant operator
(Definition 3.10) need to be adjusted such that (σ,Nσ

c) is added to mc instead of (σ,Nc)
to l, and (σ,Nσ

o) is added to m instead of (σ,No). The synthesis algorithm does not need
to change.

Bounded delays

Our proposed approach can be adjusted to a setting with non-constant control delay
with lower bound (upper bound) as N l

c (Nu
c) and observation delay with lower bound

(upper bound) as N l
o (Nu

o). In this situation, the timed asynchronous composition operator
(Definition 3.7) and the networked plant operator (Definition 3.10) need to be adjusted
such that (σ, [N l

c, N
u
c]) is added to l instead of (σ,Nc), and (σ, [N l

o, N
u
o]) is added to m

instead of (σ,No). l − 1 and m− 1 reduce both the lower and upper bounds of events by
one, and l − 1 removes an event with upper bound equal to zero from l. A controllable
event, say σ, is executed if head(l) = (σ, (0, i)) for some i ≤ Nu

c . Also, an event, say σ,
is observed if (σ, (0, i)) ∈ m for some i ≤ Nu

o . The synthesis algorithm does not need to
change.

3.4 Requirement Automata
To generalize the method to a wider group of applications, we solve the basic NSC problem
for a given set of control requirements. It is assumed that the desired behavior of G,
denoted by the TDES R, is represented by the automaton (Q,ΣR, δR, q0, QM) where
ΣR ⊆ ΣG. Since most control requirements are defined to provide safety of a plant, we call
a supervised plant safe if it satisfies the control requirements.
Definition 3.11 (Safety). Given a plant G and requirement R, a TDES NSP with event
set ΣNSP is safe w.r.t. G and R if its behavior stays within the legal/safe behavior as
specified by R; ; PΣR(L(NSP)) ⊆ L(R). �

Problem Statement: Given a plant model G as a TDES, control requirement R for G
(also a TDES), observation (control) channel with delay No (Nc) and maximum capacity
Mmax (Lmax), provide a networked supervisor NS such that

49

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

• NSP is nonblocking,
• NSP is time-lock free,
• NS is timed networked controllable w.r.t. G,
• NS is timed networked maximally permissive, and
• NSP is safe for G w.r.t. R.

In the conventional non-networked supervisory control setting, if R is controllable w.r.t.
G (as defined in Definition 3.2), then an optimal nonblocking supervisor can be synthesized
for G satisfying R [Wonham 2015]. If R is not controllable w.r.t. G, then the supremal
controllable sublanguage of G||R, denoted supC(G||R), should be calculated. Then, the
synthesis is applied on supC(G||R) [Cassandras and Lafortune 2009; Wonham 2015].

In a networked supervisory control setting, synthesizing a networked supervisor for
supC(G||R) does not always result in a safe networked supervised plant. This issue occurs
due to the fact that in supC(G||R), some events are already supposed to be disabled, to
deal with controllability problems introduced by requirement R. In a conventional non-
networked setting, this does not cause a problem because events are observed immediately
when executed. However, when observations are delayed, there could be a set of states
reached by the same observation. Hence, if an event is disabled at a state, it should be
disabled at all observationally equivalent ones. Even for a controllable requirement, any
disablement of events should be considered at all observationally equivalent states. This
issue is further clarified in Example 3.8.

To take care of this issue, any requirement automaton R (whether controllable or
uncontrollable) is made complete as R⊥ in terms of both uncontrollable and controllable
events. Completion was first introduced in Flordal et al. [2007] where the requirement
automaton R is made complete in terms of only uncontrollable events. By applying
the synthesis on G||R⊥, all original controllability problems in G||R are translated to
blocking issues. Note that this translation is necessary to let the supervisor know about
the uncontrollable events that are disabled by a given requirement. To solve the blocking
issues, synthesis still takes the controllability definition into account.
Definition 3.12 (Automata Completion). For a TDES R = (Q,ΣR, δR, q0, QM), the
complete automaton R⊥ is defined as R⊥ = (Q ∪ {qd},ΣR, δ

⊥
R , q0, QM) with qd /∈ Q, where

for every q ∈ Q and σ ∈ ΣR,

δ⊥R(q, σ) =

δR(q, σ) if δR(q, σ)!
qd otherwise.

�

To find a networked supervisor, Algorithm 3.1 is applied on Π(G||R⊥, Nc, No, Lmax ,
Mmax). The obtained networked supervisor is already guaranteed to be timed networked
controllable, timed networked maximally permissive, and it results in a nonblocking
and time-lock free networked supervised plant. Theorem 3.5 shows that the networked
supervised plant is safe as well.

50

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

Theorem 3.5 (Safe NSP). Given a plant G, requirement R, and the networked supervisor
NS computed by Algorithm 3.1 for Π(G||R⊥, Nc, No, Lmax ,Mmax): NSNc‖No (G||R⊥) is
safe for G w.r.t. R.

Proof. See Appendix B.2.8. �

Example 3.8. Consider G depicted in Figure 3.12a for which Σuc = {u} and Σfor = ∅.
The control objective is to design a supervisor satisfying the requirement that the event u
must precede the event a, and not vice versa. This requirement can easily be modeled by
the automaton shown in Figure 3.12b.

a0 a1 a2

a3

a4

a5

tick a

u

u

a

tick

tick

(a) Plant

q0 q1 q2
u

tick tick tick

a

(b) Requirement

Figure 3.12: Plant and requirement for Example 3.8.

Let us select No = Nc = Lmax = Mmax = 1 and find a networked supervisor satisfying
all the properties mentioned in the problem statement. For this purpose, R⊥ is depicted in
Figure 3.13. For NP t depicted in Figure 3.14, Algorithm 3.1 does not result in a networked
supervisor as the safe behavior of the plant cannot be preserved by any networked supervisor
in the presence of delays. Note that if the requirement was made complete only in terms
of uncontrollable events, Algorithm 3.1 would give the networked supervisor depicted in
Figure 3.15, which results in the networked supervised plant depicted in Figure 3.16. The
networked supervised plant is not safe as the event a may precede the event u.

q0 q1 q2

qd

u

tick tick tick

a

a u
a

u

Figure 3.13: Total requirement for the plant stated in Example 3.8.

51

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

x0 x1 x2 x3

x4 x5 x6 x7

x8

x9

ae tick a

u

a tick ao

uo

uo

ao

tick

Figure 3.14: Networked plant from Example 3.8.

y0 y1 y2 y3 y4 y5

y6

ae tick tick ao

uo

uo

ao

tick

Figure 3.15: Unsafe networked supervisor for Example 3.8.

z0 z1 z2 z3 z4 z5 z7 z8

z6

z9 z10 z11 z12 z13

z14

ae tick a u tick uo

ao

ao

uo

tick

u

a tick uo

ao

ao

uo

tick

Figure 3.16: Unsafe networked supervised plant for Example 3.8.

52

CHAPTER 3. NETWORKED SUPERVISORY CONTROL SYNTHESIS

3.5 Conclusions
In this chapter, we study the networked supervisory control synthesis problem. We first
introduce a networked supervisory control framework in which both control and observation
channels introduce delays, the control channel is FIFO, and the observation channel is non-
FIFO. Moreover, we assume that a global clock exists in the system such that the passage of
a unit of time is considered as an event tick in the plant model. Also, communication delays
are measured as a number of occurrences of the tick event. In our framework, uncontrollable
events occur in the plant spontaneously. However, controllable events can be executed
only if they have been enabled by the networked supervisor. On the other hand, the plant
can either accept a control command (enabled by the networked supervisor) and execute
it or ignore the control command and execute some other uncontrollable event. For the
proposed framework, we also provide a timed asynchronous composition operator to obtain
the networked supervised plant. Furthermore, we adapt the definition of conventional
controllability for our framework and introduce timed networked controllability. Then, we
present a method of achieving the networked plant automaton representing the behavior
of the plant in the networked supervisory control framework. For the networked plant,
we provide an algorithm synthesizing a networked supervisor that is timed networked
controllable, nonblocking, time-lock free, and maximally permissive. Finally, to generalize,
we solve the problem for a given set of control (safety) requirements modeled as automata.
We guarantee that the proposed technique achieves a networked supervisor that is timed
networked controllable, nonblocking, time-lock free, maximally permissive, and safe.

For cases with large state spaces, we must deal with the scalability problem of the
networked plant. For such cases, it is suggested to switch to timed automata.

53

Chapter 4

Supervisory Control of Timed
Automata using Abstractions

Conventional supervisory control synthesis techniques are not adequate for timed automata
(TA) due to the infinite state space. This chapter presents a supervisory control synthesis
technique for TA with the objective of satisfying controllability and nonblockingness.
The synthesis method consists of three steps. First, a TA is abstracted to a finite
automaton (FA). The event set of the FA includes the discrete events of the TA as well
as an event representing the passage of a considerable amount of time. Time passage is
considered to be preemptable by events from a given set of forcible events. Second, an
algorithm is presented to synthesize a controllable and nonblocking supervisor for the
FA. Finally, a time-refinement technique is proposed to convert the supervisor to a TA.

4.1 Introduction
Discrete-event systems (DESs) are systems with a discrete set of states in which transitions
occur only based on occurrences of asynchronous events [Cassandras and Lafortune 2009].
DESs are often modeled as finite automata (FA) [Hopcroft et al. 2006]. For the purpose of
control, supervisory control theory of DESs has been developed by Ramadge & Wonham
(RW-DES synthesis) [Ramadge and Wonham 1987]. RW-DES synthesis is a model-based
theoretical framework for synthesizing a supervisor that restricts the behavior of a given
plant towards a given set of control specifications (the desired behavior). Additionally,
it takes care of controllability and nonblockingness [Cassandras and Lafortune 2009]. In

This chapter is based on Rashidinejad et al. [2020a]

55

CHAPTER 4. SUPERVISORY CONTROL OF TIMED AUTOMATA USING
ABSTRACTIONS

DES, only the ordering of events matters, and time is totally neglected. However, it is
not always sufficient to solely rely on the behavior of discrete events without taking into
account the time at which these events occur.

Considering timing information in DESs is particularly important in a network-based su-
pervisory control setting. In general, networked control of systems brings many advantages;
it increases the flexibility of the system in terms of sharing data and adding/removing
nodes, and it reduces the complexity and cost of the system by eliminating unnecessary
wiring. However, networked control of systems brings challenges as well. In a networked
control system, communication delays are unavoidable, and they have a high impact on
the system behavior [Gupta and Chow 2010]. To consider the effects of communication
delays, a precise model of timing is required. By considering time in DES, this chapter
provides the basis for networked supervisory control approaches that are resilient to the
effects of communication delays.

DESs in which time is also involved are referred to as real-time discrete-event systems
(RTDESs) [Khoumsi 2002]. RTDESs are systems for which, in addition to the correct
ordering of events, constraints on time delays must be satisfied [Khoumsi 2002]. To
model RTDESs, two formalisms have been proposed: discrete-time models, and dense-time
models. In discrete-time models, also known as timed DESs (TDESs), the discrete event
tick is used to represent the passage of a unit of time of a global clock [Ostroff 1990]. To
model a TDES, the typical DES model is augmented with time bounds for so-called active
events [Dubey 2009]. A subset of the active events is considered to be forcible. A forcible
event may preempt the passage of time. Therefore, the nature of the event tick lies between
controllable and uncontrollable depending on the existence of an enabled forcible event.
For the purpose of control, RW-DES synthesis has been extended for TDESs (RW-TDES
synthesis) in Brandin and Wonham [1994]. A drawback of this approach is that each event
has only a single lower and a single upper time bound, so that each occurrence of that
event is only within its specified time bounds. Associating fixed time bounds to events
limits the expressiveness of TDESs considerably.

Representing each tick of the clock by an event makes the model very sensitive to
changes in the choice of the time unit. Consequently, it is difficult to model systems
with different time scales, as the state space can quickly become very large. To consider
dense-time in DES, Alur and Dill presented timed automata (TA) [Alur and Dill 1994]. TA
consist of a finite set of locations that represent discrete states and a finite set of real-valued
clocks to include the timing behavior [Dubey 2009]. The introduction of real-valued clocks
makes TA more expressive than TDES [Ostroff 1990]. Compared to TDES, TA allow
multiple and different time constraints on transitions. Additionally, TA provide a more
compact graphical model, as time evolution is not shown explicitly.

The use of real-valued clocks in TA may result in an infinite state space, and therefore
the existing synthesis approaches cannot be applied directly. To overcome this problem, a
TA is first abstracted to an FA. Such abstractions have been proposed in Alur and Dill
[1994]. To synthesize a supervisor for a TA, two main approaches have been presented in
the literature: RW-based synthesis such as in Wong-Toi and Hoffmann [1991], and reactive
synthesis (game-based synthesis) such as in Asarin et al. [1998], Cassez et al. [2005], Maler

56

CHAPTER 4. SUPERVISORY CONTROL OF TIMED AUTOMATA USING
ABSTRACTIONS

et al. [1995], and Tripakis and Altisen [1999]. Game-based synthesis approaches for TA
have been implemented in tools such as UPPAAL-TIGA [Behrmann et al. 2007; Maler
et al. 1995]. The main difference between reactive and RW-based synthesis approaches is
that reactive synthesis focuses on providing a possible winning strategy. However, RW-
based synthesis provides a more permissive supervisor that includes all winning strategies.
See [Ehlers et al. 2017] for a more detailed comparison of the approaches. Here, we are
interested in RW-based synthesis approaches as we are looking for a supervisor that does
not restrict the behavior of the plant more than necessary.

Supervisory control of TA has been firstly investigated in Wong-Toi and Hoffmann
[1991] where the concepts of untiming and timing are introduced. Untiming converts a
trace of a timed automaton into a region graph trace and timing converts a trace of a
region graph into a set of TA traces. To synthesize a supervisor as a TA, the plant is first
untimed to an FA called region graph using a region-based abstraction [Alur and Dill
1994; Wong-Toi and Hoffmann 1991]. For the untimed plant, a (untimed) supervisor is
synthesized using the existing language-based methods for FA. Finally, the synthesized
supervisor is timed. Region-based abstraction results in a finite but often very large region
graph. However, it preserves enough information for synthesis [Tripakis and Altisen 1999].

An alternative abstraction approach was introduced in Khoumsi [2002], Khoumsi and
Nourelfath [2002], and Ouedraogo et al. [2008, 2010] to transform a TA into a minimal
and equivalent Set-Exp finite-state automaton (se-FSA). A new event Set is used to
set or reset a clock timer, and an event Exp is used to indicate when this clock has
expired. The synthesis procedure consists of combining the plant and specification into
one TA, describing this TA as an se-FSA, and then computing a supervisor based on
the RW-TDES synthesis procedure in Brandin and Wonham [1994]. Converting a TA
to an se-FSA produces a smaller state space compared to the region-based abstraction
approach. However, the resulting supervisor in this approach is an se-FSA, which requires
an alternative control architecture. A method to transform an se-FSA back into a timed
automaton does not exist [Ouedraogo et al. 2010].

Here, we focus on abstracting TA and applying the existing RW-based synthesis
approach because it has been already implemented in toolsets such as in CIF [van Beek
et al. 2014] or Supremica [Akesson et al. 2006]. Additionally, it is known that the RW-
based synthesis provides a supervisor preserving the largest acceptable behavior of the
plant. For this purpose, the plant is first abstracted to a region graph by applying the
region-based abstraction technique from [Alur and Dill 1994; Wong-Toi and Hoffmann
1991]. Using the same idea from [Wong-Toi and Hoffmann 1991], the transition from
a (clock) region to another one in the region graph is labeled by an event, called τ
(indicating the passage of a considerable time delay). In this regard, we call the region
graph a τ -automaton. Inspired from RW-TDES synthesis, the event τ is assumed to be
preemptable by a set of forcible events. A synthesis algorithm is proposed to obtain a
controllable and nonblocking (untimed) supervisor for the τ -automaton. The untimed
supervisor (which is also a τ -automaton) is then refined to a timed automaton (timed
supervisor) such that the disablement of events and time preemption (by the untimed
supervisor) are translated to more restricted guards and invariants, respectively. By
imposing additional timing restrictions on both guards and invariants, we synthesize a less

57

CHAPTER 4. SUPERVISORY CONTROL OF TIMED AUTOMATA USING
ABSTRACTIONS

conservative (timed) supervisor compared to any other method that has been presented so
far for (abstraction-based) supervisory control synthesis of TA that only allow restrictions
on guards (see Section 4.5).

The contributions of this chapter are:
1. the synthesis technique we propose here is on automata level (instead of language

level as in [Khoumsi 2002; Ouedraogo et al. 2010; Wong-Toi and Hoffmann 1991])
in order to be better suited for implementation.

2. we provide a time-refinement technique to transfer the (untimed) supervisor into a
TA, which is not the case in Khoumsi [2002] and Ouedraogo et al. [2010].

3. we allow the (timed) supervisor not only to impose additional timing restrictions
on guards but also on invariants, and so we provide a less conservative supervisor
compared to [Khoumsi 2002; Ouedraogo et al. 2010; Wong-Toi and Hoffmann 1991].

The rest of the chapter is organized as follows. The definition of TA and the relevant
concepts are given in Section 4.2. There, it is also discussed how a TA is abstracted
to a τ -automaton. Then, the problem that is investigated in this chapter is formulated.
In Section 4.3, a synthesis algorithm is proposed for a τ -automaton, which results in a
controllable and nonblocking (untimed) supervisor in the form of a τ -automaton. In order
to achieve the timed supervisor from the untimed supervisor and the original plant, a
time-refinement technique is presented in Section 4.4. To clarify the synthesis procedure,
an example is provided in Section 4.5. Finally, Section 4.6 concludes this chapter.

4.2 Background
Section 4.2.1 gives the definition of timed automata and the relevant concepts, many of
which appear again in Chapter 5. Section 4.2.2 discusses the abstraction of TA to FA as
introduced in Wong-Toi and Hoffmann [1991].

4.2.1 Timed Automata
A TA is an FA extended with a set of real-valued clocks.
Definition 4.1 (Timed Automaton [Alur and Dill 1994]). A timed automaton is a 7-tuple
(C,L,Σ, E, Lm, L0, I) where

• C is a finite set of clocks with a non-negative real-value (from R≥0). The initial
value of each clock variable is always assumed to be 0,
• L is a finite set of locations,
• Σ is a finite set of events,
• E is a finite set of edges with elements e of the form (ls, σ, g, r, lt) for which ls, lt ∈ L
are the source and target locations, respectively, σ ∈ Σ, g is the guard (clock
constraint), which is a predicate over clock variables, and reset r ⊆ C,
• Lm ⊆ L is the set of marked locations,

58

CHAPTER 4. SUPERVISORY CONTROL OF TIMED AUTOMATA USING
ABSTRACTIONS

• L0 ⊆ L is the set of initial locations,
• I is a function associating an invariant to each location l ∈ L. An invariant is a

clock constraint that needs to be satisfied when the system is in the location. �

The guards and invariants are assumed to be represented by integer constraints over
clock variables. Moreover, we frequently use the following notations:

• the notation . is used to refer to an element of a tuple. For instance, e.σ refers to σ
from e ∈ E.
• the notation Pred[r] stands for a predicate Pred and a reset r. The meaning of this

notation is a predicate in which all occurrences of clock variables from r are replaced
by zero. For instance, (x > 1)[{x}] gives false.

Definition 4.2 (Clock Valuation). Given a set of clocks C, a clock valuation u : C → R≥0
assigns a non-negative real value to each clock x ∈ C. �

For a clock valuation u, u[r] assigns 0 to each clock x ∈ r. The values of C \ r stay the
same.

In this work, we only deal with deterministic TA.
Definition 4.3 (Deterministic TA [Alur and Dill 1994]). A timed automaton (C,L,Σ,
E, Lm, L0, I) is deterministic if it has only one initial location, and for any pair of edges
e1, e2 ∈ E, starting from the same location (e1.ls = e2.ls) and labeled by the same event
(e1.σ = e2.σ), the clock constraints are mutually exclusive (e1.g ∧ e2.g = false). �

Moreover, in examples, TA are depicted graphically. The locations are represented by
circles and the edges by arrows from the source location to the target location, labelled
with the event, the guard and the reset. The reset of a clock c ∈ r is denoted c := 0.
Invariants of locations are indicated inside the locations. Absence of an invariant in a
location represents the invariant that always holds. The initial location is depicted by a
dangling incoming arrow, and the marked locations by double circles.

Applications are typically modeled by a network of automata, where each automaton
represents a single component or subsystem. A single automaton representing the network
of automata can then be achieved as the synchronous product of the constituent au-
tomata [Alur and Dill 1994]. Synchronous product of TA is defined under the assumption
that the two TA do not share any clock variable [Alur and Dill 1994; Bengtsson and Yi
2004]. This assumption is relaxed here, and the synchronous product is generalized for TA
that may share clocks. To do so, we are inspired from the synchronous product of EFA
from Skoldstam et al. [2007].
Definition 4.4 (Synchronous product of TA). The synchronous product of two TA G1 =
(C1, L1,Σ1, E1, L1m, l10, I1) and G2 = (C2, L2,Σ2, E2, L2m, l20, I2), is given by G1||G2 =
(C1 ∪C2, L1×L2,Σ1 ∪Σ2, Ep, L1m×L2m, (l10, l20), Ip), where for each l1 ∈ L1 and l2 ∈ L2,
Ip(l1, l2) = I1(l1) ∧ I2(l2) and Ep is the smallest set that satisfies the following:

• whenever σ ∈ Σ1 \ Σ2, then for every (ls1, σ, g1, r1, lt1) ∈ E1 and l2 ∈ L2,
((ls1, l2), σ, g1, r1, (lt1, l2)) ∈ Ep

59

CHAPTER 4. SUPERVISORY CONTROL OF TIMED AUTOMATA USING
ABSTRACTIONS

• whenever σ ∈ Σ2 \ Σ1, then for every (ls2, σ, g2, r2, lt2) ∈ E2 and l1 ∈ L1,
((l1, ls2), σ, g2, r2, (l1, lt2)) ∈ Ep.
• whenever σ ∈ Σ1∩Σ2, then for every (ls1, σ, g1, r1, lt1) ∈ E1 and (ls2, σ, g2, r2, lt2) ∈ E2,

((ls1, ls2), σ, g1 ∧ g2, r1 ∪ r2, (lt1, lt2)) ∈ Ep. �

Every TA has an underlying semantic graph [Alur and Dill 1994; Tripakis and Yovine
2001].
Definition 4.5 (Semantic Graph). The semantic graph of a TA G = (C,L,Σ, E, Lm,
l0, I) is a labeled graph with a set of states L× (C → R≥0) consisting of a location and a
clock valuation. The initial state is (l0,0), with 0 denoting the clock valuation where all
the clocks are 0. The semantic graph has the following transitions:

• time transition: from state (l, u) to state (l, u+ ∆) labeled with delay ∆ ∈ R≥0 if
u+ δ satisfies I(l) for any δ such that 0 ≤ δ ≤ ∆. Note that for a valuation u and a
real value δ, u+ δ denotes the clock valuation with (u+ δ)(c) = u(c) + δ for each
clock c in the domain of u.
• event transition: from state (ls, us) to state (lt, us[r]) labeled by event σ if there is

an edge e = (ls, σ, g, r, lt) such that us satisfies g, and us[r] satisfies I(lt).

Moreover, states (l, u) in the semantic graph with l ∈ Lm (regardless of the clock valuation
u) are marked. A word in the semantic graph of G is a finite sequence of labels (time or
event). A state in the semantic graph of G is called reachable if it can be reached from
the initial state via a word w ∈ (Σ ∪ R≥0)∗. The language of G, denoted L(G), is the set
of all words in its semantic graph starting from the initial state. �

Based on the semantic graph, some relevant notions for timed automata are defined.
Definition 4.6 (Nonblockingness). A state in a semantic graph is nonblocking if there
exists a word leading from that state to a marked state, i.e., a state (lt, ut) with lt ∈ Lm.
A TA is nonblocking if all reachable states in its semantic graph are nonblocking. �

The set of events of a TA is assumed to be partitioned into a set of uncontrollable
events Σuc and a set of controllable events Σc = Σ \ Σuc. Uncontrollable events are
events that occur spontaneously in the plant such as disturbances or sensor readings.
Controllable events are signals sent to the actuators. In figures of TA edges labelled by
uncontrollable events are indicated by dashed lines, and edges labelled by controllable
events are indicated by solid lines. Time passage is uncontrollable by nature. However, it
may be preempted by execution of a forcible event from a set of forcible events Σfor ⊆ Σ
(forcible events are underlined in figures). Consequently, considering the semantic graph of
a TA, a time transition enabled at a state is considered uncontrollable by default, unless
there is also a forcible event transition enabled at that state. Then, the time transition
is called preemptable. Note that a forcible event can be controllable or uncontrollable as
discussed in Wonham [2015].
Definition 4.7 (Controllability of TA with forcible events). Given a plant G with uncon-
trollable events Σuc, and forcible events Σfor , a supervisor S is controllable w.r.t. G if for
all s ∈ L(S||G) and σ ∈ Σuc ∪ R≥0, whenever sσ ∈ L(G):

60

CHAPTER 4. SUPERVISORY CONTROL OF TIMED AUTOMATA USING
ABSTRACTIONS

1. sσ ∈ L(S||G), or
2. σ ∈ R≥0 and sσ′ ∈ L(S||G) for some σ′ ∈ Σfor .

Property (1) is the standard controllability property (when Σfor = ∅, the time transition
is always uncontrollable); S cannot disable uncontrollable events that may occur in G.
However, if a forcible event is enabled, the time transition is preemptable, which is captured
by Property (2). �

4.2.2 Time-Abstraction
As previously discussed, to apply the RW-based synthesis approach on a TA, we first need
to abstract the infinite state space of that TA into a finite one. In order to abstract a TA
to an FA, while preserving information required for synthesis, the concept of region-based
abstraction is used from [Alur and Dill 1994; Wong-Toi and Hoffmann 1991]. To achieve a
finite representation for a TA G, its clock valuations are divided into a finite set of regions
(denoted RG) using the definition of region equivalence given in Alur and Dill [1994].
Definition 4.8 (Clock regions of TA [Alur and Dill 1994]). Consider a TA G with a set
of clocks C where for each clock x ∈ C, cx is the largest integer c such that c ≥ x or x ≤ c
is a subformula of some clock constraint appearing in guards of edges and/or location
invariants. Each clock region R ∈ RG is specified by:

1. for each clock x ∈ C, a clock constraint from
{x = c | c = 0, 1, . . . , cx} ∪ {c− 1 < x < c | c = 1, 2, . . . , cx} ∪ {x > cx},

2. for any pair of x, y ∈ C such that c− 1 < x < c and d− 1 < y < d appear in item 1)
for some c and d, a clock constraint of one of the following forms: x − c = y − d,
x− c < y − d, or x− c > y − d. �

The abstracted FA in Alur and Dill [1994] contain only event transitions, and there is
no time associated to these transitions. In Wong-Toi and Hoffmann [1991], the event τ is
used to indicate the passage of some time causing the clock valuation to move from a clock
region to the next one. Here, using the same idea, a TA is abstracted to a τ -automaton
with respect to the set of clock regions RG. The notation next(R) is used to denote the
(uniquely defined) time successor of a region R ∈ RG. Moreover, R[r] denotes the clock
region obtained by resetting all clock variables of r.
Definition 4.9 (τ -automaton of a TA). Given a timed automaton G = (C,L,Σ, E,
Lm, l0, I), the τ -automaton is an FA P = (Q,Σ ∪ {τ}, δ, q0, Qm) where Q = L×RG is the
set of states, Σ∪ {τ} is the set of events, δ : Q× (Σ∪ {τ})→ Q is the (partial) transition
function, q0 = (l0, R0) (where R0 is the region where all clocks are 0) is the initial state,
and Qm = Q ∩ (Lm ×RG) is the set of marked states. The notation δ(q, σ)! denotes that
δ is defined for state q = (l, R) and event σ ∈ Σ ∪ {τ} such that

• δ((l, R), σ) = (l′, R[r]) for any (l, σ, g, r, l′) ∈ E such that g is satisfied for the
valuations represented by R.
• δ((l, R), τ) = (l, next(R)) such that I(l) is satisfied by the valuations represented by
R.

61

CHAPTER 4. SUPERVISORY CONTROL OF TIMED AUTOMATA USING
ABSTRACTIONS

The sets of controllable, uncontrollable, and forcible events of P stay the same as of G.
The event τ (showing the passage of time in the abstracted automaton) is generally an
uncontrollable event. A τ -transition can be preempted by a forcible event, and if so it is
called a preemptable τ -transition. �

The following example clarifies the time-abstraction that is used here.
Example 4.1 (TA to τ -automata). For the TA shown in the left in Figure 4.1, with clock
x, and Σ = Σc = Σfor = {a}, RG = {x = 0, 0 < x < 1, x = 1, 1 < x < 2, x = 2, 2 <
x < 3, x = 3, x > 3}. The τ -automaton achieved from the abstraction is depicted on the
right. Each state of the τ -automaton indicates the current location of the TA, and the
clock region that the current clock value belongs to (given in the table below the figures).
Starting from q0 only the event τ can occur as the guard of the edge labeled by a does
not satisfy the clock region. This continues until the guard is satisfied for a valuation
represented by the region, which is the case at states q2, q3, q4. There, if the event a occurs,
the location is changed from 0 to 1 and the clock is reset to 0 (at state q6). Also, P can
take a τ -transition as long as the invariant I(0) is satisfied by the valuations represented
by the clock region. Since a is forcible, the τ -transition enabled at q2, q3, q4 is preemptable
(indicated by solid lines). Also, we use the notation τn to refer to n consecutive occurrences
of the event τ .

0
x < 3

1

1 ≤ x ≤ 2
a

x := 0

q0 q1 q2 q3

q6 q4

q5

q13

τ τ τ

a
a

τ

a

τ

τ7

q0 (0, x = 0) q2 (0, x = 1) q4 (0, x = 2) q6 (1, x = 0)

q1 (0, 0 < x < 1) q3 (0, 1 < x < 2) q5 (0, 2 < x < 3) q13 (1, x > 3)

Figure 4.1: Abstraction of a TA to a τ -automaton.

Remark. In a deterministic TA, whenever there exist edges enabled from a location l that
are labeled by the same event σ, the guards are mutually exclusive. Therefore, from each
state in the τ -automaton corresponding to l, at most one of these guards is satisfied. As a
result, the τ -automaton of a deterministic TA is also deterministic.

Here, we formalize the problem that we solve in this chapter.

Problem Statement: For a given TA G (representing a plant), the objective is to
synthesize a TA St (a timed supervisor) that is controllable w.r.t. G, and the supervised
plant S||G is nonblocking.

62

CHAPTER 4. SUPERVISORY CONTROL OF TIMED AUTOMATA USING
ABSTRACTIONS

The following sections discuss the synthesis procedure; in Section 4.3, an untimed
supervisor S is synthesized for P . Then, in Section 4.4, the untimed supervisor S (a
τ -automaton) is refined to a timed supervisor St (a TA).

4.3 Synthesis

This section presents a synthesis algorithm to achieve a non-blocking (untimed) supervisor
for a τ -automaton P that results from the abstraction of a TA G.

The synthesis algorithm presented here is inspired from Chapter 3 and Rashidinejad et
al. [2018], which present a state-based non-blocking supervisory control synthesis algorithm
for a TDES under communication delays. Here, we present a similar synthesis algorithm
in terms of time preemption for a τ -automaton with a set of forcible events.

Algorithm 4.1 results in an untimed supervisor S = (Y,Σ ∪ {τ}, δS, y0, Ym) (also as a
τ -automaton) for P that avoids blocking states taking into account controllability. The
algorithm starts from P and removes states that become unreachable through the algorithm
(by disabling some transitions) so that the final result S has the set of states Y ⊆ Q.

In Algorithm 4.1, the following additional concepts are used:

• BLock(S) gives the set of blocking states of S.
• FS(q) = {σ ∈ Σfor | δS(q, σ)!} is the set of forcible events enabled at state q ∈ Y .
• Yf (S) = {q ∈ Y | δS(q, τ)! ∧ FS(q) 6= ∅} is the set of states of S at which the event
τ is enabled, and it is preemptable.
• UnconS(BS) gives the set of bad states, i.e., states from which a state from BS ⊆ Y
can be reached in S either through a sequence of uncontrollable events or uncon-
trollable (not preempt-able) τ ’s. UnconS(BS) is the smallest set of states such
that
1. BS ⊆ UnconS(BS);
2. if δS(q, σ) ∈ UnconS(BS) for some q ∈ Y and σ ∈ Σuc, then q ∈ UnconS(BS);
3. if δS(q, τ) ∈ UnconS(BS) for some q ∈ Y and FS(q) = ∅, then q ∈ UnconS(BS).

• Reach(S) removes the unreachable states and the transitions to or from them.

Example 4.2. Let us consider the τ -automaton from Example 4.1. The untimed supervisor
synthesized from Algorithm 4.1 is depicted in Figure 4.2. To prevent the blocking state
(q5 of Figure 4.1), τ is preempted by the forcible event a at state q4. The states of the
untimed supervisor Y ⊆ Q refer to the current location of the original plant, and the clock
region that the current clock value belongs to (given in the table below the figure).
Remark. Consider the case where the event τ is enabled at a state, say q ∈ Y , where
FS(q) 6= ∅. Then, by definition q ∈ Yf(S). Now, imagine that τ is preempted at q by a
forcible event, and in some later iterations, all those forcible events from FS(q) become
disabled. Then, the τ -transition becomes uncontrollable, and so the state q is added to BS
at line 12 as it does not belong to Yf (S) anymore. This issue is clarified in Example 4.3.

63

CHAPTER 4. SUPERVISORY CONTROL OF TIMED AUTOMATA USING
ABSTRACTIONS

Algorithm 4.1 Untimed supervisory control synthesis
Input: P = (Q,Σ ∪ {τ}, δ, q0, Qm), Σuc, Σc, Σfor
Output: S = (Y,Σ ∪ {τ}, δS, y0, Ym)
1: S ← P
2: Yf ← Yf (S)
3: BS ← BLock(S)
4: while y0 /∈ BS ∧ BS 6= ∅ do
5: for y /∈ UnconS(BS) and σ ∈ Σc ∪ {τ} do
6: if δS(y, σ) ∈ UnconS(BS) then
7: δS(y, σ)← undefined
8: end if
9: end for
10: Y ← Y \ UnconS(BS)
11: S ← Reach(S)
12: BS ← BLock(S) ∪ (Yf \ Yf (S))
13: end while
14: if y0 ∈ BS then
15: no result
16: end if

q0 q1 q2 q3

q6 q4q13

τ τ τ

a
a

τ

aτ7

q0 (0, x = 0) q2 (0, x = 1) q4 (0, x = 2) q13 (1, x > 3)

q1 (0, 0 < x < 1) q3 (0, 1 < x < 2) q6 (1, x = 0)

Figure 4.2: Untimed supervisor for τ -automaton from Example 4.1.

Example 4.3. Consider the τ -automaton shown in Figure 4.3. Here, the event b is
forcible, and so the event τ enabled at state q2 is controllable (represented by a solid line).
Starting Algorithm 4.1, one gets Yf = {q2} and BS = {q3, q4}. Consider the state q2 from
which δS(q2, b) ∈ BS and δS(q2, τ) ∈ BS where FS(q2) 6= ∅. Then, due to line 7 of the
algorithm, both the event b and τ become disabled, and Yf (S) = ∅. At line 12, the state
q2 is considered a bad state to be removed in the next iterations when the event a becomes
disabled. Finally, since q0 becomes a bad state, the result will be an empty supervisor.
Remark. Starting Algorithm 4.1, Yf(S) and BLock(S) both iterate in O(|Y |) steps by
definition. Also, the while-loop iterates in O(|Y |) steps. Inside the while-loop, the for-loop
iterates in O(|Y | × (|Σc|+ 1)) since in the worst case, all the controllable events and the
preemptable τ -transition are disabled at any state. Each of UnconS(BS) and Reach(S)
also terminates in O(|Y |) steps by definition. So, the complexity of Algorithm 4.1 is
O(|Y |2(|Σc| + 1)). However, in most cases, the algorithm terminates faster than the

64

CHAPTER 4. SUPERVISORY CONTROL OF TIMED AUTOMATA USING
ABSTRACTIONS

q0 q1 q2 q3

q4

q5

τ a τ

b

c

Figure 4.3: τ -automaton from Example 4.3.

worst case. For instance, for the bus-pedestrian in Section 4.5, although the worst case
complexity is 288 iterations, the algorithm terminates after 2 iterations.

4.4 Time-Refinement

In this section, a time-refinement technique is presented to obtain the timed supervisor St
based on the untimed supervisor S and the original plant G. The idea is to translate the
decisions made by S for P to decisions that St should make for G. Applying Algorithm 4.1
to a τ -automaton P (as the abstracted plant) with a set of (symbolic) states Q results
in S that has a set of states Y ⊆ Q. Therefore, each state q ∈ Y is a pair of l ∈ L, and
a clock region R ∈ RG. This information is used to determine St where we introduce
the following concepts; K(l) = {q ∈ Y | q = (l, R)} is a set of states related to the same
location l of the TA, and J(l, σ) = {q ∈ K(l) | δS(q, σ)!} is a subset of K(l) from which
the event σ is enabled. K(l) is used to determine the invariant of the location l as it
gives any pair of l and the possible (clock) region that l can be in. J(l, σ) is used to
determine the guard of each edge labeled by σ as it gives any pair of l and the clock region
where the event σ can occur. Consider the untimed supervisor S given in Figure 4.2.
Then, K(0) = {q0, q1, q2, q3, q4} is the set of states related to the same location l = 0 and
K(1) = {q6, q13} is related to location l = 1. J(0, a) = {q2, q3, q4} is a subset of K(0) from
which the event a is enabled. The transformation of S to St is as follows:
Definition 4.10. Given a plant G = (C,L,Σ, E, Lm, l0, I), the abstraction of G to the
τ -automaton P , and the untimed supervisor S = (Y,Σ ∪ {τ}, δS, y0, Ym) obtained by
applying Algorithm 4.1 on P , the timed supervisor is St = (C,L,Σ, Es, Lm, l0, Is), where
Es and Is are determined as follows:

• Es = {(ls, σ,
∨
q∈J(ls,σ) q.R,−, lt) | δS((ls, Rs), σ) = (lt, Rt)}.

• for each location l ∈ L, Is(l) = ∨
q∈K(l) q.R. �

Note that the (timed) supervisor does not influence the resets in the plant, and so the
resets are left out in the edges (denoted by −). Considering Definition 4.10, if a state
(l, R) in P becomes unreachable in S, it follows that (l, R) /∈ K(l), and so R will not be

65

CHAPTER 4. SUPERVISORY CONTROL OF TIMED AUTOMATA USING
ABSTRACTIONS

considered in Is(l) (see Example 4.4). Also, in the case that the event σ is disabled by S
at state q = (l, R), then q /∈ J(l, σ). So, in the timed supervisor, R will not be considered
in the guard of the edge labeled by σ (see Example 4.5).
Example 4.4. Consider the untimed supervisor S given in Figure 4.2. The timed super-
visor is presented in Figure 4.4 for which, considering Definition 4.10, Es = {(0, a, q2.R ∨
q3.R ∨ q4.R,−, 1)}, Is(0) = q0.R ∨ q1.R ∨ q3.R ∨ q4.R, and Is(1) = q6.R (which is always
true). Note that the invariants and guards are simplified in the figure.

0
x ≤ 2

1

1 ≤ x ≤ 2
a

x := 0

Figure 4.4: Timed supervisor for TA from Example 4.1.

Example 4.5. Consider the TA G and its untimed supervisor S given in Figure 4.5 (G
in the left and S in the right). K(0) = {q0, q1}, K(1) = ∅, K(2) = {q2, q3}, and J(0, a) =
{q1}. From Definition 4.10, we achieve the timed supervisor St depicted in Figure 4.6.
Note that location 1 is unreachable in St as the transition δ((0, x = 0), a) = (1, x ≥ 0) in
P is undefined in S and so q0 /∈ J(0, a).

0
x < 1 2

1

x > 0
a

x = 0
a

q0 q1

q2

q4

τ

a

τ2

q0 (0, x = 0) q2 (2, 0 < x < 1)

q1 (0, 0 < x < 1) q4 (2, x > 1)

Figure 4.5: Timed automaton and its untimed supervisor from Example 4.5.

66

CHAPTER 4. SUPERVISORY CONTROL OF TIMED AUTOMATA USING
ABSTRACTIONS

0
x < 1 2

0 < x < 1
a

Figure 4.6: Timed supervisor for the TA from Figure 4.5.

Theorem 4.1 summarizes the main result of this chapter.
Theorem 4.1. Consider a TA G and its corresponding τ -automaton P for which the
untimed supervisor S results from Algorithm 4.1. The timed supervisor St achieved from
time-refinement of S is controllable for G, and St||G is nonblocking.

Proof. See Appendix C.2.1. �

4.5 Example: Bus-Pedestrian
To clarify the synthesis procedure, the bus-pedestrian example from Khoumsi and Nourelfath
[2002] is used.

Consider a bus that is headed directly for a pedestrian and will run over him at x = 2
time units if he does not move. The pedestrian needs y = 1 time unit to realize his fate,
after which he has the chance to jump out of the bus’s path. If the pedestrian jumps
before the bus passes, he is safe. Figure 4.7 gives the automata representing the bus,
pedestrian, and the safe behavior of the system. The safe behavior is modeled in such a
way that if the pedestrian jumps before the bus passes, then the system goes to a marked
state. Otherwise, the system goes to a blocking state. The event pass is uncontrollable,
and the event jump is forcible.

b0
x ≤ 2 b1

x = 2
pass

(a) Bus

p0 p1

y ≥ 1
jump

(b) Pedestrian

s0 s1 s2

s3

jump pass

pass pass

pass

(c) Safe behavior

Figure 4.7: Plant automata for the bus-pedestrian example.

67

CHAPTER 4. SUPERVISORY CONTROL OF TIMED AUTOMATA USING
ABSTRACTIONS

(b0, p0, s0)
x ≤ 2

0

(b1, p0, s3)

1

(b0, p1, s1)
x ≤ 2

2

(b1, p1, s2)

3

x = 2
pass

y ≥ 1
jump

x = 2
pass

Figure 4.8: Synchronous product of the TA from Figure 4.7.

The synchronous product of the bus, pedestrian and the safe behavior automata is
shown in Figure 4.8. To apply synthesis, the TA is first abstracted to the τ -automaton
shown in Figure 4.9 where the blocking states are indicated in red.

q0 q1 q2 q3 q4 q5

q6 q7 q8 q9

q10 q11

τ τ ττ τ pass

jump jump jump τ

τ τ

pass

τ

q0 (0, x = y = 0) q4 (0, x = y = 2) q8 (2, x = y = 2)

q1 (0, 0 < x = y < 1) q5 (1, x = y = 2) q9 (1, x = y > 2)

q2 (0, x = y = 1) q6 (2, x = y = 1) q10 (3, x = y = 2)

q3 (0, 1 < x = y < 2) q7 (2, 1 < x = y < 2) q11 (3, x = y > 2)

Figure 4.9: Abstraction of the TA from Figure 4.8 to a τ -automaton.

By applying Algorithm 4.1 to the τ -automaton depicted in Figure 4.9, we get an
untimed supervisor S shown in Figure 4.10. As it is clear from the figure, to take care of
controllability and nonblockingness, S disables the event τ at state q3.

The final step is to apply the time-refinement technique on S. Considering Figure 4.10,
K(0) = {q0, q1, q2, q3} and J(0, jump) = {q2, q3}. Considering Figure 4.8, the timed
supervisor applies the following restrictions; 1) the guard of the edge labeled by jump is
set to x = y = 1 ∨ 1 < x = y < 2, which simplifies to 1 ≤ x = y < 2, and 2) the
invariant of location 0 is set to x = y = 0∨ 0 < x = y < 1∨ x = y = 1∨ 1 < x = y < 2, or

68

CHAPTER 4. SUPERVISORY CONTROL OF TIMED AUTOMATA USING
ABSTRACTIONS

q0 q1 q2 q3

q6 q7 q8

q10 q11

τ τ ττ

jump jump

τ τ

pass

τ

Figure 4.10: Untimed supervisor S for the TA from Figure 4.7.

equivalently x = y < 2. The resulting timed supervisor is given in Figure 4.11.

(b0, p0, s0)
x = y < 2 (b1, p0, s3)

(b0, p1, s1)
x ≤ 2 (b1, p1, s2)

x = 2
pass

1 ≤ x = y < 2
jump

x = 2
pass

Figure 4.11: Timed supervisor St for the TA from Figure 4.7.

The supervised plant is St||G = St, which is obtained from Definition 4.4. The
supervised plant leaves state (b0, p0, s0) before the guard of the uncontrollable event pass is
satisfied, and so it never reaches the blocking state (b1, p0, s3). Comparing the supervised
plant and the (uncontrolled) plant, the invariant of location (b0, p0, s0) is restricted due to
the disablement of τ by S at state q3 (in Figure 4.10). Moreover, the guard of the edge
labeled by the controllable event jump is restricted due to the event disablement by S
at state q4 of P , and also to match the invariant. Note that this does not restrict the
behavior of the plant as time could not have passed the guard limit due to the invariant.
The resulting (timed) supervisor prevents the nonblocking state of the TA while it takes
care of controllability.

For many applications, the supervisor may need to preempt time by forcing the plant
to take an action. For such cases, we need the concept of forcible events. Considering the
bus-pedestrian example, if the event jump was not forcible (the supervisor could not force
the event jump to preempt time), then the result would be an empty supervisor is the
case with the approaches in Khoumsi [2002] and Wong-Toi and Hoffmann [1991], since
additional timing restrictions on invariants are not allowed.

69

CHAPTER 4. SUPERVISORY CONTROL OF TIMED AUTOMATA USING
ABSTRACTIONS

4.6 Conclusions
In this chapter, we present a supervisory control synthesis technique for timed automata
(TA). Modeling plants as TA makes it possible to consider communication delays based on
real-time. By investigating supervisory control of timed automata, this chapter builds the
basis of networked supervisory control synthesis in a real-time setting. The objective is to
synthesize a supervisor also as a TA, which guarantees controllability and nonblockingness.
For this purpose, region-based abstraction is used to abstract a TA to a finite automaton,
called τ -automaton, in which the event τ is used to indicate the passage of some time
delay. The event τ is assumed to be uncontrollable; however, it can be preempted by a
forcible event. A state-based synthesis algorithm is proposed for the τ -automaton, which
results in a nonblocking and controllable (untimed) supervisor also as a τ -automaton.
Finally, a time-refinement technique is presented to convert the untimed supervisor (as a
τ -automaton) to a timed supervisor (as a TA).

70

Chapter 5

Supervisory Control of Timed
Automata without Abstractions

Considering real-valued clocks in timed automata (TA) makes it a practical modeling
framework for discrete-event systems. However, the infinite state space brings challenges to
the control of TA. To synthesize a supervisor for TA using the conventional supervisory con-
trol theory, existing methods abstract TA to finite automata (FA). For many applications,
the abstraction of real-time values results in an explosion in the state space of FA. This
chapter presents a supervisory control synthesis algorithm directly applicable to the TA
without any abstraction. The plant is given as a TA with a set of uncontrollable events and
a set of forcible events. Forcible events can preempt the passage of time when needed. The
synthesis algorithm works by iteratively strengthening the guards of edges labeled by con-
trollable events and invariants of locations where the progression of time can be preempted
by forcible events. The synthesized supervisor, which is also a TA, is guaranteed to be
controllable, maximally permissive, and results in a nonblocking and safe supervised plant.

5.1 Introduction

Supervisory control theory (SCT) was first introduced by Ramadge-Wonham to control
discrete-event systems (DESs) [Ramadge and Wonham 1987]. SCT provides a synthesis
method resulting in a supervisor that restricts the plant behavior towards a given set

This chapter is based on Rashidinejad et al. [2021b] with an earlier version as Rashidinejad et al.
[2020b].

71

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

of desired behavior. Moreover, the synthesized supervisor satisfies the controllability,
nonblockingness, and maximal permissiveness properties [Wonham 2015].

DESs, such as communication networks, manufacturing and traffic systems, are typically
modeled using finite automata (FA). To provide a compact representation of complex
and large DESs, FA have been further extended with discrete variables to extended finite
automata (EFA) [Skoldstam et al. 2007]. In EFA, transitions are labeled by events and
associated with constraints on variables (guards), where variables may be updated after
the occurrence of an event [Skoldstam et al. 2007].

The dynamics of DESs depend entirely on the ordering of the event occurrences, and so
are independent of time [Cassandras and Lafortune 2009]. However, the control of many
applications needs to be able to include timing information in modeling DESs. Imagine a
system that needs to be controlled over a distance, due to being located in a hazardous or
unreachable environment. To control such systems, the concept of networked supervisory
control is introduced in Chapter 3.

Networked control of systems introduces communication delays that are unavoidable
and have a high impact on the system performance [Heemels et al. 2010]. To consider
the effects of communication delays, the DES model must include timing information
of event occurrences as well as the ordering of them. For this purpose, the concepts of
timed discrete-event systems (TDESs), and timed automata (TA) have been introduced
in Brandin and Wonham [1994] and in Alur and Dill [1994], respectively. TDESs and TA
are known as real-time discrete-event systems (RTDESs), which are modeled not only
based on the ordering of events, but also based on timing constraints on events [Khoumsi
2002].

TDESs incorporate discrete time in modeling DESs. A TDES is generally a DES in
which the execution of each event, called active event, is restricted within a lower and an
upper time bound specified for the event. It is assumed that a digital clock exists in the
system, and so the TDES is modeled as a FA that includes a specific event, called tick,
indicating the passage of a unit of time. The event tick is generally an uncontrollable event
as it spontaneously occurs in the system, and so it cannot be disabled by a supervisor.
However, it is assumed that tick is preemptable by a subset of active events, called forcible
events. Taking the nature of tick into account, SCT of DESs, has been modified for TDESs
in Brandin and Wonham [1994]. Moreover, like DESs, the model of TDESs has been
extended with discrete variables into timed extended finite automata (TEFA) [Miremadi
et al. 2015].

TA incorporate dense-time in modeling DESs [Alur and Dill 1994]. A TA consists of a
finite set of locations and a finite set of real-valued clocks [Dubey 2009]. To each location,
a clock constraint is associated, called an invariant, determining the time that the system
is allowed to stay in that location. Each edge between two locations is labeled by an event,
the clock constraint associated to that event called the guard, and the set of clocks that
are reset to zero, called the reset, by the occurrence of that event.

Compared to TDESs, a TA brings a more natural modeling framework for real-life
applications because 1) it considers real-time, and so it copes with the state-space explosion
problem introduced by discrete time; this is especially important for systems with various

72

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

time scales. And 2) it easily allows events to have multiple and different timing constraints,
rather than specifying the time of each event occurrence by fixed lower and upper bounds.

The control of TA is challenging due to the clock variables, making the state space
of TA infinite. To overcome this problem, existing approaches abstract TA into FA, and
apply supervisory control synthesis on the abstracted result [Maler et al. 1995; Tripakis
and Altisen 1999; Wong-Toi and Hoffmann 1991]. In general, the synthesis approaches
can be divided into the following categories: 1) game-based (reactive) synthesis, and 2)
the synthesis method proposed by Ramadge-Wonham, which is referred to as RW-based
synthesis here. Game-based (reactive) synthesis of TA has been investigated in Asarin
et al. [1998], Cassez et al. [2005], Maler et al. [1995], and Tripakis and Altisen [1999],
and it has also been implemented in tools such as UPPAAL-TIGA [Behrmann et al.
2007; Maler et al. 1995]. Game-based synthesis and RW-based synthesis mainly differ in
satisfying maximal permissiveness. Game-based synthesis gives a winning strategy if it
exists. However, RW-based synthesis provides a unique maximally permissive supervisor,
which compromises all winning strategies [Ehlers et al. 2017]. Here, we focus on RW-based
synthesis as we want to achieve a maximally permissive, controllable, and nonblocking
supervisor.

RW-based supervisor synthesis of TA was first investigated in Wong-Toi and Hoffmann
[1991], where the plant is first abstracted into an FA (region graph) using region-based
abstraction from [Alur and Dill 1994; Wong-Toi and Hoffmann 1991]. Then, a supervisor
is synthesized for the FA using existing methods. Finally, to refine the abstraction, timing
information is added to the FA supervisor. For many applications, region-based abstraction
results in a finite but a very large FA [Khoumsi and Nourelfath 2002; Tripakis and Yovine
2001].

To overcome the state-space explosion problem of region-based abstraction, some state-
space minimization methods have been proposed such as zone-based abstraction [Alur and
Dill 1994]. These methods are mainly used for model checking and verification purposes as
they do not provide sufficient information for supervisor synthesis [Ouedraogo et al. 2010].

In Khoumsi and Nourelfath [2002] and Ouedraogo et al. [2010], a transformation is
introduced to obtain a minimal FA from a TA that is suitable for synthesis purposes.
The transformation is based on two special events; Set and Exp, where Set represents
the set and reset of a clock, and Exp indicates the expiration of the clock. The SetExp-
transformation results in a minimal FA, for which a supervisor is synthesized using the
concept of forcible events from TDESs. Preempting time using forcible events results in
a more comprehensive solution as more events can be disabled if needed. However, it is
currently unknown how to refine the synthesized supervisor (as an FA with Set and Exp
events) to a TA (with these events translated into time constraints), and so the synthesis
based on SetExp-transformation is not satisfying.

Supervisory control of TA using forcible events has already been studied in Chapter 4,
where region-based abstraction is used to abstract a TA into an FA. For the FA, a synthesis
algorithm is proposed. The synthesized supervisor is transformed back into a TA using a
time-refinement technique. Although this method gives the supervisor as a TA, it still
suffers from the state-space explosion problem caused by the abstraction.

73

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

Here, we provide a supervisory control technique for TA such that:

• no abstraction is needed to cope with the state-space explosion problem,
• an algorithm is proposed that works with automata instead of languages to ease

integration of an implementation in a tool set such as CIF [van Beek et al. 2014] or
Supremica [Akesson et al. 2006],
• the RW-based synthesis is used so that the synthesized supervisor is maximally

permissive, as well as controllable, and nonblocking,
• the concept of forcible events from TDESs is used to provide a more comprehensive

result, and
• to provide technical proofs, the notion of clock regions of timed automata is adapted

in a specific way.

To the best of our knowledge, there is no work in the literature investigating TA
RW-based synthesis without abstraction as we do here 2. Our synthesis technique is close
to supervisory control synthesis for EFA. The main differences between EFA and TA are
as follows: 1) an EFA deals with a set of variables belonging to a finite domain. However,
a TA deals with clock variables, which belong to the infinite set of real-valued numbers,
and 2) a TA includes location invariants that force the TA to leave the location before the
invariant is violated. This is not the case in EFA. Dealing with real-valued clock variables
and location invariants make the synthesis of TA much more complex than the synthesis
of EFA. Details are discussed throughout the chapter.

The rest of the chapter is organized as follows. In Section 5.2, the formal definition of
TA and the relevant concepts are given. Section 5.3 presents the basic timed supervisory
control (TSC) synthesis problem and the proposed solution. In Section 5.4, the basic TSC
synthesis problem is generalized to satisfy a given set of control requirements. To verify
the results, the proposed method is applied to a rail road crossing system in Section 5.5.
Finally, Section 5.6 concludes this chapter.

5.2 Preliminaries

A TA is an FA extended with a finite set of real-valued clocks. To model the timing
behavior of TA, the accepting temporal conditions to switch between different modes
(locations) or stay in the current one are represented by clock constraints [Alur and Dill
1994; Bengtsson and Yi 2004]. Some of the following definitions have already appeared in
Chapter 4.
Definition 5.1 (Clock Constraints [Bengtsson and Yi 2004]). Given a finite set of real-
valued clocks C, x ∼ n and x − y ∼ n are atomic clock constraints for any x, y ∈ C,
∼ ∈ {<,=, >}, and n ∈ N. Clock constraints are defined as follows: any atomic clock
constraint is a clock constraint, and for any two clock constraints ϕ1 and ϕ2, also ϕ1 ∧ ϕ2
and ϕ1 ∨ ϕ2 are clock constraints. �

2 Rashidinejad et al. [2020b] presents an earlier version of the approach proposed in this chapter.

74

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

Instead of writing x− x = 0 with x ∈ C as a clock constraint, we write true. Similarly,
false is written instead of x− x > 0.
Definition 5.2 (Clock Valuation). Given a set of clocks C, a clock valuation u : C → R≥0
assigns a real value to each clock x ∈ C. �

Note that, initially, the valuation of each clock is 0, where 0 denotes the clock valuation
where all the clock variables have value 0.

A clock valuation u satisfies a clock constraint ϕ, denoted u |= ϕ, whenever ϕ is true
for the values assigned by u to each clock.
Definition 5.3 (Timed Automaton [Alur and Dill 1994]). A timed automaton is a 7-tuple
(C,L,Σ, E, Lm, L0, I) where

• C is a finite set of clocks with a non-negative real-value (from R≥0). The initial
value of each clock variable is always assumed to be 0,
• L is a finite set of locations,
• Σ is a finite set of events,
• E is a finite set of edges with elements e of the form (ls, σ, g, r, lt) for which ls, lt ∈ L
are the source and target locations, respectively, σ ∈ Σ, g is the guard, which is a
clock constraint, and r ⊆ C is the set of clocks to be reset to 0,
• Lm ⊆ L is the set of marked locations,
• L0 ⊆ L is the set of initial locations,
• I is a function associating an invariant to each location l ∈ L. An invariant is a

clock constraint that needs to be satisfied when the system is in the location. �

In Bengtsson and Yi [2004], guards are generally given as clock constraints, but invariants
are restricted to clock constraints that are downwards closed; x < n or x ≤ n. In this
work, similar to [Alur 1999], both guards and invariants are allowed to be arbitrary clock
constraints.

To clarify the problem and illustrate each step of the approach, the bus-pedestrian
example from [Brandin and Wonham 1994] is used throughout the chapter.
Example 5.1 (Bus-Pedestrian). Imagine that a bus is headed directly for a pedestrian
and will run over him at time x = 2 if he does not move. The pedestrian needs an amount
of time y = 1 to realize his fate, after which he has the chance to jump out of the bus’s
path. If the pedestrian jumps before the bus passes, he is safe. Figure 5.1 gives the
automata, representing the bus, the pedestrian, and the safe behavior of the system. The
safe behavior is modeled in such a way that if the pedestrian jumps before the bus passes,
then the system goes to a marked state. Otherwise, the system goes to a blocking state.

For TA, we frequently use the following notations:

• the notation . is used to refer to an element of a tuple. For instance, e.σ refers to σ
from the edge e ∈ E.
• the notation u[r], for a clock valuation u and a reset r, assigns 0 to each clock x ∈ r.
The values of C \ r stay the same.

75

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

a
x ≤ 2 g

x = 2
pass

(a) Bus

r c

y ≥ 1
jump

(b) Pedestrian

0 1 2

⊥

jump pass

pass pass

pass

(c) Safe behavior

Figure 5.1: Plant automata from Example 5.1.

• the notation pred↑δ, for a predicate pred and the increase δ ∈ R≥0, replaces all
occurrences of the variables x ∈ C by x+ δ. For instance, (x ≥ 3)↑δ gives x+ δ ≥ 3.
• the meaning of the notation pred[r], for a predicate pred and a reset r, is a predicate

in which all occurrences of clock variables from r are replaced by zero.
• the notation Preds(C) is used to indicate the set of all predicates over the clock
variables.
• the notation P stands for the natural projection operator as defined in Cassandras

and Lafortune [2009]; given a language L ⊆ Σ∗ and an event set Σ′ ⊆ Σ: PΣ′(L) :=
{w′ ∈ Σ′∗ | ∃w ∈ L, PΣ′(w) = w′}.

Here, we only deal with deterministic TA [Alur and Dill 1994].
Definition 5.4 (Deterministic TA). A timed automaton (C,L,Σ, E, Lm, L0, I) is deter-
ministic if it has only one initial location L0 = {l0}, and for any pair of edges e1, e2 ∈ E,
with the same source location (e1.ls = e2.ls) and labeled by the same event (e1.σ = e2.σ),
the clock constraints are mutually exclusive (e1.g ∧ e2.g = false). �

From now on, we only use TA with a single initial location l0 and consequently represent
them by (C,L,Σ, E, Lm, l0, I).

In the examples, TA are depicted graphically. The locations are represented by circles
and the edges by arrows from the source location to the target location, labelled with
the event, the guard and the reset. The reset of a clock x ∈ r is denoted by x := 0.
Invariants of locations are indicated inside the locations. Absence of an invariant in a
location represents the invariant that always holds. The initial location is depicted by a
dangling incoming arrow, and the marked locations by double circles.
Definition 5.5 (Sub-automaton of a TA). Given a TA A = (C,L,Σ, E, Lm, l0, I), a TA
B = (C,L′,Σ, E ′, L′m, l′0, I ′) is a sub-automaton of A, denoted B ⊆ A, if

76

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

• L′ ⊆ L,
• for all (ls, σ, g′, r, lt) ∈ E ′ : (ls, σ, g, r, lt) ∈ E for some g such that g′ ⇒ g,
• L′m = Lm ∩ L′,
• l′0 = l0, and
• for all l ∈ L′: I ′(l)⇒ I(l). �

Applications are typically modeled by a network of automata, where each automaton
represents a single component or subsystem; compare Figure 5.1. A single automaton
representing the network of automata can then be generated as the synchronous product
of the constituent automata.

In Alur and Dill [1994] and Bengtsson and Yi [2004], synchronous product of TA is
defined under the assumption that the two TA do not share any clock variable. This
assumption is relaxed here, and the synchronous product is generalized for TA that may
share clocks. To do so, we are inspired from the synchronous product of EFA as defined
in Skoldstam et al. [2007].
Definition 5.6 (Synchronous Product of TA). The synchronous product of two TA G1 =
(C1, L1,Σ1, E1, L1m, l10, I1) and G2 = (C2, L2,Σ2, E2, L2m, l20, I2), is given by G1||G2 =
(C1 ∪C2, L1×L2,Σ1 ∪Σ2, Ep, L1m×L2m, (l10, l20), Ip), where for each l1 ∈ L1 and l2 ∈ L2,
Ip(l1, l2) = I1(l1) ∧ I2(l2) and Ep is the smallest set that satisfies the following:

• whenever σ ∈ Σ1 \ Σ2, then for every (ls1, σ, g1, r1, lt1) ∈ E1 and l2 ∈ L2,
((ls1, l2), σ, g1, r1, (lt1, l2)) ∈ Ep
• whenever σ ∈ Σ2 \ Σ1, then for every (ls2, σ, g2, r2, lt2) ∈ E2 and l1 ∈ L1,

((l1, ls2), σ, g2, r2, (l1, lt2)) ∈ Ep.
• whenever σ ∈ Σ1∩Σ2, then for every (ls1, σ, g1, r1, lt1) ∈ E1 and (ls2, σ, g2, r2, lt2) ∈ E2,

((ls1, ls2), σ, g1 ∧ g2, r1 ∪ r2, (lt1, lt2)) ∈ Ep. �

For the bus-pedestrian example, the synchronous product of the bus, pedestrian and
the safe behavior automata is shown in Figure 5.2.

(a, r, 0)
x ≤ 2 (g, r,⊥)

(a, c, 1)
x ≤ 2 (g, c, 2)

x = 2
pass

y ≥ 1
jump

x = 2
pass

Figure 5.2: Synchronous product of the TA from Example 5.1.

Every TA has an underlying semantic graph [Alur and Dill 1994; Tripakis and Yovine
2001].

77

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

Definition 5.7 (Semantic Graph). The semantic graph of a TA G = (C,L,Σ, E, Lm,
l0, I), is a labeled graph with a set of states X ⊆ L× (C → R≥0), consisting of a location
l and a clock valuation u such that (l, u) ∈ X iff u |= I(l). The initial state is (l0,0)
if 0 |= I(l0). Otherwise, the semantic graph is undefined. The semantic graph has the
following transitions:

• event transition: from state (ls, us) to state (lt, us[r]) labeled by event σ if there is
an edge e = (ls, σ, g, r, lt) such that us |= g, and us[r] |= I(lt).
• time transition: from state (l, u) to state (l, u+ ∆) labeled with delay ∆ ∈ R≥0 if
u+ δ |= I(l) for any δ such that 0 ≤ δ ≤ ∆. Note that for a valuation u and a real
value δ, u+ δ denotes the clock valuation with (u+ δ)(x) = u(x) + δ for each clock
x ∈ C.

Moreover, states (l, u) in the semantic graph with l ∈ Lm (regardless of the clock
valuation u) are marked. A word w in the semantic graph of G is a finite sequence of
labels; w ∈ (Σ∪R≥0)∗ with ε denoting the empty sequence. A state in the semantic graph
of G is called reachable if it can be reached from the initial state via a word. The language
of G, denoted L(G), is the set of all words in its semantic graph starting from the initial
state. Note that for any G′ ⊆ G: L(G′) ⊆ L(G). �

Note that since a TA is allowed to have arbitrary clock constraints as invariants, it
may be the case that 0 6|= I(l0). This may happen regarding modeling issues, or through
synthesis, where in the latter case, synthesis actually does not result in a supervisor.

Based on the semantic graph, some relevant notions for timed automata are defined.
Definition 5.8 (Nonblockingness). A state in a semantic graph is nonblocking if there
exists a path leading from that state to a marked state, i.e., a state (lt, ut) with lt ∈ Lm.
A TA is nonblocking if all of the reachable states in its semantic graph are nonblocking. �

In the rest of the chapter, the plant is given as a TA G represented by (C,L,ΣG, EG,
Lm, l0, IG). It is assumed that all events are observable. However, not all of the events
might be controllable. The set of events ΣG is assumed to be partitioned into a set of
uncontrollable events Σuc and a set of controllable events Σc = ΣG \ Σuc. Uncontrollable
events are events that occur spontaneously in the plant such as disturbances or sensor
readings. Controllable events are signals sent to the actuators. In figures of TA, edges
labelled by uncontrollable events are indicated by dashed lines, and edges labelled by
controllable events are indicated by solid lines. Time passage is uncontrollable by nature.
However, it may be preempted by execution of a forcible event σf ∈ Σfor , where Σfor ⊆ ΣG

(forcible events are underlined in figures). Consequently, considering the semantic graph
of a TA, a time transition enabled at a state is considered uncontrollable by default,
unless there is also a forcible event transition enabled at that state. Then, the time
transition is said to be preemptable. Note that a forcible event can be controllable or
uncontrollable as discussed in Wonham [2015]. For the bus-pedestrian example, the event
pass is uncontrollable, and the event jump is controllable and forcible.

The following definition of controllability for TA with forcible events, is inspired
from [Brandin and Wonham 1994].

78

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

Definition 5.9 (Controllability of TA with Forcible Events). Given a plant G with
uncontrollable events Σuc, and forcible events Σfor , a TA S is controllable w.r.t. G if for
all w ∈ L(S||G) and σ ∈ Σuc ∪ R≥0, whenever wσ ∈ L(G):

1. wσ ∈ L(S||G), or
2. σ ∈ R≥0 and wσ′ ∈ L(S||G) for some σ′ ∈ Σfor .

Property (1) above is the standard controllability property; S cannot disable uncon-
trollable events that G may generate. However, if a forcible event is enabled, this
may preempt the time event, which is captured by Property (2). �

A supervisor S is called proper for a plant G whenever S is controllable w.r.t. G, and
the supervised plant S||G is nonblocking.
Definition 5.10 (Maximal Permissivenesss). A proper supervisor S is maximally permis-
sive for a plant G, whenever S preserves the largest admissible behavior of G compared to
any other proper supervisor S ′; for any proper S ′: L(S ′||G) ⊆ L(S||G). �

As stated in Alur and Dill [1994], the clock valuations of a TA G can be divided into a
finite set of clock regions using the definition of region equivalence. Here, we introduce
extended clock regions of a TA G, denoted RG.
Definition 5.11 (Extended Clock Regions of TA). Consider a TA G with a set of clocks
C where the the clock ceiling function, k : C → N gives the largest natural number that a
clock x ∈ C is bounded to by guards or invariants. Each clock region rG ∈ RG is specified
by:

1. for each clock x ∈ C, a single clock constraint of one of the following forms:
• x = n for some n ∈ {0, . . . , k(x)},
• n− 1 < x < n for some n ∈ {1, 2, . . . , k(x)}, or
• x > k(x)

2. for any two different clocks x, y ∈ C, a single clock constraint of one of the following
forms:
• y − x+ k(x) = q for some q ∈ {0, . . . , k(x) + k(y)},
• q − 1 < y − x+ k(x) < q for some q ∈ {1, . . . , k(x) + k(y)},
• y − x+ k(x) < 0, or
• y − x+ k(x) > k(x) + k(y) �

Note that k(x) does not restrict the value of the clock variable x; it only gives the
largest number that x is bounded to by guards or invariants. Considering Figure 5.2,
k(x) = 2. However, in location (g, r,⊥), the value of x can grow to any real number larger
than or equal to 2.
Example 5.2. Figure 5.3 depicts the extended clock regions for a TA with two clock
variables x, y, where k(x) = 2 and k(y) = 1. The clock regions given for the same example
in Alur and Dill [1994] are indicated in black.

We call a clock region unbounded (dashed areas/lines in Figure 5.3) if it is related to

79

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

y

x

1

1 2

y
−
x

+
k(x

) =
3

y
−
x

+
k(x

) =
2

y
−
x

+
k(x

) =
1

y
−
x

+
k(x

) =
0

Figure 5.3: Extended clock regions from Example 5.2.

x > k(x) for some x ∈ C. Otherwise, the region is called bounded (dotted areas/solid
lines in Figure 5.3). Note that although the number of the extended clock regions is
more than the number of clock regions, it is still finite because the set of clock regions is
finite (see [Alur and Dill 1994] for details), and the extended clock regions include all the
bounded regions from the set of clock regions, and it partitions each unbounded region
into a finite number of new regions. For instance, in Example 5.2, 0 < x < 1, y > 1 is an
unbounded region that is partitioned into new regions as 0 < x < 1, y > 1, y−x+k(x) < 3;
0 < x < 1, y > 1, y − x+ k(x) = 3; and 0 < x < 1, y > 1, y − x+ k(x) > 3.
Definition 5.12 (G-Clock Constraint). Consider a plant G with a set of clocks C, the
clock ceiling function k : C → N, and the set of regions RG. A clock constraint ϕ is called
a G-clock constraint whenever all the atomic constraints of ϕ are bounded by k(x) for all
x ∈ C. �

Clearly, for any two G-clock constraints ϕ1 and ϕ2, ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2 are G-clock
constraints.

Based on the extended clock regions, we are now able to discriminate the regions
that satisfy a G-clock constraint. Let us consider Example 5.2 again. Given a G-clock
constraint ϕ = x − y > 2, there does not exist a set of clock regions satisfying ϕ
based on the definition of clock regions in Alur and Dill [1994]. However, considering
Definition 5.11, y = 0, x > 2, y − x + k(x) < 0; 0 < y < 1, x > 2, y − x + k(x) < 0;
y = 1, x > 2, y − x+ k(x) < 0; and y > 1, x > 2, y − x+ k(x) < 0 are the extended clock
regions satisfying ϕ. This discrimination will be the basis to prove the termination and
correctness of the proposed algorithms.

Moreover, it is assumed that there exists a function Z mapping a G-clock constraint ϕ
to the maximal set of regions from RG such that for any region rG ∈ Z(ϕ), and for any
valuation u represented by rG, denoted u ∈ rG, u |= ϕ. For any two G-clock constraints
ϕ1 and ϕ2, Z necessarily satisfies the following properties:

80

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

• Z(ϕ1 ∧ ϕ2) = Z(ϕ1) ∩ Z(ϕ2) and Z(ϕ1 ∨ ϕ2) = Z(ϕ1) ∪ Z(ϕ2).
• Whenever Z(ϕ1) = Z(ϕ2), ϕ1 and ϕ2 represent the same G-clock constraint.

Also, for the clock constraints represented by true and false, the mapping gives RG, and
∅, respectively.

5.3 Basic TSC Synthesis

The Basic TSC Synthesis Problem is defined as follows.

Problem Statement: Given a plant model G as a TA, the objective is to synthesize a
timed supervisor S, also as a TA, such that

• S is controllable w.r.t. G,
• S||G is nonblocking, and
• S is maximally permissive w.r.t. G.

Considering the bus-pedestrian example, a supervisor is required to avoid reaching the
blocking location (g, r,⊥) in Figure 5.2. The objective is to provide a supervisory control
synthesis approach that does not need an abstraction. The synthesized supervisor should
respect controllability (Definition 5.9), nonblockingness (Definition 5.8), and be maximally
permissive (Definition 5.10).

To synthesize such a supervisor, it is needed to determine the states (l, u) in the
semantic graph that should be made unreachable, referred to as bad states. These are the
following types of states: 1) states that are blocking and should be avoided to take care of
nonblockingness, and 2) states that lead to a bad state through an uncontrollable event
or a time transition that cannot be preempted; these states should be avoided to respect
controllability as well as nonblockingness. As the synthesis algorithm should not involve
any abstraction, we need to determine the clock valuations for which a location of a TA is
a bad state (in the semantic graph). For this purpose, we start by determining the clock
valuations for which a location is nonblocking, referred to as the "nonblocking predicate"
of a location. Based on the nonblocking predicate, a "bad state predicate" is associated to
each location determining the clock valuations for which the location is mapped to a bad
state in the semantic graph.

5.3.1 Nonblocking Condition
Given a plant G, Algorithm 5.1 associates a nonblocking predicate N(l) to each location
l ∈ L. Initially (line 3), N i(l) with i = 0 is set to IG(l) if l is a marked location, and to
false otherwise. The nonblocking predicate of each location is updated (line 6) to N i+1(l)
based on:

1 the current nonblocking predicate N i(l),

81

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

2 the condition for any outgoing edge (l, σ, g, r, l′) to lead to a nonblocking location
(an event transition leading to a nonblocking state in the semantic graph), and

3 the condition to stay (for some time delay δ ≤ ∆) in a nonblocking location as long
as the invariant is satisfied (represented by a time transition leading to a nonblocking
state in the semantic graph).

This iterates until a fix-point is reached where the nonblocking predicate stays the same
for all locations (line 8).

Algorithm 5.1 Nonblocking Predicate (NBP)
Input: G = (C,L,ΣG, EG, Lm, l0, IG)
Output: N : L→ Preds(C)
1: i := 0

2: for l ∈ L do N0(l) :=

IG(l), if l ∈ Lm,
false, otherwise

3: end for
4: repeat
5: for l ∈ L do

N i+1(l) :=
1︷ ︸︸ ︷

N i(l) ∨

2︷ ︸︸ ︷∨
l
σ,g,r−−→l′

(g ∧ IG(l′)[r] ∧N i(l′)[r]) ∨

3︷ ︸︸ ︷
∃∆ N i(l)↑∆ ∧ ∀δ ≤ ∆ IG(l)↑δ

6: end for
7: i := i+ 1
8: until ∀l ∈ L N i(l) = N i−1(l)
9: for l ∈ L do N(l) := N i(l)

10: end for

Algorithm 5.1 follows the same steps as presented for the nonblocking predicate of
EFA in Ouedraogo et al. [2011] with the following adjustments (indicated in red in
Algorithm 5.1):

1. The initial nonblocking condition for marked locations is set to the location invariant
IG(l) instead of true. This is to take into account the invariants of the marked
locations.

2. In the update (line 6), the invariant of the target location is added to the second
term to guarantee that the invariant of the target location is satisfied upon entering
that location.

3. The third term is added to take into account the time transitions in the semantic
graph of the TA that may be used for reaching a nonblocking state.

82

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

Property 5.1 (NBP Termination). Given a plant G with a set of locations L and a set
of regions RG; Algorithm 5.1 terminates.

Proof. See Appendix D.2.1. �

Property 5.2 (NBP and Nonblocking States). Given a plant G and NBP(G): for any
(l, u) in (the semantic graph of) G, (l, u) is a nonblocking state iff u |= N(l), where
N = NBP(G).

Proof. See Appendix D.2.2. �

Example 5.3 (Nonblocking Predicate for Bus-Pedestrian). Let us consider the bus-
pedestrian from Example 5.1. The result of Algorithm 5.1 is given in Table 5.1. The
conditions for locations (g, r,⊥) and (g, c, 2) are left out, as they are false and true
respectively, for all iterations. The condition x ≤ 2 ∧ (y ≥ 1 ∨ x− y ≤ 1) is equivalent to
x ≤ 2 ∧ x− y ≤ 1.

Table 5.1: Nonblocking predicate for bus-pedestrian.

N

i Loc (a, r, 0) Loc (a, c, 1)
0 false false
1 false x = 2
2 x = 2 ∧ y ≥ 1 x ≤ 2
3 x ≤ 2 ∧ (y ≥ 1 ∨ x− y ≤ 1) x ≤ 2
4 x ≤ 2 ∧ x− y ≤ 1 x ≤ 2

5.3.2 Bad State Condition
Given a plant G, and the nonblocking predicate computed by Algorithm 5.1, Algorithm 5.2
associates a bad state predicate B(l) to each location l ∈ L.

Initially, Bi(l) with i = 0 is set to the logical negation of N(l) for each location l ∈ L
(line 3) because these characterize the blocking states. Then, the bad state predicate of
each location is updated to Bj+1(l) (line 6) based on

4 the previous bad state predicate Bj(l),
5 the condition of any outgoing edge (l, σ, g, r, l′) labeled by an uncontrollable event

σ ∈ Σuc to lead to a bad state (an uncontrollable event transition leading to a bad state
in the semantic graph), and

6 the condition of staying in a bad state for some time delay δ ≤ ∆ as long as the
invariant is satisfied for all the clock variables and while there is no forcible event able to
preempt time for any δ′ ≤ δ (an uncontrollable time transition leading to a bad state in
the semantic graph).

This iterates until a fix-point is reached where the bad state predicate stays the same
for all locations (line 8).

83

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

Algorithm 5.2 Bad State Predicate (BSP)
Input: G = (C,L,ΣG, EG, Lm, l0, IG),NBP(G)
Output: B : L→ Preds(C)
1: j := 0
2: for l ∈ L do B0(l) := ¬N(l)
3: end for
4: repeat
5: for l ∈ L do

Bj+1(l) :=
4︷ ︸︸ ︷

Bj(l)∨

5︷ ︸︸ ︷∨
l
σ,g,r−−→l′
σ∈Σuc

(
g ∧ IG(l′)[r] ∧Bj(l′)[r]

)
∨

6︷ ︸︸ ︷
∃∆Bj(l)↑∆ ∧ ∀δ ≤ ∆

(
IG(l)↑δ ∧

∀δ′ ≤ δ ¬
∨

l
σf ,g,r−−−→l′
σf∈Σfor

(g↑δ′ ∧ IG(l′)↑δ′ [r] ∧ ¬Bj(l′)↑δ′ [r])
)

6: end for
7: j := j + 1
8: until ∀l ∈ L Bj(l) = Bj−1(l)
9: for l ∈ L do B(l) := Bj(l)
10: end for

The differences (indicated in red) between Algorithm 5.2 and the bad state condition
of EFA presented by [Ouedraogo et al. 2011] are as follows; 1. The invariant of the target
location is considered to determine if the uncontrollable transition should exist in the
semantic graph. 2. The third term takes into account the non-preemptable time transitions
leading to a bad state.
Property 5.3 (BSP Termination). Given a plant G with the set of locations L, set of
regions RG, and NBP(G); Algorithm 5.2 terminates.

Proof. See Appendix D.2.3. �

Property 5.4 (BSP and Bad States). Given a plant G and NBP(G): for any (l, u) in
(the semantic graph of) G, (l, u) is a bad state iff u |= B(l), where B = BSP(G,NBP(G)).

Proof. See Appendix D.2.4. �

Example 5.4 (Bad State Predicate for Bus-Pedestrian). By applying Algorithm 5.2 on
the bus-pedestrian example, the bad state predicate of locations (a, r, 0) and (a, c, 1) are

84

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

obtained as in Table 5.2. The bad state predicates for (g, r,⊥) and (g, c, 2) are true and
false, respectively.

Table 5.2: Bad state predicate for bus-pedestrian.

B

j Loc (a, r, 0) Loc (a, c, 1)
0 x > 2 ∨ x− y > 1 x > 2
1 x ≥ 2 ∨ x− y > 1 x > 2
2 x ≥ 2 ∨ x− y > 1 x > 2

5.3.3 Synthesis
Figure 5.4 gives an overview of the synthesis procedure. As indicated in the figure, there
are two loops: 1. guard adaptation (Loop-1) considers how the supervisor can affect the
controllable events, and 2. invariant adaptation (Loop-2) considers how the invariants can
be modified using the concept of forcible events.

START

END

Non-blocking
Condition

Bad-state
Condition

Guard
Adaptation

Guards stay
the same?

Invariant
Adaptation

Invariants stay
the same?

YES

YES

NO

NO

Loop-1

Loop-2

Figure 5.4: An overview of the synthesis procedure.

Guard adaptation

Consider Figure 5.4, in Loop-1 the guards are adapted to obtain a supervisor that prevents
the bad states. For this purpose, the guard of each edge (l, σ, g, r, l′) labeled by a controllable
event σ ∈ Σc is adjusted to become (l, σ, g ∧ ¬B(l′)[r], r, l′).

85

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

Invariant adaptation

So far, forcible events have not been taken into account. The effect of forcible events
preempting time events is taken into account in the invariant adaptation (Loop-2). The
invariant of a location l ∈ L can be changed only if there exists an edge labeled by a
forcible event σf ∈ Σfor starting from l. In this case, the invariant is adapted to prevent
reaching the bad states as follows:

I(l) := I(l) ∧ ¬B(l).

Synthesis Algorithm

Algorithm 5.3 is the synthesis algorithm. For a TA G with a set of uncontrollable events
Σuc, and a set of forcible events Σfor , it results in S = (C,L,ΣG, ES, Lm, l0, IS). The
notation FS(l) = {e ∈ ES | e.ls = l, e.σ ∈ Σfor , e.g is satisfiable} gives the set of edges
of S starting from location l and labeled by a forcible event. The algorithm starts with
S = G. As indicated in Figure 5.4, in the inner loop (lines 9-16), the guards of edges
labeled by controllable events are adapted until a fix-point is reached. In the outer loop
(lines 7-25), the invariants of locations where there exists an edge labeled by a forcible
event are adapted until a fix-point is reached. Otherwise, the synthesis goes back to Loop-1
(guard adaptation). Note that if the invariant of a location l is adapted, and in some
later iteration the guard of an edge labeled by the forcible event becomes false, then the
invariant should be set back to its original IG(l). This is captured in line 21.

Given a plant G, in the case that u0 |= B(l0), with B as the result of Algorithm 5.2 for
TSCS(G) and NBP(TSCS(G)), then TSCS(G) is undefined. In the rest of the chapter, it
is assumed that u0 6|= B(l0) for any given plant G.
Property 5.5 (TSCS Termination). Given a plant G; Algorithm 5.3 terminates.

Proof. See Appendix D.2.5. �

Property 5.6 (TSCS(G) is a TA). Given a plant G, S = TSCS(G) is a TA.

Proof. See Appendix D.2.6. �

Property 5.7 (TSCS(G) is a subautomaton of G). Given a plant G: TSCS(G) ⊆ G.

Proof. See Appendix D.2.7. �

According to Property 5.7, TSCS(G)||G = TSCS(G).
Property 5.8 (Algorithm Correctness). Given a plantG and the supervisor S = TSCS(G):
for any reachable state (l, u) (in the semantic graph) of S: u 6|= B(l), where B =
BSP(S,NBP(S)).

Proof. See Appendix D.2.8. �

The following theorems summarize the main results.

86

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

Algorithm 5.3 Timed supervisory control synthesis (TSCS)
Input: G = (C,L,ΣG, EG, Lm, l0, IG), Σuc, Σc, Σfor
Output: S = (C,L,ΣG, ES, Lm, l0, IS)
1: S := G
2: n := 0
3: for e ∈ ES, e = (l, σ, g, r, l′) do e.g0 := e.g
4: end for
5: for l ∈ L do I0

S(l) := IG(l)
6: end for
7: repeat . Loop-2: Invariant Adaptation
8: m := 0
9: repeat . Loop-1: Guard Adaptation
10: Nn,m := NBP(S)
11: Bn,m := BSP(S,Nn,m)
12: for e ∈ ES such that e.σ ∈ Σc do
13: e.gm+1 := e.gm ∧ ¬Bn,m(l′)[r]
14: end for
15: m := m+ 1
16: until ∀e ∈ ES e.gm = e.gm−1

17: for e ∈ ES do e.g := e.gm

18: end for
19: for l ∈ L do
20: if FS(l) 6= ∅ then In+1

S (l) := InS (l) ∧ ¬Bn,m(l)
21: else In+1

S (l) := IG(l)
22: end if
23: end for
24: n := n+ 1
25: until ∀l ∈ L InS (l) = In−1

S (l)
26: for l ∈ L do IS(l) := InS (l)
27: end for

Theorem 5.1 (Controllability). Given a plant G with uncontrollable events Σuc and
forcible events Σfor , and the supervisor S = TSCS(G): S is controllable w.r.t. G.

Proof. See Appendix D.2.9. �

Theorem 5.2 (Nonblockingness). Given a plant G and the supervisor S = TSCS(G):
the supervised plant S||G is nonblocking.

Proof. See Appendix D.2.10. �

Theorem 5.3 (Maximal Permissiveness). Given a plant G and the supervisor S =
TSCS(G): S is maximally permissive for G.

Proof. See Appendix D.2.11. �

87

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

Example 5.5 (Supervisor Synthesis for Bus-Pedestrian). Let us apply Algorithm 5.3
to the bus-pedestrian from Example 5.1. Initially, S is set to the plant depicted in
Figure 5.2. First, the guard of the edge labeled by the controllable event jump is modified
to y ≥ 1 ∧ x ≤ 2. Since N1,0 = N0,0 and also B1,0 = B0,0, e.g1 = e.g0, and the inner loop
stops. Next, for l0 = (a, r, 0), the invariant is adapted to x ≤ 2 ∧ x < 2 = x < 2. Since
N1,1 = N1,0 and also B1,1 = B1,0, I1

S(l0) = I0
S(l0) and the outer loop also terminates. The

synthesized supervisor is depicted in Figure 5.5.

(a, r, 0)
x < 2∧
x− y ≤ 1

(g, r,⊥)

(a, c, 1)
x ≤ 2 (g, c, 2)

x = 2
pass

y ≥ 1 ∧ x ≤ 2
jump

x = 2
pass

Figure 5.5: Supervisor for bus-pedestrian from Example 5.1.

Remark. Invariant adaptation can highly affect the synthesis result. Consider Example 5.5,
Algorithm 5.3 does not result in a supervisor without invariant adaptation. However, if
the TA has no forcible event, time transitions are always uncontrollable and the synthesis
procedure can be adjusted as follows:

1. the update of the bad state predicate (Algorithm 5.2-line 6) simplifies to

Bj+1(l) := Bj(l) ∨
∨

l
σ,g,r−−→l′
σ∈Σuc

(
g ∧ IG(l′)[r] ∧Bj(l′)[r]

)
∨

∃∆ Bj(l)↑∆ ∧ ∀δ ≤ ∆ IG(l)↑δ

where the last part of 6 is removed, and
2. the algorithm ends after the inner loop indicated in Figure 5.4 since guard adaptation

is the only modification that can be applied through synthesis.

5.4 Requirement Automata
To generalize the method to a wider class of applications, we solve the TSC synthesis
problem for a given set of control requirements. It is assumed that an allowed behavior of
G is denoted by the timed automaton R = (CR, Q,ΣR, ER, Qm, q0, IR), where ΣR ⊆ ΣG

and CR ∩ C = ∅. Since most control requirements are defined to provide safety of a plant,
we call a supervised plant SP = S||G safe if it satisfies the control requirement R.

88

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

Definition 5.13 (Safety). Given a plant G and a control requirement R, a TA S with event
set ΣS is safe w.r.t. G and R if PΣSP∩ΣR(L(S ||G)) ⊆ PΣSP∩ΣR(L(R)) with ΣSP = ΣS ∪ ΣG.

�

Requirement automata can be considered in synthesis by being transferred into the
plant using synchronous product. However, if a requirement automaton is not controllable
(Definition 5.9), then it is necessary to let the supervisor know about the uncontrollable
events that are disabled by a given requirement. To take care of this issue, a requirement
automaton R is made complete. Completion was first introduced in Flordal et al. [2007]
for DESs, where the requirement automaton R is made complete as R⊥ in terms of
uncontrollable events. By applying the synthesis on G||R⊥, all original controllability
problems in G||R are translated to blocking issues. To solve the blocking issues, synthesis
still takes the controllability definition into account. Inspired from [Flordal et al. 2007],
we present the completion of a TA.
Definition 5.14 (TA Completion). Given a TA R = (CR, Q,Σ, ER, Qm, q0, IR), the
complete automaton R⊥ is defined as R⊥ = (CR, Q ∪ {qd},Σ, E⊥R , Qm, q0, IR), where
qd /∈ Q, IR(qd) = true and IR(q) = I(q) for all q ∈ Q, and for every qs ∈ Q, σ ∈ Σuc:

E⊥R = ER ∪ {(qs, σ, g⊥, {}, qd) | (qs, σ, g, r, qt) ∈ ER},

where g⊥ = ¬
(∨

e∈ER,e.qs=qs,e.σ=σ e.g ∧ IR(e.qt)[e.r]
)
. �

To synthesize a supervisor, Algorithm 5.3 is applied on G||R⊥. The obtained super-
visor is already guaranteed to be controllable, maximally permissive, and it results in a
nonblocking supervised plant. Theorem 5.4 shows that the supervised plant is safe as well.
Theorem 5.4 (Safety). Given a plant G, a set of control requirements R, and the
supervisor S = TSCS(G||R⊥): S is safe for G w.r.t. R.

Proof. See Appendix D.2.12. �

In general, there can be a set of control requirements {R1, R2, . . . , Rn} given for a plant.
In that case, the allowed behavior of G, is determined by the synchronous product of all re-
quirement automata; R = R1||R2|| . . . ||Rn. Since completion distributes over synchronous
product, R⊥ can be computed either as R⊥1 ||R⊥2 || . . . ||R⊥n , or (R1||R2|| . . . ||Rn)⊥.

5.5 Case Study
In this section, we consider the verification example from [Alur 1999; Alur and Dill 1994]
and modify it for synthesis. The TA representing the train and gate are depicted in
Figure 5.6. The system in Alur [1999] and Alur and Dill [1994] also involves an automatic
controller, depicted in Figure 5.7, to open and close the gate in a railroad crossing. The
control requirements for the train-gate-controller system are as follows [Alur and Dill
1994]:

• Safety requirement: whenever the train is inside the gate, the gate should be closed.
• Liveness requirement: the gate is never closed for more than 10 time units.

89

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

In [Alur 1999; Alur and Dill 1994], the system is assessed to be safe by analysing the
timing constraints: they say that with the (random) gate-controller, that is part of the
system, the event lower always precedes the event in, so the system is always safe. We do
not consider such a controller to already be given as a part of the system. We synthesize a
supervisor that is correct-by-construction, and more importantly this supervisor guarantees
controllability, nonblockingness, and maximal permissiveness.

The models of train and gate are taken directly from [Alur 1999; Alur and Dill 1994].
The events app and out for the train, and the events down and up for the gate are assumed
to be uncontrollable. Moreover, the events raise and lower of the gate are assumed to be
forcible.

t0
t1

x ≤ 5

t2
x ≤ 5

t3
x ≤ 5

app x := 0

x > 2
in

out

exit

(a) Train

g0
g1

y ≤ 1

g2
g3

y ≤ 2

lower y := 0

down

y := 0 raise

y ≥ 1
up

(b) Gate

Figure 5.6: Train-gate system.

c0
c1

z ≤ 1
c2

z ≤ 1
app z := 0

z = 1
lower

z := 0 exit

raise

Figure 5.7: Gate-controller from [Alur 1999; Alur and Dill 1994].

The safety requirement is represented by the TA in Figure 5.8a, where the blue location
and edges are added to make the TA complete. The liveness requirement is represented
by the TA in Figure 5.8b. The liveness requirement does not need completion as the
uncontrollable event down is enabled at both states of the automaton.

The supervisor synthesized by Algorithm 5.3 for the train-gate and control requirements
is given in Figure 5.9. In this figure, the synchronous product of the train-gate and control
requirements is indicated in black and the adaptations made by the supervisor in red.

90

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

r0 r1 r2

qd

down

raise

raise down

in

out

down

out
out

(a) Safety

rr0 rr1
down z := 0

z ≤ 10
raise

raise down

(b) Liveness

Figure 5.8: Requirements for train-gate system.

5.6 Conclusions
In this chapter, we propose a synthesis algorithm for timed automata (TA) with a set
of forcible events. The algorithm is directly applicable on TA without abstracting them
to finite state automata. The objective is to avoid blocking states. To take care of
controllability, not only the blocking states but also the states from which a blocking state
is reachable in an uncontrollable manner (referred to as bad states) should be avoided. The
bad states are determined using nonblocking and bad state predicates associated to each
location. The modifications made through synthesis are as follows: 1. guard adaptation of
edges labeled by controllable events, and 2. invariant adaptation of locations from which
there exists an edge labeled by a forcible event. Based on the notion of extended clock
regions, it is proven that the synthesized supervisor satisfies nonblockingness, controllability,
and maximal permissiveness. To generalize, we solve the problem for a given set of control
(safety) requirements modeled as TA. We guarantee that the synthesized supervisor satisfies
controllability, nonblockingness, maximal permissiveness, and safety. Finally, the results
are verified by applying the method on a case study.

91

CHAPTER 5. SUPERVISORY CONTROL OF TIMED AUTOMATA WITHOUT
ABSTRACTIONS

t0
g0
r0
rr0

t1, x ≤ 5
g0
r0
rr0

t0
g1, y ≤ 1

r0
rr0

t1, x ≤ 5
g1, y ≤ 1

r0
rr0

t0
g2
r1

rr1,z ≤ 10

t1, x ≤ 5
g2
r1

rr1,z ≤ 10

t2, x ≤ 5
g2
r2
rr1

t3, x ≤ 5
g2
r1

rr1,z ≤ 10

t0
g3, y ≤ 2

r0
rr0

t1, x ≤ 5
g3, y ≤ 2

r0
rr0

t3, x ≤ 5
g3, y ≤ 2

r0
rr0

app x := 0

app x := 0

app x := 0

app x := 0

y ≤ 1
lower
y := 0

x ≤ 5 ∧ y ≤ 1
lower
y := 0

down
z := 0

down
z := 0

z ≤ 10 ∧x ≤ 5 ∧ y ≤ 2
raise
y := 0

z ≤ 10∧x ≤ 5
raise
y := 0

z ≤ 10
raise
y := 0

2 < x ≤ 5 ∧ z ≤ 10
in out

z ≤ 10
exit

y ≤ 2 ∧ x ≤ 5
exit

y ≥ 1
up

y ≥ 1
up

Figure 5.9: Synthesized supervisor for train-gate and control requirements. Edges with guards
equal to false and locations reached by them have been removed.

92

Chapter 6

Supervisory Control of
Discrete-Event Systems under

Attacks

Due to network-based communications, cyber-physical systems face the risks of cyber-
attacks, which might result in catastrophic damage. This chapter provides an overview
of existing approaches that prevent damage caused by cyber-attacks in the supervisory
control of cyber-physical systems. The objective is to identify missing pieces, possi-
ble links and determine new directions for further research to extend current prac-
tices. For this purpose, first, we classify the current research works under a frame-
work consisting of three dimensions: 1) the communication channel where an attack
can happen, 2) the attack impact on the transmitted data, and 3) the mechanism to
prevent damage. This classification will then help us to compare the existing tech-
niques and investigate how they can be improved to get closer to the ideal scenario
where most kinds of attacks can be handled so that the closed-loop system remains safe.

6.1 Introduction
Cyber-physical systems (CPSs) are the integration of computation, networking and physi-
cal processes. CPSs can be found in many areas varying from manufacturing and chemical
processes to aerospace and healthcare systems [Shi et al. 2011]. Network-based communi-
cations between the cyber part and the physical part in CPSs raises the need to deal with

This chapter is based on Rashidinejad et al. [2019b].

93

CHAPTER 6. SUPERVISORY CONTROL SYNTHESIS UNDER ATTACKS

cyber security, especially for applications where an attack might put the system and human
safety at risk such as in smart grids or water networks [Amin et al. 2010; Ciancamerla
et al. 2014; Eliades and Polycarpou 2010; Nicolaou et al. 2018; Pasqualetti et al. 2011;
Sridhar et al. 2011; Teixeira et al. 2010; Zhu and Başar 2011]. For this reason, security of
CPSs has gained a lot of attention in recent years [Cardenas et al. 2008; Cardenas et al.
2009; Fawzi et al. 2014; Pasqualetti et al. 2013].

In this chapter, we focus on works investigating cyber-attacks in the supervisory control
of a CPS modeled as a discrete-event system (DES). A DES is a dynamical system defined
over a discrete set of states with state transitions that are correlated to the occurrences of
events [Cassandras and Lafortune 2009]. Supervisory control theory has been developed for
DESs to ensure safety and progress properties of the closed-loop control systems [Ramadge
and Wonham 1987]. Figure 6.1 depicts a typical supervisory control system2 under attacks.
In an active attack, the attacker’s goal is to inflict damage on the system. This is in contrast
to a passive attack, where the attacker’s goal is to learn secrets about the system [Uma
and Padmavathi 2013].

The sensor data gathered from the plant are observed by the supervisor through the
observation channel, and control commands are transmitted from the supervisor to the
actuators in the plant through the control channel. Notations Σ, Σo ⊆ Σ, and Σc ⊆ Σ stand
for the set of events executed in the plant, events that are observable by the supervisor
and events that are controllable by the supervisor, respectively. The control commands
issued by the supervisor are control patterns in Γ, where Γ := {γ ⊆ Σ | Σuc ⊆ γ} and
Σuc = Σ\Σc denotes the set of uncontrollable events. Both the observation channel and the
control channel may introduce the risk of cyber-attacks. An attacker can corrupt a subset
of events (vulnerable events) transmitted from sensors to the supervisor (observable events)
and from the supervisor to the actuators in the plant (controllable events). Observable
vulnerable events and controllable vulnerable events are denoted by Σov ⊆ Σo and Σcv ⊆ Σc,
respectively. When attacked, observable vulnerable events or the empty string ε can be
replaced by a word w ∈ Σ∗ov. For a control command γ ∈ Γ, on the other hand, controllable
vulnerable events can only be erased or replaced by other controllable vulnerable events to
form a new control command γ′ ∈ Γ so that γ′ \ Σcv = γ \ Σcv.

The attacker in Figure 6.1 has no extra sensors for observing the execution of the
plant, as we assume that the attacker only listens to the communication channels that are
vulnerable to attacks. In particular, we assume the attacker has full observation on the data
transmitted on the communication channels that are vulnerable to attacks. In addition,
we assume the supervisor sends a new control command to the plant whenever it receives a
piece of information, i.e., the occurrence of observable events, from the observation channel.
There are many other possibilities. For example, the attacker can place additional sensors
for observing the execution of the plant, or the attacker has only partial access to the
communication channels, or a combination thereof. Also, the supervisor does not need to
send a control command each time when it observes an occurrence of observable events.
Different assumptions will lead to variations of the architecture given in Figure 6.1.

2There are various architectures that are largely incompatible; consequently, it is almost impossible to
show all these architectures within a single diagram. Some generalizations and alternatives will also be
discussed and explained throughout the chapter.

94

CHAPTER 6. SUPERVISORY CONTROL SYNTHESIS UNDER ATTACKS

Figure 6.1: Supervisory control system under attacks.

Here, we analyze attack-prevention techniques in supervisory control of CPSs represented
by DESs, that are available in the literature, and pinpoint potential directions for future
research. For this purpose, first, we provide a framework to classify the current approaches.
This classification enables us to compare the available techniques and find areas that need
further improvements. Moreover, we discuss some relevant works dealing with similar
issues in a supervisory control system, such as faults and various communication problems.
Finally, we outline new research lines and conclude the chapter.

6.2 Framework

The attacks studied in this framework are mainly active attacks, where the attacker’s goal
is to inflict damage rather than learning secrets about the system. Based on the works
presented in the literature that discuss the security of a supervisory control system under
(active) attacks, we classify them based on the following dimensions:

• the attack location,
• the attack impact on transmitted data,
• the security mechanism.

The first two are related to the characteristics of the attacks, while the last one is
related to the different mechanisms by which a supervisor can deal with or prevent the
attacks. In the next subsections, these three dimensions are discussed in more detail. As
we will soon see, the classification is far from complete and there are many dimensions
that we have to omit, due to the limited number of research works in this area. Many
aspects that we do not classify are discussed in Section 6.6, including passive attacks.

95

CHAPTER 6. SUPERVISORY CONTROL SYNTHESIS UNDER ATTACKS

6.2.1 Attack Location
As Figure 6.1 shows, for a closed-loop supervisory control system, an attack may occur
in the observation channel (known as a sensor attack), in the control channel (known as
an actuator attack) or in both observation and control channels (as the most realistic
case) [Carvalho et al. 2018; Lima et al. 2018]. Due to the different direct impacts that
sensor and actuator attacks can make on the system, most of the existing works investigate
them separately. Therefore, the location where an attack may occur is considered as a
dimension to classify the current works.

6.2.2 Attack Impact on Transmitted Data
In the security of cyber-physical systems, there are three properties that a system should
possess for it to work properly, i.e., confidentiality, integrity and availability [Cardenas
et al. 2008]. In the literature, different types of cyber-attacks have been classified based on
the properties that they threaten [Cardenas et al. 2008; Teixeira et al. 2012]. For instance,
deception attacks compromise the integrity, while denial of service attacks compromise
the availability of the system [Pasqualetti et al. 2013]. Considering Figure 6.1, no matter
what the type of the attack is, a sensor attack changes an event σ ∈ Σov in one of the
following ways: deletion, insertion or replacement, where replacement can be viewed as
composition of deletion and insertion. For instance, consider the example from [Lima et al.
2018] where Σ = Σo = {a, b, c}, Σov = {a, c} and the word w = abba executed in the plant.
Then, considering all possibilities of deletion, insertion, and replacement under a sensor
attack, the corrupted word belongs to {a, c}∗b{a, c}∗b{a, c}∗. An actuator attacker may
affect a controllable vulnerable event σ ∈ Σcv in one of the following ways: enablement or
disablement. An actuator enablement attack can overwrite the supervisor’s disablement
action (for a vulnerable event) with an enablement action, and an actuator disablement
attack can overwrite the enablement action with a disablement action. By replacement,
we mean that the attacker may have both enablement and disablement impacts on a
controllable vulnerable event. Since we focus on attack prevention, by definition, research
works that deal with replacement attacks also deal with enablement attacks as well as
disablement attacks.

For this reason, we assign one of the dimensions of our framework to attack impact
on the information sent through communication channels, which are essentially attack
mechanisms on these channels.

6.2.3 Security Mechanism
The last dimension differentiating between the existing research is the defense mechanism
that they provide. Generally, an attack is successful if it causes damage to the system or
brings it to an undesirable mode. With the purpose of preventing failure of a supervisory
control system under attack, two main approaches have been presented in the literature:

1. detection and prevention,
2. synthesis of a resilient supervisor.

96

CHAPTER 6. SUPERVISORY CONTROL SYNTHESIS UNDER ATTACKS

The first approach places an intrusion detection module (IDM) in the system to detect
an attack and prevent it before it causes damage to the system by leading it to an unsafe
state [Carvalho et al. 2018; Lima et al. 2017]. The set of unsafe or critical states is assumed
to be given, and they are mainly related to physical damage such as overflow or collision.
As Figure 6.2 shows, the inserted module is connected to the supervisor and it observes
the same events as the supervisor does. The module and the supervisor together will then
form an integrated supervisor that determines control commands. To obtain such an IDM,
first the behavior of the closed-loop control system under attack is modeled. The unsafe
states of the closed-loop control system are those indicating an unsafe state of the plant.
The module is implemented such that it detects an attack leading to an unsafe state of
the attacked closed-loop control system. In this case, it will force the supervisor to take a
proper action either by disabling all controllable events as proposed in Lima et al. [2017]
or only those controllable events that can eventually cause the failure of the system as
discussed in Lima et al. [2018].

Figure 6.2: Intrusion detection module approach.

In the second approach, a supervisor is synthesized, which is resilient against attacks.
Based on the synthesis method, this approach can be divided into the following main
subcategories:

• direct synthesis,
• reducing the problem to conventional synthesis.

97

CHAPTER 6. SUPERVISORY CONTROL SYNTHESIS UNDER ATTACKS

In the first method, a new synthesis algorithm is provided to obtain a resilient supervisor.
In Su [2018], the author studies the problem of synthesis of resilient supervisors against
sensor attacks. To solve the problem, first, a supremal successful attacker (an attacker
that causes damage on the system) is synthesized, and based on that, a supervisor is
synthesized that prevents system failure under attacks.

In the second method, conventional definitions of observability and controllability
are first modified with respect to the effects of attacks on the system. Under the new
conditions, the problem of supervisory control synthesis under attacks is reduced to the
conventional synthesis problem [Wakaiki et al. 2017].

Both general security approaches and each synthesis method will be considered in the
classification as follows:

1. IDM

2. resilient supervisor:

new synthesis
conventional synthesis

6.3 Classification

To compare the existing approaches investigating attack prevention, we first classify them
based on the proposed framework. The classification is presented in Figure 6.3.

There are other important aspects that the classification can also focus on. However,
due to the limited number of research works that are currently available, not all possibilities
of these aspects have been studied in the literature. We have thus made the decision not
to include them in the classification. Nevertheless, we discuss these important aspects in
Section 6.6.

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Ins./En.

Del./Dis.

Rep.

Obs.
Cha

nne
l

Ctrl.
Cha

nne
l

IDM

Resilient Supervisor:


New Synthesis

Conv. Synthesis

Su [2018]

Wakaiki et al. [2017]

Carvalho et al. [2018]
Lima et al. [2018, 2017]
Thorsley and Teneketzis [2006]

Carvalho et al. [2018]
Lima et al. [2018, 2017]

Figure 6.3: Classification of approaches on attack-prevention in supervisory control systems in
the proposed framework.

98

CHAPTER 6. SUPERVISORY CONTROL SYNTHESIS UNDER ATTACKS

6.4 Comparison of Security Approaches
In this section, we give an overview on advantages and disadvantages that each security
approach brings. First, we focus on the two main approaches: IDM and resilient supervisory
control synthesis. Then, we compare the two different directions that have been proposed
for resilient supervisory control synthesis against attacks.

6.4.1 IDM vs Synthesis
The main difference between the existing IDM and resilient supervisor synthesis approach
is that the first one critically relies on real-time attack detection and makes no assumption
about the attacker, while the second approach constructs a supervisor so that the closed-
loop system becomes non-attackable, by using a prior knowledge of the attack models.
Each mechanism has its own advantages and limitations depending on the application and
the type of attack as discussed in the following.

Attack model

As previously mentioned, in the IDM approach, no assumption is imposed on the attacker.
The resilient synthesis approach imposes some assumptions on the attacker; in particular,
it requires the attacker to know a model of the system. The assumption that the attacker
knows the system model may seem a bit too strong. However, the assumption of a strong
attacker is not necessarily bad as we focus on security and damage prevention. Indeed, in
principle, if a resilient supervisor has been designed for an attacker that knows the system’s
model, then it will also be secure against attackers not having a system model. However,
the existing resilient synthesis approach [Lin et al. 2018a; Su 2018], [Lin et al. 2018b] also
assumes that the attacker tries to remain covert until causing guaranteed damage to the
system. This additional assumption, which is not essential, limits the capability of the
attacker (as no risk can be taken) and makes it harder to successfully attack the system.
This limitation can be easily removed assuming a risky attacker, which we will discuss in
Section 6.6.

Detectability

There are different types of attack strategies. An attack could be detectable if it changes
the behavior of the system in such a way that the post-attack behavior is distinguishable
from the normal behavior. However, there exist more complex types of attacks, which
take the system model into consideration and use that knowledge to stay covert to the
supervisor until the damage is caused. The implementation of an IDM is limited to systems
satisfying the detectability condition, i.e., systems in which an attack can be detected
before it causes any damage to the system by leading it to an unsafe state [Carvalho et al.
2018; Lima et al. 2017]. The detectability condition has been further modified in Lima
et al. [2018] so that an attack is undetectable until reaching an unsafe boundary but may
be detected after it reaches the boundary. While undetectable attacks cannot be handled
by IDM, most of the resilient supervisor synthesis approaches focus on attacks that cannot
be detected until causing damage [Góes et al. 2017; Su 2018; Wakaiki et al. 2017].

99

CHAPTER 6. SUPERVISORY CONTROL SYNTHESIS UNDER ATTACKS

Closed-loop system behavior

As long as no attack has occurred, the IDM approach preserves the original closed-loop
system behavior, while the resilient supervisor synthesis approach has to restrict the
behavior of the closed-loop system from the beginning (in order to make it harder to
attack), which limits the permissiveness of the supervisor. In the resilient supervisor
synthesis approach, the supervisor can even be designed such that enablement attack
may become impossible (in the actuator attack scenario) and thus normal execution
may not have to be terminated3 (depending on the permissiveness of the synthesized
supervisor). The IDM approach has to terminate normal execution after detecting an
attack. Compared with the resilient supervisor synthesis approach, instead of replacing
all control logic implemented in the system, the IDM approach only needs to design and
integrate an additional security module.

Defense philosophy

The defense philosophy in the IDM approach is quite straightforward. It relies solely
on attack detection for preventing damage caused by attacks. This attack detection
mechanism also exists in the synthesis approach, but a much richer defense philosophy can
co-exist in the synthesis approach, due to the various assumptions imposed. For example,
in the resilient synthesis approach, the attacker may be assumed to try to remain covert
in its initial attacks before it can cause damage to the system in its final attack [Lin et al.
2018a; Su 2018]. This assumption on the attacker can be used to design supervisors that
discourage the attacker from attacking the system. In particular, different assumptions on
the attacker’s model can lead to different defense strategies. These features do not exist in
current implementations of the IDM approach.

6.4.2 New Synthesis vs. Conventional Synthesis
Here, we discuss the benefits and limitations of each method for resilient supervisory
control synthesis, as far as the current research works are concerned. First of all, reducing
the problem of supervisory control synthesis under attacks to conventional synthesis brings
the advantage of being able to use the available techniques and tools. However, in Wakaiki
et al. [2017], new conditions of controllability and observability are essentially proposed
only for verification and thus they are quite restrictive. As presented in Su [2018], the direct
synthesis approach involves a two-step synthesis since a supremal successful attacker needs
to be synthesized first, which is then used to synthesize a resilient supervisor. In order to
synthesize a supremal successful attacker, a normality assumption is imposed Lin et al.
[2018a] and Su [2018], which says all vulnerable events are observable to the attacker and
all controllable events are observable to the supervisor. This assumption is relaxed in Góes
et al. [2017], and they construct an attacker allowing a larger class of attack strategies.
Although the attacker is supposed to be at the basis to finding a resilient supervisor, this
has not yet been provided in Góes et al. [2017] and Lin et al. [2018a]. Moreover, the

3For example, an extremely conservative approach is to treat each plant state with a vulnerable event
defined as a bad state in the synthesis of the supervisor. Then, there is even no possibility of attack!

100

CHAPTER 6. SUPERVISORY CONTROL SYNTHESIS UNDER ATTACKS

resilient supervisor synthesis algorithm provided in Su [2018] is sound but not complete.
That is, it is possible that there exists a resilient supervisor but the algorithm in Su [2018]
fails to find one.

6.5 Related Work

Besides papers studying security and resilience against attacks, there are works on robust
supervisory control against problems with similar effects as attacks. These papers are
briefly discussed here as they may contain ideas that can help us solve existing problems
in the attack-prevention domain or inspire new research works. As we do not intend to
conduct a comprehensive review of these related works, the reader is referred to the cited
papers for more details.

6.5.1 Supervisory Control under Communication Problems

The effects of attacks could be the same as the effects of other communication problems
on supervisory control systems. For instance, communication losses can be modeled and
dealt with in the same way as deletion of vulnerable events sent through communication
channels [Alves et al. 2014; Rohloff 2012; Ushio and Takai 2016; Yin 2017]. Moreover, the
effects of communication delays can be modeled in the same way as deletion and insertion
of vulnerable events. For instance, let us consider that an event, say σ ∈ Σo, is observed
after a delay of one step (of the event occurrence), then in the delayed observed plant,
σ is deleted at every state where it is enabled and inserted after the next transition. As
already discussed in Chapter 3, there are several works investigating networked supervisory
control of discrete-event systems with communication problems such as delays, losses
and non-FIFO observations. These works include Lin [2014], the method presented in
Chapter 3 and in Rashidinejad et al. [2018]. To deal with network communication delays
and losses, in Lin [2014], a mapping is introduced to model the plant under observation
delay and losses. To synthesize a networked supervisor, they provide new controllability
and observability conditions under delay and losses called network controllability and
network observability. For a plant and requirements satisfying network controllability
and network observability conditions, a networked supervisor is obtained by applying the
conventional synthesis.

Moreover, in Chapter 3 and in Rashidinejad et al. [2018], a non-FIFO observation
channel is considered where events may be observed not necessarily in the same order as
they have been executed in the plant. For instance, a word w = σ1σ2 where σ1, σ2 ∈ Σo

may be observed as σ1σ2 or σ2σ1. Non-FIFO observation has effects similar to replacement
attacks in the sensor channel. In Chapter 3 and in Rashidinejad et al. [2018], a networked
supervisor that is robust to communication delays and non-FIFO observations is synthesized
through a new synthesis algorithm.

101

CHAPTER 6. SUPERVISORY CONTROL SYNTHESIS UNDER ATTACKS

6.5.2 Fault-tolerant Supervisory Control of Discrete Event Sys-
tems

The impact of faults on supervisory control of a DES might be more general than deletion
and insertion of vulnerable events in the attack domain. A fault may map the nominal
behavior of the supervised system to a faulty behavior. However, fault-tolerant supervisory
control approaches [Moor 2016] use quite similar mechanisms to deal with the effects of
faults, which can be divided as:

• active fault tolerant supervisory control such as in Paoli and Lafortune [2005] and
Paoli et al. [2011],
• passive fault tolerant supervisory control such as in Shu and Lin [2014] and Wittmann

et al. [2012].

The first method is based on real-time fault detection and prevention. The strategy is
the same as in the IDM approach. If a system satisfies diagnosability conditions, then
a diagnoser is implemented. The diagnoser detects the occurrence of a fault before the
system executes some illegal sequences. The nominal supervisor will then be switched to a
new supervisor to satisfy some post-fault specifications [Paoli et al. 2011]. A fault diagnoser
cannot be implemented for applications that do not satisfy diagnosability conditions.

The second approach provides a fault-tolerant supervisory control synthesis technique
as discussed in Wittmann et al. [2012]. In this method, first, the nominal behavior of the
plant and the faulty behavior are modeled as a fault-accommodating behavior. Using this
model, an acceptable behavior is defined based on the desired nominal behavior and the
acceptable defective behavior. As a result, the fault-tolerant supervisory control problem
is transformed to a standard supervisory control problem under partial observations for
which existing algorithms and tools can be used as discussed in Wittmann et al. [2012].
This approach is limited to faults occurring only once and with a certain degradation
behavior.

6.5.3 Attacker Synthesis

Furthermore, there are a few works that only investigate attacker synthesis, as we have
discussed before. For instance, in Góes et al. [2017] and Zhang et al. [2018], a successful
insertion-deletion undetectable sensor attack is constructed and in Lin et al. [2018a],
actuator attacks have been modeled under the assumption of a normality condition on
the attacker and supervisor, in which case the supremal successful actuator attacker
exists. In particular, under normality assumption on the supervisor, the attacker can
exercise enablement attack for at most once. Moreover, under normality assumption on
the attacker, disablement attack does not help enablement attack in achieving the attack
goal, with the aim of remaining covert.

102

CHAPTER 6. SUPERVISORY CONTROL SYNTHESIS UNDER ATTACKS

6.6 Topics to Investigate
All the discussed works follow the main objective of presenting a security approach that
can handle most kinds of attacks, at least in principle. To achieve this goal, the current
techniques still need to be improved in the following aspects.

6.6.1 Actuator Disablement Attack and Replacement Attack
As Figure 6.3 reveals, papers investigating synthesis of resilient supervisors have focused
only on sensor attacks. [Lin et al. 2018a] provides an algorithm for the synthesis of
a supremal successful actuator attacker under a normality assumption; however, no
resilient supervisory control synthesis algorithm has been provided there. The problem
has only been partially addressed in Zhu et al. [2019a] by solving an alternative problem
of supervisor obfuscation. IDM approaches only considered enablement actuator attacks
for the reason that disablement does not lead the system to an unsafe state, and it may
only cause blocking issues (which are not important compared to security) [Carvalho et al.
2018]. On the other hand, it has been remarked in Lin et al. [2018a] that disablement
attacks, in addition to enablement attacks, could be critical for a successful actuator
attacker under the assumption that the attacker would like to remain covert. With a
normality assumption imposed on the supervisor and attacker [Lin et al. 2018a], it has
been shown that a replacement attacker is no more powerful than an enablement attacker.
No synthesis algorithm has been provided for actuator replacement attacks for the general
case without the normality assumption, and no resilient supervisor synthesis algorithm
has been provided for the general case.

6.6.2 Attacks with Delay/Disordering Impact
All the available works assume that the attacker modifies the transmitted data instanta-
neously and does not change the relative ordering of data (events). However, an attacker
may add delay in communication. It also may change the ordering of events sent through
the same or different communication channels (either observation or control channels).
Therefore, delaying and disordering of transmitted data can be other attack impacts besides
insertion and deletion (or enablement and disablement) that still need to be investigated.

6.6.3 Non-risky versus risky attackers
A non-risky attacker carries out an attack only if 1) it remains covert after the attack, or
2) the attack will cause guaranteed damage to the system [Lin et al. 2018a; Su 2018]. On
the other hand, being covert is typically not a goal of a risky attacker [Góes et al. 2017].
While most of the papers have focused on non-risky attackers, there could be scenarios in
which an attacker is risky. In particular, a risky attacker implements a worst-case attack
scenario and resilient supervisors against risky attackers tend to be less permissiveness. A
risky sensor attacker has been synthesized in Góes et al. [2017]. However, there still does
not exist any supervisor handling this type of attack.

103

CHAPTER 6. SUPERVISORY CONTROL SYNTHESIS UNDER ATTACKS

6.6.4 Active Attacker with Partial Observation of Σo

An intelligent attacker (undetectable) can perform a successful attack based on its knowl-
edge of the system model and its observation on the execution of the closed-loop system.
However, an attacker may not always have full observation of Σo. In Lin et al. [2018a], a
successful actuator attacker is synthesized that can only observe a subset of Σo, under the
assumption that the attacker can observe the control command issued by the supervisor
each time when the supervisor observes an event σ ∈ Σo. Based on the newly issued control
command, the attacker can infer that some observable event of the supervisor has already
been fired, even if that event is unobservable to the attacker. Moreover, the attacker and
the supervisor satisfy a normality assumption. These conditions can be relaxed. Also,
the supervisor may not issue a control command each time when it observes an execution
of σ ∈ Σo, but instead it only sends the control command when it is necessary, which
makes the closed-loop system harder to attack. However, no resilient supervisor synthesis
algorithm is available under this condition.

6.6.5 Passive Attacks and Opacity Enforcement
As we have discussed, we have mainly focused on active attacks, that is, the attacker’s
goal is to inflict damage on the system. There is a more benign class of attacks, where the
attacker’s goal is to compromise the confidentiality of the system and learn secrets. An
important notion for this purpose is opacity.

Opacity is a cyber-security property that recently has gained a lot of attention in
supervisory control of DESs [Bérard et al. 2015; Dubreil et al. 2010; Jacob et al. 2016;
Lafortune et al. 2018; Lin 2011; Saboori and Hadjicostis 2007, 2012; Wu and Lafortune
2014; Yin and Lafortune 2016; Yin and Li 2018b]. A system is opaque if an outside
observer, who knows the model of the system but has only partial observation on the
system evolution, cannot infer a “secret” about the system behavior [Jacob et al. 2016;
Tong et al. 2018b]. In other words, the secret behavior is observationally equivalent to
some non-secret behavior for the intruder. Opacity can be enforced either by an external
enforcer or by synthesizing an opacity-enforcing supervisor as discussed in Cassez et al.
[2012], Ji et al. [2018], Wu and Lafortune [2014], and Yin and Li [2018a] and in Tong et al.
[2018b] and Yin and Lafortune [2016], respectively.

Consider an attacker that uses the knowledge of the system model to perform a
successful covert attack, based on its partial observation on the execution of the system.
If we make the unsafe behavior (strings from which the system can reach an unsafe state)
opaque to the attacker, then the attacker may not be able to see an opportunity to
make a successful attack. Securing a networked supervisory control system using opacity
enforcement techniques is an ongoing research topic [Yin and Li 2018b].

6.6.6 Supervisor Obfuscation
As an alternative method for resilient supervisor synthesis, supervisor obfuscation can be
used. For instance, in Zhu et al. [2019a], an algorithm is proposed to obfuscate a supervisor
to make it resilient against actuator attacks, while preserving the behavior of the original

104

CHAPTER 6. SUPERVISORY CONTROL SYNTHESIS UNDER ATTACKS

closed-loop system. An application of this approach is to first synthesize a supervisor that
takes care of all the safety specifications, except for the resilience property; the supervisor
can then be obfuscated to become resilient. This makes supervisor obfuscation another
two-step synthesis method. However, a limitation of the algorithm in Zhu et al. [2019a] for
solving the supervisor obfuscation problem is that it is sound but incomplete. Moreover,
the efficiency of the proposed supervisor obfuscation algorithm in Zhu et al. [2019a] needs
to be improved.

6.6.7 Other Topics
There are many other important topics that we are not able to cover here, including
(probabilistic) attack on probabilistic systems, game based solving approach, model
checking based solving approach, ideas using attack trees and graphs [Camtepe and Yener
2007; Jha et al. 2002; Kordy et al. 2014; Svoreňová and Kwiatkowska 2016] and so on. In
addition, it is possible to investigate cooperative attack scenarios or decentralized attack
architectures in similar spirit to [Tong et al. 2018a; Wu et al. 2018]. Last but not the
least, it is important to consider the potential applications for securing practical industrial
control systems. Towards this goal, a set of benchmark examples (see, for example, [Kang
et al. 2016]) that mimic industrial control systems can be constructed for the researchers
to test and compare the techniques and tools.

6.7 Conclusions
In this chapter, we have classified the current research works in the attack prevention
of supervisory control systems using a framework consisting of the following dimensions:
1) the communication channel that is exposed to an attacker, 2) the attack impact
on the transmitted data, and 3) the defense mechanism. We have also surveyed other
relevant works investigating similar problems such as robust supervisory control approaches
against faults, communication delays, losses and non-FIFO observations. Finally, we have
pinpointed some under-explored topics for further investigations. Based on the discussions,
we can conclude that this research topic is currently attracting a lot of attention from
researchers in the supervisory control community, and many technical problems still need
to be solved.

105

Chapter 7

Conclusion

7.1 Concluding Remarks

This thesis focuses on the supervisory control layer of a cyber-physical system (CPS). In a
CPS, the communication between the physical world and the control unit is via a network.
In general, controlling systems over a network is challenging due to communication delays,
packet reordering, packet losses, and cyber-attacks that may be introduced by and through
the network. These problems are neglected in theory while synthesizing a supervisor using
the conventional supervisory control technique. Therefore, a conventional supervisor does
not necessarily work when being implemented in a networked control setting, where the
above mentioned problems may occur. This thesis aims to develop new supervisory control
synthesis approaches, resulting in supervisors that handle the communication imperfections
and the risk of cyber-attacks that may exist in practice.

Throughout this thesis, the research questions defined in Section 1.3 are answered as
below.

Research Question 1: How can the supervisory control theory be improved
in such a way that the synthesized supervisor copes with the problems that may
appear in the PLC-implementation?

In Chapter 2, an asynchronous supervisory control synthesis technique is presented
in the framework of discrete-event systems (DESs) (see Section 2.3). It is assumed that
the plant and the supervisor work in an asynchronous supervisory control setting, where
the communication between those may not necessarily be synchronous. In addition,
events executed in the plant in some order could be observed by the supervisor in
a different order. Moreover, the plant can execute a controllable event only if it is
commanded by the supervisor. Based on the asynchronous supervisory control setting,
an algorithm is proposed that results in an asynchronous supervisor, guaranteeing that
the asynchronously supervised plant behaves in the desired manner. As we already take
care of the inexact synchronization, interleave sensitivity, and causality problems in the
asynchronous supervisory control setting, we ensure that the asynchronous supervisor is

107

CHAPTER 7. CONCLUSION

robust to those problems whenever they occur in the PLC-implementation.

Research Question 2: How can a supervisor be synthesized that is able to
control a system over a communication network?

Chapter 3 presents a networked supervisory control synthesis technique. For this purpose,
a networked supervisory control (NSC) setting is provided in which the communication
network may introduce delays and packet reordering. To model the effects of communication
delays, it is necessary to have timing information of the event occurrences. In this respect,
the plant is assumed to be given as a timed DES (TDES); a DES that incorporates
discrete-time information by including a special event that indicates the passage of one
unit of time. The behavior of the plant in the NSC setting is then derived as the networked
plant. For the networked plant, an algorithm is proposed that results in a networked
supervisor. It is formally proved that the networked supervisor guarantees controllability,
nonblockingness, time-lock freeness, safety, and maximal permissiveness. As we already
considered the communication delays and packet reordering in the NSC setting, we ensure
that the networked supervisor is able to control the plant over a communication network
as it handles the mentioned communication imperfections. The results of Chapter 3 are
remarkable in the context of networked supervisory control firstly because incorporating
timing information helps to provide a more precise model of the communication delays
rather than measuring delays based on event occurrences, which is the case for most of the
existing methods. In addition, our method guarantees to achieve the maximally permissive
nonblocking networked supervisor, which according to [Lin 2020] is still an open issue in
other techniques.

Using discrete time may introduce the state-space explosion problem for practical
applications with large state spaces. To overcome this problem, Chapter 4 and Chapter 5
focus on timed automata (TA); a DES that incorporates dense-time information such that
the state transitions do not only depend on the event occurrences but also on the time that
events occur. Incorporating dense-time information not only helps to solve the state-space
explosion problem but also provides a more natural way to model real-life applications
compared to TDESs. In the literature of TA, many works appear with the purpose of
verification, and there is not much work on supervisory control synthesis. Synthesizing
a supervisor for a TA is challenging due to its infinite state space. To overcome this
problem, the existing approaches first abstract time in a TA to achieve a finite automaton
(FA) and then apply the SCT on the resulting FA. The synthesized supervisor is also
an FA, and to translate it back into a TA, some time-refinement technique is required.
The supervisor is allowed to control the plant only by strengthening the guards of edges
labeled by controllable events, while the location invariants remain unchanged. Chapter 4
of this thesis improves the existing supervisory control synthesis approaches for TA in two
aspects; first, it provides a less conservative result as the supervisor is allowed not only to
strengthen the guards of edges labeled by controllable events but also the invariants of
locations where forcible events occur. Second, it provides a time-refinement technique to
achieve the supervisor also as a TA, which is not the case for most of the existing methods.

108

CHAPTER 7. CONCLUSION

Further, in Chapter 5, we again use the concept of forcible events to provide a less
conservative supervisor. However, this time we provide a synthesis algorithm that is
directly applicable to a TA without being abstracted. The supervisory control synthesis
approach presented in Chapter 5 is a remarkable achievement due to the following reasons:

• many practical applications for which it is necessary to guarantee safety and liveness
are represented as TA rather than DESs,
• most of the available techniques and tools focus on verifying requirements for TA.

However, our method achieves a supervisor that is correct-by-construction,
• the available synthesis techniques abstract TA into FA, which result in finite but
very large state spaces for many practical applications. This problem is solved by
our method as it involves no abstraction,
• we develop the conventional SCT presented by Ramadge and Wonham [1987] for TA

rather than using game-based approaches. The supervisor obtained by game-based
synthesis approaches does not necessarily preserve the largest admissible behavior of
the plant. In Chapter 5, it is formally proved that besides controllability, nonblock-
ingness, and safety, the synthesized supervisor guarantees maximal permissiveness of
the supervised plant.

The result of Chapter 5 is a basis to develop networked supervisory control synthesis in
a real-time framework.

Research Question 3: How can networked supervisory control be affected by
cyber-attacks?

Supervisory control synthesis under cyber-attacks is a relatively new emerging research
topic. Chapter 6 provides an overview of attack prevention supervisory control approaches.
A framework is presented to categorize existing methods. Based on this classification,
missing pieces in this area are investigated. Chapter 6 also studies robust supervisory
control approaches against faults, communication delays, packet reordering, and packet
losses and discovers possible links between those and attack-prevention supervisory control
techniques. The survey provided in Chapter 6 results in promoting new directions for
further research in the area of supervisory control synthesis under cyber-attacks, which is
growing rapidly.

7.2 Recommendations for Future Work

Synthesizing a supervisor for a CPS, modeled as a hybrid automaton (HA), which guaran-
tees controllability, nonblockingness, safety, and maximal permissiveness requires further
research and development. To move towards this goal, there are various ways to build
further on the results of this research project. Below is a list of recommendations for
future research.

109

CHAPTER 7. CONCLUSION

7.2.1 Putting the Results into Practice
The synthesis algorithm presented in Chapter 5 facilitates the implementation as the
proposed method works with automata instead of languages, and this eases the integration
of an implementation in a toolset such as CIF [van Beek et al. 2014] or Supremica [Akesson
et al. 2006]. Moreover, as the method involves no abstraction, it will be beneficial for
practical applications with large state spaces.

7.2.2 Extensions Based on the Thesis Framework
Let us recall the framework discussed in Chapter 1. Figure 7.1 gives recommendations to
extend the results of this thesis in the proposed directions. Details are given below.

Supervisory Control of HA

As stated in Cassandras and Lafortune [2009], a HA could be considered an extension
of a TA, where clock dynamics are replaced by more complicated dynamical equations
(time-driven dynamics). In this respect, the synthesis method presented in Chapter 5
is desired to be extended for HA. So far, to synthesize a supervisor for HA, existing
methods first abstract the system to a DES (see [Koutsoukos et al. 2000]). Similar to TA,
this abstraction may result in very large state spaces. Extending the method presented
in Chapter 5 for HA can overcome this problem, and be beneficial for many practical
applications.

Note that the semantic graph of a HA includes two types of transitions; transitions
labeled by events, and transitions labeled by non-negative real values, which indicate the
flow of the variables over time [Cuijpers et al. 2002; Henzinger 2000]. The non-negative real
value transitions of a HA are dependent to a differentiable function and its first derivative.
This dependency makes it much more challenging to compute the terms 3 and 6 in
the nonblocking predicate (Algorithm 5.1) and the bad state predicate (Algorithm 5.2),
respectively.

Supervisory Control of TA under Delays

The networked supervisory control technique proposed in Chapter 3 can be extended
for TA. As a TA incorporates dense-time information, the networked supervisory control
setting is modeled in a real-time framework. So, a more precise model of communication
delays is achieved. For the real-time networked supervisory control setting, a networked
plant can be derived also as a TA. To synthesize a supervisor for the networked plant, the
method proposed in Chapter 5 can be used. As no abstraction is involved, it makes the
method useful for many complex practical applications.

Supervisory Control of TDES under Attacks

The strategy of the networked supervisory control synthesis presented in Chapter 3 can
be inspiring for attack-prevention supervisory control synthesis. Similarly, a supervisory
control setting can be provided where the communication network may introduce some

110

CHAPTER 7. CONCLUSION

types of cyber-attacks (as discussed in Chapter 6). Based on the proposed setting, the
attacked plant can be obtained, modeling the behavior of the plant under the effects of
cyber-attacks. Then, for the attacked plant, a supervisor can be synthesized using a similar
synthesis algorithm presented in Chapter 3.

Figure 7.1: Extensions based on the proposed framework in Chapter 1.

7.2.3 Adding New Dimensions
In both the asynchronous supervisory control setting presented in Chapter 2 and the
networked supervisory control setting presented in Chapter 3, all the plant events are
assumed to be observable. In the case that a subset of the plant events is unobservable,
the presented approaches should be extended by adapting the conventional definition of
observability to the asynchronous/networked observability definition similar to what is
presented in Lin [2014]. In this thesis, we focused on providing the maximally permissive
supervisor, which according to [Lin 2020], is not the case for other existing networked
supervisory control approaches even though they might consider partial observability.
Extending the proposed approaches to asynchronous/networked supervisory control under
partial observation is a further step of this research.

111

Appendix A

Proofs of Chapter 2

A.1 Technical Lemmas

Lemma A.1 (Nonblockingness over Projection). If an automaton G with event set Σ and
set of states A is nonblocking, then PΣ′(G) with event set Σ′ ⊆ Σ is also nonblocking.

Proof. Consider a set of reachable states Ar in PΣ′(G). Due to the definition of projection
on automata, each state of PΣ′(G) is a subset of A, and so one can say Ar ⊆ A. By
construction Ar is not empty and thus contains at least one element, say ar ∈ A. By
definition ar is reachable in G and since G is nonblocking there is a w ∈ Σ∗ such that
δ(ar, w) ∈ Am. Then, again by construction and by the properties of the involved
determinisation procedure (determinisation makes a state of PΣ′(G) marked if it includes
at least one of the marked states of G [Hopcroft et al. 2006]) we have that PΣ′(w) allows
to reach a marked state in PΣ′(G). �

Lemma A.2 (Asynchronously Supervised Plant Transitions). Considering the asyn-
chronously supervised plant obtained from Definition 2.6, for any w ∈ Σ∗ASP with
δASP (z0, w)!, we have δASP (z0, w) = (δ(a0, PΣ(w)), δAS(y0, PΣAS(w)),m, l) for some m ∈
M, l ∈ L.

Proof. Let w ∈ Σ∗ASP with δASP (z0, w)!. We prove that δASP (z0, w) = (δ(a0, PΣ(w)),
δAS(y0, PΣAS(w)),m, l) for some m ∈M, l ∈ L by induction on the structure of w. First,
assume that w = ε then we have δASP (z0, w) = (a0, y0, [], ε) = (δ(a0, ε), δAS(y0, ε), [], ε).
Now, assume that w = vσ for some v ∈ Σ∗ASP with δASP (z0, v)!. By induction we have
δASP (z0, v) = (δ(a0, PΣ(v)), δAS(y0, PΣAS(v)),m′, l′) for some m′ ∈ M and l′ ∈ L. It is
sufficient to prove that δASP (z0, vσ) = (δ(a0, PΣ(vσ)), δAS(y0, PΣAS(vσ)),m, l) for some
m ∈ M and l ∈ L. For σ ∈ ΣASP one of the following cases could occur; if σ ∈ Σ, then
δASP (z0, vσ) = (δ(δ(a0, PΣ(v)), σ), δAS(y0, PΣAS(v)),m, l), and if σ ∈ ΣAS, then δASP (z0, vσ)
= (δ(a0, PΣ(v)), δAS(δAS(y0, PΣAS(v)), σ),m, l) where in each case due to Definition 2.1 we
get δASP (z0, vσ) = (δ(a0, PΣ(vσ)), δAS(y0, PΣAS(vσ)),m, l). �

113

APPENDIX A. PROOFS OF CHAPTER 2

Lemma A.3 (Algorithm Termination). The synthesis algorithm presented in Algorithm 2.1
terminates.

Proof. Let the output of the algorithm at iteration i be indicated by AS(i). In each
iteration, say iteration i, of Algorithm 2.1 at least one of its reachable states (from the
nonempty set BS) is removed (by making all edges leading into those states undefined
(Algorithm 2.1-line 7)). Since the automaton is finite state initially, this can only be done
finitely often. �

A.2 Proofs of Properties and Theorems

A.2.1 Proof of Property 2.1
Take w ∈ L(AS|/|G) and u ∈ Σuc such that PΣ(w)u ∈ L(G). Then, we need to prove
that wu ∈ L(AS|/|G). For w ∈ L(AS|/|G), from Lemma A.2, we have δASP (z0, w) =
(δ(a0, PΣ(w)), δAS(y0, PΣAS(w)),m, l) for some m ∈ M, l ∈ L . Then, from item 3 of
Definition 2.6, we know that u occurs in AS|/|G only if it is enabled by the plant where
due to the assumption we have δ(a0, PΣ(w)u)!. So from δASP (z0, w), the event u can occur
which results in δASP (z0, wu) = (δ(a0, PΣ(w)u), δAS(y0, PΣAS(w)),m] [u], l).

A.2.2 Proof of Property 2.2
Π(G,Nc, No) is finite if it has a finite set of states and a finite set of events. Let us first
prove that X is finite. Due to Definition 2.9, X = A × Q′ ×M × L. To prove that X
is a finite set, it is sufficient to guarantee that A,Q′,M and L are finite sets because as
proved in [Jech 2013] the Cartesian product of finite sets is finite. A is a finite set since we
assumed that the plant is modeled by a finite automaton. For each q′ ∈ Q′, we know that
q′ ⊆ Q. So, we should prove that Q is a finite set. Q = A×M is finite since A and M are
finite as the maximum size of M is limited to a finite number No. Finally, L is finite since
its size is limited to Nc.

A.2.3 Proof of Theorem 2.1
AS|/|G = (Z,ΣASP , δASP , z0, Zm) is nonblocking if for all z ∈ Reach(z0) there exists a
word w ∈ Σ∗ASP such that δASP (z, w) ∈ Zm. Take z ∈ Reach(z0) where z = (a, y,m, l),
then we need to find w ∈ Σ∗ASP for which δ(a, PΣ(w)) ∈ Am and δAS(y, PΣAS(w)) ∈ Ym
since Zm = Am × Ym × M × L. From Lemma A.2, we know that δASP (z0, w) =
(δ(a0, PΣ(w)), δAS(y0, PΣAS(w)),m, l) for some m ∈ M, l ∈ L. We also have AS is non-
blocking when Algorithm 2.1 terminates successfully which means that there is no blocking
state to be removed (BS = ∅) and also due to Property A.1 the projection operator does
not change the nonblockingness of an automaton. So, we can say that for y ∈ Reach(y0)
there exists a word w′ ∈ Σ∗AS such that δAS(y, w′) ∈ Ym. From Algorithm 2.1, we have
AS ⊆ PΣAS(AP) since we start the algorithm from AS = AP and we remove transitions
leading to blocking states, and finally we use the projection to leave out the Σ events. The
state y ⊆ X is a set of observationally equivalent states of AP . Since δAS(y, w′)!, we can say

114

APPENDIX A. PROOFS OF CHAPTER 2

that ∀x ∈ y,∃w ∈ Σ∗ASP , δAP (x,w) ∈ Xm because otherwise all observationally equivalent
transitions have been removed and ¬δAS(y, w′)!. Take w ∈ Σ∗ASP , δAP (x,w) ∈ Xm, we
only need to prove that δ(a, PΣ(w)) ∈ Am. δAP (x,w) ∈ Xm, Xm = Am ×Q′ ×M × L. So,
δAP (x,w) ∈ Xm implies that δ(a, PΣ(w)) ∈ Am.

115

Appendix B

Proofs of Chapter 3

B.1 Technical Lemmas
Here, the notation . is used to refer to an element of a tuple. For instance, z.a refers to
the (first) element a of z = (a, y,m, l).
Lemma B.1 (Nonblockingness over Projection). For any TDES G with event set Σ and
any event set Σ′ ⊆ Σ: if G is nonblocking, then PΣ′(G) is nonblocking.

Proof. Consider an arbitrary TDES G = (A,Σ, δ, a0, Am) and arbitrary Σ′ ⊆ Σ. Suppose
that G is nonblocking. Consider an arbitrary reachable state Ar ⊆ A in PΣ′(G). By
construction Ar is nonempty. Assume that this state is reached through the word w ∈ Σ′.
Then, for each state a ∈ Ar, again by construction, δ(a0, w

′) = a for some w′ ∈ Σ∗ with
PΣ′(w′) = w. Because G is nonblocking, there exists a v′ ∈ Σ∗ such that δ(a, v′) = am for
some am ∈ Am. Consequently, from state Ar, it is possible to have a transition labelled
with PΣ′(v′) to a state A′r containing am. By construction, this state A′r is a marked state
in PΣ′(G). Hence, the projection automaton is nonblocking as well. �

Lemma B.2 (Time-lock Freeness over Projection). For any TDES G with event set Σ
and any event set Σ′ ⊆ Σ, tick ∈ Σ′: if G is TLF , then PΣ′(G) is TLF.

Proof. The proof is similar to the proof of Lemma B.1. �

Lemma B.3 (NSP Transitions). Given a plant G, networked supervisor NS (for that
plant) and networked supervised plant NSP (for those): δNSP(z0, w).a = δG(a0, PΣG(w))
and δNSP(z0, w).y = δNS(y0, PΣNS (w)), for any w ∈ L(NSP).

Proof. Take w ∈ L(NSP), we prove that δNSP(z0, w).a = δG(a0, PΣG(w)) and δNSP(z0,
w).y = δNS(y0, PΣNS (w)) by induction on the structure of w.

Base case: Assume that w = ε. Then, δNSP(z0, w).a = a0 = δG(a0, PΣG(ε)) and
δNSP(z0, w).y = y0 = δNS(y0, PΣNS (ε)).

117

APPENDIX B. PROOFS OF CHAPTER 3

Induction step: Assume that w = vσ, where the statement holds for v, meaning that
δNSP(z0, v).a = δG(a0, PΣG(v)) and δNSP(z0, v).y = δNS(y0, PΣNS (v)). It suffices to prove
that the statement holds for vσ, i.e., δNSP(z0, vσ).a = δG(a0, PΣG(vσ)) and δNSP(z0, vσ).y =
δNS(y0, PΣNS (vσ)). Considering Definition 3.7, for σ enabled at δNSP(z0, v) the following
cases may occur:
σ ∈ ΣNS \ {tick}, which refers to item 1) and item 5). Then, δNSP(z0, v).a re-

mains unchanged; δNSP(z0, vσ).a = δNSP(z0, v).a = δG(a0, PΣG(v)) = δG(a0, PΣG(v)ε) =
δG(a0, PΣG(vσ)), and δNSP(z0, vσ).y = δNS(δNS(y0, PΣNS (v), σ) = δNS(y0, PΣNS (v)σ) =
δNS(y0, PΣNS (vσ)).
σ ∈ ΣG \ {tick}, which refers to item 2) and item 3). Then, δNSP(z0, vσ).a =

δG(δG(a0, PΣG(v)), σ) = δG(a0, PΣG(v)σ) = δG(a0, PΣG(vσ)), and δNSP(z0, vσ).y remains un-
changed such that δNSP(z0, vσ).y = δNSP(z0, v).y = δNS(y0, PΣNS (v)ε) = δNS(y0, PΣNS (vσ)).
σ = tick, which refers to item 4). Then, δNSP(z0, vσ).a = δG(δG(a0, PΣG(v)), σ) =

δG(a0, PΣG(v)σ) = δG(a0, PΣG(vσ)). Also, δNSP(z0, vσ).y = δNS(δNS(y0, PΣNS (v)), σ) =
δNS(y0, PΣNS (v)σ) = δNS(y0, PΣNS (vσ)).

Conclusion: By the principle of induction, the statement (δNSP(z0, w).a = δG(a0,
PΣG(w)) and δNSP(z0, w).y = δNS(v0, PΣNS (w))) holds for all w ∈ L(NSP). �

Lemma B.4 (NP Transitions). Given a plant G with x0.a = a0, for any w ∈ L(NP):
δNP(x0, w).a = δG(a0, PΣG(w)).

Proof. The proof is similar to the proof of Lemma B.3. �

Lemma B.5 (NP Enabling Commands). Given a plant G, events from Σe are enabled
on time in the networked plant NP (for that plant); for any wσ ∈ L(G), σ ∈ Σc: there
exists w0σew1σ ∈ L(NP) where σe ∈ Σe is the enabling event of σ, PΣG(w0w1) = w and
|P{tick}(w1)| = Nc.

Proof. Assume that G′ = PΣG\Σuc(G) is represented by (A′,ΣG, δ
′
G, a

′
0, A

′
m), and let us do

the proof by induction on the number of controllable events in w ∈ L(G).
Base case: Assume that σ is the 1th controllable event enabled in G. Then, w ∈

(Σuc∪{tick})∗. According to Assumption 1, |P{tick}(w)| ≥ Nc. Let say |P{tick}(w)| = Nc+ i

for some i ∈ N0. Then, tickNc+iσ ∈ L(G′). Also, assume that w = wiwNc for some wi, wNc
where |P{tick}(wi)| = i, and |P{tick}(wNc)| = Nc. Considering Definition 3.10, NP starts
from x0 = (a0, δ

′
G(a′0, tickNc), [], ε). Then, based on item 4), tick occurs in NP when it

is enabled in both G and G′. For the first i ticks, whenever tick is enabled in G, it is
also enabled in G′ (there are i ticks enabled in G′ before σ occurs). Meanwhile, if there
is an event ready to be observed, then based on item 5), the corresponding observed
event occurs in NP which does not change the current state of G and G′. Also, based
on item 3), if an uncontrollable event is enabled in G, it occurs in NP without changing
the state of G′. Otherwise, tick occurs in NP by being executed in both G and G′. We
call this situation as G and G′ are synchronized on tick. Therefore, it is feasible that
some w0 is executed in NP based on the execution of ticki in G′ and wi in G. Then,
δNP (x0, w0).a = δG(a0, wi) and δNP (x0, w0).a′ = δ′G(a0, tickNc+i), and so PΣG(w0) = wi.

118

APPENDIX B. PROOFS OF CHAPTER 3

After that, since (δNP (x0, w0).a′, σ)!, based on item 1), σe occurs in NP, and (σ,Nc) is
added to δNP (x0, w0).l. Note that based on item 3) (item 5)), uncontrollable events
enabled in G (events ready to be observed) can occur in between, but without loss of
generality, let us assume that σe is enabled first, and then uncontrollable (observed)
events are executed. So, w1 will be executed in NP based on the execution of wNc in
G. Therefore, PΣG(w1) = wNc , and |P{tick}(w1)| = |P{tick}(wNc)| = Nc. Based on item 4),
by the execution of each tick, δNP (x0, w0σe).l is decreased by one. Also, σ is the only
controllable event enabled in G so that head(δNP (x0, w0σew1).l) = (σ, 0). Then, based on
item 2), σ will be executed in NP.

Induction step: Assume that σ is the nth controllable event enabled in G where
the statement holds for all previous controllable events. Let us indicate the (n − 1)th
controllable event by σn−1 such that wn−1 σ

n−1 ∈ L(G). As the statement holds for σn−1,
there exists some wn−1

0 σn−1
e wn−1

1 σn−1 ∈ L(NP) such that PΣG(wn−1
0 wn−1

1) = wn−1 and
|P{tick}(wn−1

1)| = Nc. It suffices to prove that for the next controllable event σn, wn σn ∈
L(G), there exists some wn0 σewn1 σn ∈ L(NP) with PΣG(wn0 wn1) = wn and |P{tick}(wn1)| =
Nc. Let us say wn = wn−1 σ

n−1w where w ∈ (Σuc ∪ {tick})∗. Assume that |P{tick}(w)| = j,
and wn−1 = wn−1

i wn−1
Nc where |P{tick}(wn−1

i)| = i, and |P{tick}(wn−1
Nc)| = Nc. Moreover,

let us say for wn−1 σ
n−1w σ ∈ L(G), there exists tickNc w′n−1 σ

n−1 tickjσn ∈ L(G′) where
|P{tick}(w′n−1)| = i. Considering Definition 3.10, G′ synchronizes with G on executing tick
since whenever tick is enabled in G′, it occurs in NP only if G enables it as well. Also,
uncontrollable events (observed events) occur as they are enabled in G (as the corresponding
event is ready to be observed), and due to the induction assumption, all controllable events
occurring in G before σn are enabled on time, and so they will be executed in NP. By
the execution of wn−1

0 σn−1
e in NP, δNP(x0, w

n−1
0 σn−1

e).a′ = δ′G(a′0, tickNc w′n−1 σ
n−1), and

so δNP(x0, w
n−1
0 σn−1

e).a = δG(a0, w
n−1
i) (G and G′ synchronize on tick). At this point,

(before reaching σ) in G′, tickj is enabled, and wn−1
NC

is enabled in G (before reaching σn−1).
Then, one of the following cases may occur:

j < Nc. Then, assume wn−1
Nc = wn−1

j wn−1
Nc−j for some wn−1

j , wn−1
Nc−j , where |P{tick}w

n−1
j | = j

and |P{tick}w
n−1
Nc−j| = Nc − j. Then, the execution of tickj in G′ is synchronized with the

execution of wn−1
j in G resulting in wn−1

0 σn−1
e v1 ∈ L(NP) with |P{tick}(v1)| = j and

PΣG(v1) = wn−1
j . After that σe occurs in NP (as it is enabled in G′) adding (σ,Nc) to

l. This follows by the execution of wn−1
Nc−j in G and results in wn−1

0 σn−1
e v1σ

n
e v2 ∈ L(NP)

where |P{tick}(v2)| = Nc − j and PΣG(v2) = wn−1
Nc−j. At this point, σn−1 is executed in

NP following by the execution of v3 where PΣG(v3) = w, and so |P{tick}(v3)| = j. This
results in wn−1

0 σn−1
e v1 σ

n
e v2 σ

n−1 v3 ∈ L(NP) where P{tick}(v2σ
n−1v3) = Nc − j + j = Nc,

and head(l) = (σn, 0) (after the execution of σn−1, this is only (σn, Nc) in l, and l
is decreased by one by the execution of each tick), and so σn occurs in NP. Hence,
wn0 σ

n
e w

n
1 σ

n ∈ L(NP) for wn0 = wn−1
0 σn−1

e v1 and wn1 = v2 σ
n−1 v3 where PΣG(wn0 wn1) =

PΣG(wn−1
0 σn−1

e v1 v2 σ
n−1 v3) = wn and |P{tick}(wn1)| = Nc − j + j = Nc.

j > Nc. Then, assume w = wj−NcwNc for some wj−Nc , wNc , where |P{tick}wj−Nc | =
j − Nc and |P{tick}wNc | = Nc. The execution of tickNc in G′ is synchronized with the
execution of wn−1

Nc in G resulting in wn−1
0 σn−1

e wn−1
1 σn−1 ∈ L(NP). After that, the

execution of the remaining tickj−Nc in G′ will be synchronized with execution of wj−Nc

119

APPENDIX B. PROOFS OF CHAPTER 3

in G resulting in wn−1
0 σn−1

e wn−1
1 σn−1 v1 ∈ L(NP) where PΣG(v1) = wj−Nc . Then, σne

occurs in NP as it is enabled in G′ adding (σn, Nc) to l. Finally, the execution of wNc
in G results in wn−1

0 σn−1
e wn−1

1 σn−1v1σ
n
e v2 ∈ L(NP) with PΣG(v2) = wNc . As Nc ticks

have passed, head(l) = (σn, 0), and σn occurs in NP. Hence, wn0 σne wn1 σn ∈ L(NP) for
wn0 = wn−1

0 σn−1
e wn−1

1 σn−1 v1 and wn1 = v2 where PΣG(wn0 wn1) = wn and |P{tick}(wn1)| = Nc.
j = Nc. Then, after the execution of wn−1

0 σn−1
e in NP, v1 occurs in NP related

to the execution of wn−1
Nc in G and w′n in G′. At this point, σn−1 is enabled in G

and head(l) = (σn−1). Also, σn is enabled in G′. Therefore, either σne σn−1 or σn−1σne
occurs in NP both followed by the execution of some v2 in NP such that PΣG(v2) = w.
As Nc ticks have passed (head(l) = (σn, 0)), and σn is enabled in G, σn occurs in
NP. This results in one of the following words; wn−1

0 σn−1
e v1σ

n−1σne v2σ
n ∈ L(NP) or

wn−1
0 σn−1

e v1σ
n
e σ

n−1v2σ
n ∈ L(NP) where the statement holds in both cases as already

discussed in the previous items.
Conclusion: By the principle of induction, the statement holds for all σ ∈ Σc and

w ∈ Σ∗G with wσ ∈ L(G). �

Lemma B.6 (NSP and NP). Consider a plant G, a networked supervisor NS (for that
plant), the observation channel M , and the control channel L. The networked plant NP
has the set of states X and the networked supervised plant NSP has the set of states Z.
Then, for any pair of x ∈ X and z ∈ Z reachable through the same w ∈ Σ∗NSP : x.m = z.m
and x.l = z.l.

Proof. Take x ∈ X, z ∈ Z, and w ∈ Σ∗NSP such that x = δNP(x0, w) and z = δNSP(z0, w).
By induction on the structure of w, it is proved that x.m = z.m and x.l = z.l.

Base case: Assume w = ε. Then, x.m = x0.m = [] (x.l = x0.l = ε), and z.m = z0.m =
[] (z.l = z0.l = ε). Thereto, x.m = z.m and x.l = z.l.

Induction step: Assume w = vσ where the statement holds for v ∈ Σ∗NSP and the
intermediate states reached by v so that δNP(x0, v).m = δNSP(z0, v).m and δNP(x0, v).l =
δNSP(z0, v).l. It suffices to prove that the statement holds for vσ, i.e., δNP(x0, vσ).m =
δNSP(z0, vσ).m and δNP(x0, vσ).l = δNSP(z0, vσ).l. Considering Definition 3.10 and Def-
inition 3.7, in both operators, δNP(x0, v).m (δNSP(z0, v).m) changes by the execution
of σ ∈ Σc ∪ Σuc ∪ tick ∪ Σo (item 2), item 3), item 4), and item 5)), and δNP(x0, v).l
(δNSP(z0, v).l) changes by the execution of σ ∈ Σe ∪ Σc ∪ tick (item 1), item 2), and
item 4)) in a similar way. Therefore, starting from δNP(x0, v) and δNSP(z0, v) with
δNP(x0, v).m = δNSP(z0, v).m (δNP(x0, v).l = δNSP(z0, v).l), the execution of the same
event σ results in δNP(x0, vσ).m = δNSP(z0, v).m (δNP(x0, vσ).l = δNSP(z0, v).l).

Conclusion: By the principle of induction, the statement (x.m = z.m and x.l = z.l)
holds for all w ∈ Σ∗NSP , x = δNP(x0, w) and z = δNSP(z0, w). �

Lemma B.7 (NSP and Product). Given a plant G and a networked supervisor NS with
event set ΣNS . If L(NS) ⊆ PΣNS (L(NP)), then L(NSP) = L(NS ||NP).

Proof. This is proved in two steps; 1. for any w ∈ L(NSP): w ∈ L(NS ||NP), and 2. for
any w ∈ L(NS ||NP): w ∈ L(NSP).

120

APPENDIX B. PROOFS OF CHAPTER 3

1) Take w ∈ L(NSP). By induction on the structure of w, it is proved that w ∈
L(NS ||NP).

Base case: Assume that w = ε. Then, w ∈ L(NS ||NP) by definition.
Induction step: Let w = vσ for some v ∈ Σ∗NSP and σ ∈ ΣNSP where the state-

ment holds for v, i.e., v ∈ L(NS ||NP). It suffices to prove that the statement holds
for vσ, i.e., vσ ∈ L(NS ||NP). Due to Lemma B.3, δNSP(z0, v).y = δNS(y0, PΣNS (v)),
δNSP(z0, vσ).y = δNS(δNSP(z0, v).y, PΣNS (σ)), δNSP(z0, v).a = δG(a0, PΣG(v)), and δNSP(
z0, vσ).a = δG(δNSP(z0, v).a, PΣG(σ)). Due to the definition of synchronous product (in
[Cassandras and Lafortune 2009]), since ΣNS ⊆ ΣNSP , one can say any w ∈ L(NS ||NP) if
w ∈ L(NP) and PΣNS (w) ∈ L(NS). For vσ ∈ L(NSP), it is already showed that PΣNS (vσ) ∈
L(NS), and so it suffices to prove vσ ∈ L(NP). For v ∈ L(NS ||NP): v ∈ L(NP) (since
ΣNS ⊆ ΣNSP). Then, due to Lemma B.4, δNSP(z0, v).a = δG(a0, PΣG(v)) = δNP(x0, v).a.
Also, both δNSP(z0, v) and δNP(x0, v) are reachable through v, and so due to Lemma B.6,
δNSP(z0, v).m = δNP(x0, v).m and δNSP(z0, v).l = δNP(x0, v).l. Since PΣNS (vσ) ∈ L(NS)
(for vσ ∈ L(NSP), δNS(y0, vσ)! due to Lemma B.3), and L(NS) ⊆ PΣNS (L(NP)), then one
can say there exists w′ ∈ L(NP), PΣNS (w′) = PΣNS (vσ). Without loss of generality, assume
w′ = v′PΣNS (σ) where PΣNS (v′) = PΣNS (v). Let us complete the proof for different cases of
σ ∈ ΣNSP .
σ ∈ Σe. Then, δ′G(δNP(x0, v).a′, σ)! since δNP(x0, v).a′ = δNP(x0, v

′).a′ and δ′G(δNP(
x0, v

′).a′, σ)! (PΣe∪{tick}(v) = PΣe∪{tick}(v′), and due to Definition 3.10, x.a′ changes by
w ∈ (Σe ∪ {tick})∗). So, due to item 1), δNP(δNP(x0, v), σ)!.
σ ∈ Σc. Then, δG(δNP(x0, v).a, σ)! for the reason that δNP(x0, v).a = δNSP(z0, v).a

and δG(δNSP(z0, v).a, σ)!. Also, the condition head(δNP(x0, v).l) = (σ, 0) is satisfied since
δNP(x0, v).l = δNSP(z0, v).l and head(δNSP(z0, v).l) = (σ, 0) (considering Definition 3.7-item
2)), σ can occur only if head(δNSP(z0, v).l) = (σ, 0)). So, due to Definition 3.10-item 2),
δNP(δNSP(z0, v), σ)!.
σ ∈ Σuc. Then, δG(δNP(x0, v).a, σ)! for the reason that δNP(x0, v).a = δNSP(z0, v).a and

δG(δNSP(z0, v).a, σ)!. So, based on Definition 3.10-item 3), δNP(δNP(x0, v), σ)!.
σ = tick. Then, δG(δNP(x0, v).a, σ)! for the reason that δNP(x0, v).a = δNSP(z0, v).a

and δG(δNSP(z0, v).a, σ)!. Also, δ′G(δNP(x0, v).a′, σ)! since δNP(x0, v).a′ = δNP(x0, v
′).a′ and

δ′G(δNP(x0, v
′).a′, σ)!. Moreover, (σ, 0) /∈ δNP(x0, v).m for all σ ∈ Σa since δNSP(z0, v).m =

δNP(x0, v).m and (σ, 0) /∈ δNSP(z0, v).m (considering Definition 3.7-item 4), tick can occur
if (σ, 0) /∈ δNSP(z0, v).m). Therefore, based on Definition 3.10-item 4), δNP(δNP(x0, v), σ)!.
σ ∈ Σo. Then, (σ, 0) ∈ δNP(x0, v).m because δNP(x0, v).m = δNSP(z0, v).m and

(σ, 0) ∈ δNSP(z0, v).m (due to Definition 3.7-item 5)). So, due to Definition 3.10-item 5),
δNP(δNP(x0, v), σ)!.

Conclusion: By the principle of induction, w ∈ L(NS ||NP) is true for any w ∈
L(NSP).

2) Take w ∈ L(NS ||NP), by induction, it is proved that w ∈ L(NSP) is true.
Base case: Assume that w = ε ∈ L(NS ||NP). Then, w ∈ L(NSP) by definition.
Induction step: Let w = vσ ∈ L(NS ||NP) where the statement is true for v, i.e.,

121

APPENDIX B. PROOFS OF CHAPTER 3

v ∈ L(NSP). It suffices to prove that the statement holds for vσ, i.e., vσ ∈ L(NSP).
Due to the definition of synchronous product (in [Cassandras and Lafortune 2009]), since
ΣNS ⊆ ΣNSP , one can say any w ∈ L(NS ||NP) if w ∈ L(NP) and PΣNS (w) ∈ L(NS). Due
to Lemma B.4, δNP(x0, v).a = δG(a0, PΣG(v)) and δNP(x0, vσ).a = δG(δNP(x0, v).a, σ).

Also, due to Lemma B.3, for v ∈ L(NSP), δNSP(z0, v).y = δNS(y0, PΣNS (v)), and
δNSP(z0, v).a = δG(a0, PΣG(v)).

Moreover, since both δNSP(z0, v) and δNP(x0, v) are reachable through v, based on
Lemma B.6, δNSP(z0, v).m = δNP(x0, v).m and δNSP(z0, v).l = δNP(x0, v).l. Now, for
different cases of σ ∈ ΣNSP , we prove that δNSP(δNSP(z0, v), σ)!.
σ ∈ Σe. Then, based on the assumption, δNS(y0, PΣNS (v)σ)!, and so considering

Definition 3.7-item 1), δNSP(δNSP(z0, v), σ)!.
σ ∈ Σc. Then, δG(δNSP(z0, v).a, σ)! for the reason that δNSP(z0, v).a = δNP(x0, v).a

and δG(δNP(x0, v).a, σ)!. Also, the condition head(δNSP(z0, v).l) = (σ, 0) is satisfied since
δNSP(z0, v).l = δNP(x0, v).l and head(δNP(x0, v).l) = (σ, 0) (based on Definition 3.10-item
2)). Hence, considering Definition 3.7-item 2), δNSP(δNSP(z0, v), σ)!.

σ ∈ Σuc. Then, δG(δNSP(z0, v).a, σ)! for the reason that δNSP(z0, v).a = δNP(x0, v).a
and δG(δNP(x0, v).a, σ)!, and so considering Definition 3.7-item 3), δNSP(δNSP(z0, v), σ)!.
σ = tick. Then, δG(δNSP(z0, v).a, σ)! for the reason that δNSP(z0, v).a = δNP(x0, v).a

and δG(δNP(x0, v).a, σ)!. Also, δNS(δNS(y0, PΣNS (v)), σ)! due to the assumption. Moreover,
(σ, 0) /∈ δNSP(z0, v).m for all σ ∈ Σa since (σ, 0) /∈ δNP(x0, v).m (based on Definition 3.10-
item 4)) and δNSP(z0, v).m = δNP(x0, v).m. Therefore, based on Definition 3.7-item 4),
δNSP(δNSP(z0, v), σ)!.
σ ∈ Σo. Then, (σ, 0) ∈ δNSP(z0, v).m for the reason that δNSP(z0, v).m = δNP(x0, v).m

and (σ, 0) ∈ δNP(x0, v).m (due to Definition 3.10-item 5). Also, δNS(δNS(y0, PΣNS (v)), σ)!
based on the assumption. So, due to Definition 3.7-item 5), δNSP(δNSP(z0, v), σ)!.

Conclusion: By the principle of induction w ∈ L(NSP) is true for any w ∈ L(NS ||NP).
�

Corollary B.1 (Lemma B.7). Given a plant G and a networked supervisor NS with event
set ΣNS such that L(NS) ⊆ PΣNS (L(NP)):

1. L(NSP) ⊆ L(NP), and
2. Lm(NSP) ⊆ Lm(NP).

Proof. This clearly holds since due to Lemma B.7, NSP = NS ||NP and ΣNS ⊆ ΣNSP . �

Lemma B.8 (Finite NP). Given a plant G with a set of states A and a set of events ΣG:
NP is a finite automaton.

Proof. We need to prove that NP has a finite set of states and a finite set of events.
Considering Definition 3.10, NP has a set of states X = A×Q′ × A′ ×M × L. To prove
that X is finite, it is sufficient to guarantee that A,Q′, A′,M and L are finite sets because
as proved in [Jech 2013] the Cartesian product of finite sets is finite. A is finite as the

122

APPENDIX B. PROOFS OF CHAPTER 3

plant is assumed to be given as a finite automaton. A′ is finite since for each a′ ∈ A′,
a′ ⊆ A, and A is finite. M(L) is finite as the maximum size of every element of M is
limited to a finite number Mmax(Lmax). Moreover, ΣNSP = Σe ∪ Σo ∪ ΣG is finite since G
is a finite automaton, and so ΣG is finite. Σe and Σo are finite since due to Definition 3.4,
the size of Σe is equal to the size of Σc, and the size of Σo is equal to the size of Σa. �

Lemma B.9 (Nonblocking NS). The networked supervisor NS synthesized from Algo-
rithm 3.1 is nonblocking.

Proof. Based on Property 3.3, Algorithm 3.1 terminates, let say after n iterations. Then,
either x0 ∈ Uncon(BS(n)) or BS(n) = ∅ where BS(n) = BPre(NS(n) ∪ BLock(NS(n)) ∪
TLock(NS(n))). In the case that x0 ∈ Uncon(BS(n)), the algorithm gives no result.
Otherwise, the algorithm gives NS = PΣNS (NS(n)) where NS(n) is nonblocking since
BLock(NS(n)) = ∅. Moreover, due to Lemma B.1, the projection preserves nonblocking-
ness, and so NS is nonblocking. �

Lemma B.10 (TLF NS). The networked supervisor NS synthesized for a plant G using
Algorithm 3.1 is TLF.

Proof. The proof is similar to the proof of Lemma B.9. �

B.2 Proofs of Properties and Theorems

B.2.1 Proof of Property 3.1
It suffices to prove that w ∈ L(G) for any w ∈ PΣG(L(NSP)). Take arbitrary w ∈
PΣG(L(NSP)). Then, according to Definition 3.1, PΣG(w′) = w for some w′ ∈ L(NSP).
Then, due to Lemma B.3, δNSP(z0, w

′).a = δG(a0, PΣG(w′)) meaning that w ∈ L(G).

B.2.2 Proof of Property 3.2
The proof consists of two cases:

1) for any w ∈ PΣG(L(NP)): w ∈ L(G). This is proved by induction on the structure
of w.

Base case: Assume w = ε. Then, w ∈ L(G) by definition.
Induction step: Assume that w = vσ for some v ∈ Σ∗G and σ ∈ ΣG where the

statement holds for v, i.e., v ∈ L(G). It suffices to prove that the statement holds for
vσ, i.e., vσ ∈ L(G). Due to the projection properties, for vσ ∈ PΣG(L(NP)), one can say
there exists v′ ∈ Σ∗NSP , PΣG(v′) = vσ. Without loss of generality, let say v′ = v′′σ where
PΣG(v′′) = v. Then, due to Lemma B.4, δNP(x0, v

′′).a = δG(a0, PΣG(v′′)) = δG(a0, v), and
δNP(δNP(x0, v

′′), σ).a = δG(a0, PΣG(v′′σ)) = δG(δG(a0, v), σ). So, δG(δG(a0, v), σ)! and the
statement holds for vσ.

Conclusion: By the principle of induction, the statement w ∈ L(G) holds for all
w ∈ PΣG(L(NP)).

123

APPENDIX B. PROOFS OF CHAPTER 3

2) If maxc ≤ Lmax , for any w ∈ L(G): w ∈ PΣG(L(NP)). This is proved by using
induction on the structure of w.

Base case: assume w = ε. Then w ∈ PΣG(L(NP)) by definition.
Induction step: assume that w = vσ for some v ∈ L(G) and σ ∈ ΣG where the

statement holds for v, i.e., v ∈ PΣG(L(NP)). It suffices to prove that vσ ∈ PΣG(L(NP)).
For v ∈ PΣG(L(NP)), there exists v′ ∈ Σ∗NSP , PΣG(v′) = v due to the projection properties.
Considering Definition 3.10, one of the following cases may occur at δNP(x0, v

′).
σ ∈ Σuc, then due to item 3), δNP(δNP(x0, v

′), σ)! because δG(δNP(x0, v
′).a, σ)!. Applying

the projection on v′σ ∈ L(NP) results in vσ ∈ PΣG(L(NP)).
σ ∈ Σc, then (σ, 0) ∈ δNP(x0, v

′).l since due to Lemma B.5, Nc ticks earlier, σe was
enabled in NP. When σe occurred, based on item 1), (σ,Nc) was certainly put in l as
Assumption 2 holds. The occurrence of each tick (from Nc ticks) causes l − 1 as item 4)
says. Also, the control channel is FIFO (l is a list), so even if a sequence of events have
been enabled simultaneously, the ordering is preserved in l. So far, head(δNP(x0, v

′).l) =
(σ, 0) and δG(δNP(x0, v

′).a, σ)! as assumed. So, due to item 2), v′σ ∈ L(NP), and vσ ∈
PΣG(L(NP)).
σ = tick, then let us first empty δNP(x0, v

′).m from any (σ′, 0) by executing vo ∈ Σ∗o.
Then, (σ′, 0) /∈ δNP(x0, v

′ vo).m. Also, δNP(x0, v
′ vo).a = δNP(x0, v

′).a since the execution of
observed events only changes δNP(x0, v

′).m. δG(δNP(x0, v
′).a, tick)! due to the assumption,

and so δG(δNP(x0, v
′ vo).a, tick)!. Now, as the worst case, assume that at δNP(x0, v

′ vo).a′,
only vc ∈ Σ∗ac is enabled, and after that either tick occurs or nothing. Based on item 4)
and item 1), this is then only vce executed at δNP(x0, v

′ vo). δG(δNP(x0, v
′ vo vce).a, tick))!,

(σ, 0) /∈ δNP(x0, v
′ vo vce).m, and ¬δ′G(δNP(x0, v

′ vo vce).a′, σ′)! for all σ, σ′ ∈ Σa. So, based
on item 4), v′ vo vce tick ∈ L(NP), and so v tick ∈ PΣG(L(NP)).

Conclusion: By the principle of induction, the statement (w ∈ PΣG(L(NP))) holds
for all w ∈ L(G).

B.2.3 Proof of Property 3.3

Algorithm 3.1 terminates if at some iteration i, y0 ∈ Uncon(bs(i)) or bs(i) = ∅. At each
iteration i, bs(i) ⊆ Y since initially bs(0) = BS(ns(0)) where BS(ns(0)) = BLock(ns(0))∪
TLock(ns(0), and so bs(0) ⊆ Y by definition. Also, bs(i) is updated at Algorithm 3.1-line 15
to BPre(ns(i)) ∪ BS(ns(i)) where BPre(ns(i)) ⊆ Y and BS(ns(i)) ⊆ Y by definition, and
so bs(i) ⊆ Y . Since Y is a finite set, it suffices to prove that at each iteration, at least
one state is removed from Y . Then, it is guaranteed that the algorithm loops finitely
often. So, let’s say y0 /∈ Uncon(bs(i)) and bs(i) 6= ∅ (because otherwise the algorithm
terminates immediately). Then, there exists some state y′ ∈ bs(i). By definition this
gives y′ ∈ Uncon(bs(i)). Also, since at the end of each iteration, the automaton is
made reachable (Algorithm 3.1-line 14), y′ is reachable from y0 (possibly through some
intermediate states). According to Algorithm 3.1-line 12, at least y′ is removed from Y ,
and so the algorithm terminates.

124

APPENDIX B. PROOFS OF CHAPTER 3

B.2.4 Proof of Theorem 3.1
We need to prove that for all z ∈ Reach(z0), there exists a w ∈ Σ∗NSP such that δNSP(z, w) ∈
Zm. Take z ∈ Reach(z0), then we need to find w ∈ Σ∗NSP for which δNSP(z, w) ∈ Zm. Let
us assume that z is reachable from z0 via w0 ∈ Σ∗NSP , i.e., δNSP(z0, w0) = z. Then, due
to Lemma B.3, z.y = δNS(y0, PΣNS (w0)). Due to Lemma B.9, for z.y ∈ Reach(y0), there
exists some v ∈ Σ∗NS such that δNS(z.y, v) ∈ Ym. Moreover, due to Algorithm 3.1-line 14,
L(ns(i)) ⊆ L(ns(i− 1)), and ns(0) = NP . Hence, L(NS) ⊆ L(PΣNS (NP)) (Algorithm 3.1-
line 20). Then, due to the projection properties, for PΣNS (w0)v ∈ L(NS), one can say
there exists some w′ ∈ L(NP), PΣNS (w′) = PΣNS (w0)v such that δNP(x0, w

′) ∈ Xm (due
to the projection properties, any state y is marked only if y ∩ Xm 6= ∅). Without loss
of generality, assume that w′ = w′0w

′
1 for some w′0, w′1 ∈ Σ∗NSP with PΣNS (w′0) = PΣNS (w0)

and PΣNS (w′1) = v. Let x′1 ∈ X be such that δNP(x0, w
′
0) = x′1, and then δNP(x′1, w′1) ∈ Xm.

Moreover, due to Corollary B.1, w0 ∈ L(NP), and so δNP(x0, w0) = x1 for some x1 ∈ X.
So far, we have x1, x

′
1 are reachable from x0 via w0, w

′
0, respectively, where PΣNS (w0) =

PΣNS (w′0). Thereto, x1 is observationally equivalent to x′1. Then, x1 /∈ Uncon(BS(ns(i)) at
any iteration i because otherwise x′1 ∈ OBS(Uncon(BS(ns(i)))), and w′0 will be undefined
(y0 ∈ Y \ Uncon(BS(ns(i)), and so there exists at least a controllable event leading x0 to
x′1 which is undefined). This is the case for all other states observationally equivalent to
x1 (because otherwise PΣNS (w0) /∈ L(NS) which contradicts the assumption). Therefore,
x1 /∈ Uncon(BS(ns(i)) for any iteration i of the algorithm. So, at each iteration i, there
exists a w ∈ Σ∗NSP leading x1 to a marked state which does not become undefined because
if it does, then x1 ∈ Uncon(BS(NS(i+ 1)) which is a contradiction.

B.2.5 Proof of Theorem 3.2
We need to prove that for all z ∈ Reach(z0), there exists a w ∈ Σ∗NSP such that
δNSP(z, w tick)!. Take z ∈ Reach(z0), and assume z is reachable from z0 via w0 ∈
Σ∗NSP , i.e., δNSP(z0, w0) = z. Then, due to Lemma B.3, z.a = δG(a0, PΣG(w0)) and
z.y = δNS(y0, PΣNS (w0)). Based on Definition 3.7, we need to find w ∈ Σ∗NSP such that
δG(z.a, PΣG(w) tick)!, δNS(z.y, PΣNS (w) tick)!, and (σ, 0) /∈ m for all σ ∈ Σa. As guaranteed
by Lemma B.10, NS is TLF, and so for z.y ∈ Reach(y0), there exists v ∈ Σ∗NS such
that δNS(z.y, v tick)!. Also, L(NS) ⊆ PΣNS (L(NP)) (as stated before), and so from the
projection properties, one can say there exists v′ ∈ Σ∗NSP , PΣNS (v′) = v, δNP(x, v′ tick)!.
Let us take w = v′ for which we already know δNS(y, PΣNS (w) tick)!. Also, (σ, 0) /∈ m
for all σ ∈ Σa because otherwise Definition 3.10-item 4) could not be satisfied. It now
suffices to prove δG(z.a, PΣG(w) tick)!. As Property 3.2 says, PΣG(L(NP)) ⊆ L(G), and so
PΣG(w) tick ∈ L(G) for w tick ∈ L(NP).

B.2.6 Proof of Theorem 3.3
We need to prove that if we take any w ∈ L(NSP) and u ∈ Σuc ∪ {tick} such that
PΣG(w)u ∈ L(G). Then, wu ∈ L(NSP) for u ∈ Σuc, and for u = tick when there does not
exist any σf ∈ Σ̂for ∪ Σo such that wσf ∈ L(NSP).

Take w ∈ L(NSP) and u ∈ Σuc. From Lemma B.3, δNSP(z0, w).a = δG(a0, PΣG(w)).

125

APPENDIX B. PROOFS OF CHAPTER 3

Based on Definition 3.7-item 2), u occurs only if it is enabled by G. As a result,
δNSP(δNSP(z0, w), u)! since δG(δNSP(z0, w).a, u)! due to the assumption.

Take u = tick where @σ∈Σ̂for∪Σo wσ ∈ L(NSP). Considering Definition 3.7-item 4),
tick occurs in NSP after w if the following conditions hold; 1. PΣG(w) tick ∈ L(G), 2.
PΣNS (w) tick ∈ L(NS), and 3. @σ ∈ Σo, δNSP(z0, wσ)!. The first and the last conditions
hold based on the assumption. So, we only need to prove PΣNS (w) tick ∈ L(NS). Due to
Corollary B.1, for w ∈ L(NSP): w ∈ L(NP). Due to Property 3.2, for PΣG(w) tick ∈ L(G),
there exists w′ ∈ L(NP), PΣG(w′) = PΣG(w) such that w′.tick ∈ L(NP). Considering
Definition 3.10, w tick ∈ L(NP) for the following reasons; 1. δNP(x0, w).a = δNP(x0, w

′).a
and δNP(x0, w).a′ = δNP(x0, w

′).a′ since PΣG(w′) = PΣG(w). Hence, δG(δNP(x0, w).a, tick)!
and δG(δNP(x0, w).a′, tick)! (since δNP(x0, w

′ tick)!). 2. m ∈ M changes only by the
execution of σ ∈ ΣG. So, δNP(x0, w).m = δNP(x0, w

′).m since PΣG(w′) = PΣG(w). Also,
(σ, 0) /∈ δNP(x0, w

′).m for any σ ∈ Σa since δNP(x0, w
′ tick)!, and so (σ, 0) /∈ δNP(x0, w).m

for any σ ∈ Σa. Due to the assumption, wσ /∈ L(NSP) for σ ∈ Σfor ∪ Σe ∪ Σo. Also, due
to Theorem B.7, NSP = NS ||NP. In the case that wσ ∈ L(NP) for some σ ∈ Σfor ∪ Σo,
then, due to Algorithm 3.1-line 5, it could not be disabled by NS . Also, if wσ ∈ L(NP)
for some σ ∈ Σe where both tick and σ become disabled by NS , then by definition,
δNP(x0, w) ∈ BPre(NS) and will be removed which violates the assumption (w ∈ L(NSP)).
Hence, w tick ∈ L(NP) and tick does not become disabled by Algorithm 3.1, and so
PΣNS (w) tick ∈ L(NS).

B.2.7 Proof of Theorem 3.4
To prove that NS is (timed networked) maximally permissive for G, we need to ensure
that for any other proper networked supervisor (say NS ′) in the same NSC framework
(with event set ΣNS): PΣG(L(NS ′Nc‖No G)) ⊆ PΣG(L(NSP)). First, assume that L(NS ′) *
PΣNS (L(NP)). Then, any extra transition of NS ′ that is not included in PΣNS (L(NP))
does not add any new transition to PΣG(L(NS ′Nc‖No G)). Let say vσ ∈ L(NS ′) and v ∈
PΣNS (L(NP)), but vσ /∈ PΣNS (L(NP)) for σ ∈ ΣNS . Also, there exists w ∈ L(NS ′Nc‖No G)
with PΣNS (w) = v. If σ = tick, then σ cannot be executed in NS ′Nc‖No G because based on
Definition 3.7-item 4), tick should be enabled by G which is not the case; tick is not enabled
in NP , and so due to Property 3.2, it is not enabled in G. If σ ∈ Σo, then it does not matter
if σ occurs in NS ′Nc‖No G because it does not change PΣG(L(NS ′Nc‖No G)). If σ ∈ Σe, then
as Lemma B.5 says, NP enables all enabling events of Σc that are executed in the plant on
time (Nc ticks ahead). So, any extra enabling event by NS ′ will not be executed by the
plant, and so it does not enlarge PΣG(L(NS ′Nc‖No G)). Therefore, we continue the proof for
the case that L(NS ′) ⊆ PΣNS (L(NP)) (where Lemma B.7 and Corollary B.1 hold for NS ′).
Take an arbitrary w ∈ PΣG(L(NS ′Nc‖No G)), it suffices to prove that w ∈ PΣG(L(NSP)).
Let say NS ′Nc‖No G = (z′0,ΣNSP , δNS′P , Z

′
m). For w ∈ PΣG(L(NS ′Nc‖No G)), due to the

projection properties, there exists v′ ∈ L(NS ′Nc‖No G) such that PΣG(v′) = w where
δNS′P (z′0, v′) is a TLF and non-blocking state (NS ′ is proper due to the assumption). Also,
any uncontrollable active event/non-preemptable tick enabled at δG(a0, w) is enabled at
δNS′P (z0, v

′), and it leads to a nonblobking and TLF state. Based on Lemma B.3, PΣNS (v′) ∈
L(NS ′) for v′ ∈ L(NS ′Nc‖No G), and due to Corollary B.1, v′ ∈ L(NP). Moreover, due
to Lemma B.7, L(NS ′Nc‖No G) = L(NS ′||NP), so regarding the definition of synchronous

126

APPENDIX B. PROOFS OF CHAPTER 3

product, for any w′ ∈ L(NP) and PΣNS (w′) = PΣNS (v′): w′ ∈ L(NS ′Nc‖No G). δNS′P (z′0, w′)
is a TLF and non-blocking state because NS ′Nc‖No G is nonblocking and TLF due to the
assumption. Also, any uncontrollable active event or non-preemptable tick enabled at w′
leads to a nonblocking and TLF state since NS ′ is controllable for G by the assumption.
Therefore, one can say δNP(x0, v

′) /∈ OBS(Uncon(BS(NP)). Considering Algorithm 3.1,
initially, ns(0) = NP where v′ ∈ L(NP) and δNS(y0, v

′) /∈ OBS(Uncon(BS(ns(0))). The
last statement holds for any iteration of the algorithm until the last one (say n) so that
δNS(y0, v

′) /∈ OBS(Uncon(BS(NS(n))) because otherwise all y ∈ OBS(Uncon(BS(NS(n)))
are removed (based on Algorithm 3.1-line 6), and so PΣNS (v′) /∈ L(NS) because it leads
NS ||NP (NS ||NP = NS(n)) to a state in Uncon(BS(NS(n))). Then, based on Lemma B.7,
NSP becomes blocking/time-lock/uncontrollable which violates the assumption. Hence,
(considering Algorithm 3.1-line 6) v′ is not undefined by Algorithm 3.1, and so PΣNS (v′) ∈
L(NS). Based on Lemma B.7, L(NSP) = L(NS ||NP). PΣNS (v′) ∈ L(NS) and v′ ∈ L(NP),
so v′ ∈ L(NSP) where applying the projection on ΣG gives w ∈ PΣG(L(NSP)).

B.2.8 Proof of Theorem 3.5
To simplify, let us denote G||R⊥ by Gt, the networked plant Π(Gt, Nc, No, Lmax ,Mmax)
by NP t and the networked supervised plant NSNc‖No Gt by NSP t. We need to prove
that if we take any w ∈ PΣR(L(NSP t)): w ∈ L(R). Take w ∈ PΣR(L(NSP t)), then
due to Definition 3.1, there exists w′ ∈ L(NSP t) such that PΣR(w′) = w. Also, based
on Property 3.1, PΣG(L(NSP t)) ⊆ L(Gt), and so PΣG(w′) ∈ L(G||R⊥). Applying the
projection on ΣR gives PΣR(w′) ∈ L(R⊥). For w ∈ PΣR(L(NSP t)) ∩ L(R⊥), w ∈ L(R)
since the blocking state qd added to G||R to make G||R⊥ is removed by NS as guaranteed
by Theorem 3.1.

127

Appendix C

Proofs of Chapter 4

C.1 Technical Lemmas
Lemma C.1 (Algorithm termination). Given a τ -automaton P , Algorithm 4.1 terminates.

Proof. The algorithm terminates when y0 ∈ BS or BS = ∅. Let say there exists at least
a state y′ ∈ BS where y′ 6= y0 (otherwise the algorithm terminates immediately). Initially,
BS = BLock(S), and so BS ⊆ Y by definition. At the end of each iteration BS is updated
at Algorithm 4.1-line 12, where both BLock(S) ⊆ Y and Yf \ Yf (S) ⊆ Y by definition. So
BS ⊆ Y , and it suffices to prove that at each iteration at least one state is removed from
Y . This can be seen at Algorithm 4.1-line 10, where UnconS(BS) is removed from Y , and
UnconS(BS) includes at least one state as BS is nonempty. �

Lemma C.2 (Nonblocking and Controllable S). Given a τ -automaton P with the set of
events Σ ∪ {τ}, uncontrollable events Σuc, and forcible events Σfor , Algorithm 4.1 results
in a controllable S for P , and S||P is nonblocking.

Sketch of the Proof. According to Lemma C.1, the algorithm terminates and it either gives
no result (when y0 ∈ BS) or a nonblocking S (BS = ∅ which means that BLock(S) = ∅
since BLock(S) ⊆ BS). S is controllable for P since the algorithm starts from S = P and
BS = BLock(S). At Algorithm 4.1-line 10, all states belonging to UnconS(BS) are removed.
So, if there exists a state y reaching to a blocking state in an uncontrollable manner (a
sequence of uncontrollable events or not preemptable τ), then y ∈ UnconS(BS). In the case
that a τ -transition enabled at some state y has been preempted by a forcible event, and later
the forcible event becomes disabled, then y is added to BS at Algorithm 4.1-line 12. �

C.2 Proofs of Properties and Theorems

C.2.1 Proof of Theorem 4.1
[Sketch of the Proof]

129

APPENDIX C. PROOFS OF CHAPTER 4

• St is controllable for G. Considering Definition 4.7, controllability actually means
that the guard of an uncontrollable event and the invariant of a location where no forcible
event is enabled do not change in St||G. The guard of an edge or the invariant of a location
of G is modified in St only when a transition of P becomes undefined by S. Due to
Lemma C.2, S is controllable for P meaning that no uncontrollable event or uncontrollable
(not preemptable) τ is disabled by S. Hence, St is controllable for G.
• St||G = St is nonblocking. First, St||G = St for the following reason: suppose that

δ(qs, σ) = qt is a controllable event transition of P that is disabled by P . Then, based
on Definition 4.10, qt.R will be excluded from all possible regions allowed for taking the
event σ in G, and so the guard of the edge labeled by σ will be restricted in St. In a
similar way, whenever a τ -transition is disabled by S, the region of the target state will be
excluded from the set of regions satisfied by the original invariant, and so for any location,
St may restrict the invariant. In addition, based on Lemma C.2, S is nonblocking, and so
any reachable state q in S is nonblocking. Considering Definition 4.9, q is nonblocking
whenever q.l is nonblocking. Therefore, any reachable state of St is nonblocking.

130

Appendix D

Proofs of Chapter 5

D.1 Technical Lemmas

Lemma D.1 (G-Clock Constraint). ϕ is a G-clock constraint iff for any pair of clock
valuations u1, u2, represented by the same clock region rG ∈ RG: u1 |= ϕ⇐⇒ u2 |= ϕ.

Proof. The proof is trivial. �

Lemma D.2 (Clock Valuations). For any pair of clock valuations u1, u2 ∈ rG for some
rG ∈ RG, if u1 + ∆1 ∈ r∆ for some r∆ ∈ RG and ∆1 ∈ R≥0: there exists ∆2 ∈ R≥0 such
that u2 + ∆2 ∈ r∆.

Proof. As illustrated by Figure 5.3, from two valuations from the same region in each case
any move to another region (by passage of time) from one of these valuations is easily
mimicked from the other valuation (possibly for a different amount of time passage). �

Remark. In the coming lemmas and proofs, we frequently use ”this term represents a
G-clock constraint". The meaning of this is that although the term may not necessarily
satisfy G-clock constraints as given by Definition 5.12, there is G-clock constraint that is
logically equivalent with it (which means that for any valuation the term and its G-clock
constraint representation have the same value).
Lemma D.3 (Negation ofG-Clock Constraint). For anyG-clock constraint ϕ, the negation
¬ϕ also represents a G-clock constraint.

Proof. This is proved by induction on the structure of G-clock constraints.
Base cases:
• for the atomic G-clock constraints x < n and x− y < n, their negations are x ≥ n

and x− y ≥ n, respectively;
• for the atomic G-clock constraints x = n and x − y = n, their negations are
x > n ∨ x < n and x− y > n ∨ x− y < n, respectively;

131

APPENDIX D. PROOFS OF CHAPTER 5

• for the atomic G-clock constraints x > n and x− y > n, their negations are x ≤ n
and x− y ≤ n, respectively.

Induction step: Consider the G-clock constraint ϕ = ϕ1♦ϕ2 for some G-clock con-
straints ϕ1 and ϕ2, and ♦ ∈ {∧,∨}, where the statement holds for ϕ1 and ϕ2, i.e., ¬ϕ1
and ¬ϕ2 also represent G-clock constraints. If ♦ = ∨, then ¬(ϕ1♦ϕ2) = ¬ϕ1 ∧ ¬ϕ2. Also,
if ♦ = ∧, then ¬(ϕ1♦ϕ2) = ¬ϕ1 ∨ ¬ϕ2. Both ¬ϕ1 and ¬ϕ2 represent G-clock constraints
as assumed, and the combination of any two G-clock constraints by ∧ and ∨ is also a
G-clock constraint. So, ¬(ϕ1♦ϕ2) represents a G-clock constraint.

Conclusion: By the principle of induction, the claim of Lemma D.3 holds for any
G-clock constraint ϕ. �

Lemma D.4 (Reset Update of G-Clock Constraint). For any G-clock constraint ϕ and
any reset r, ϕ[r] also represents a G-clock constraint.

Proof. This is proved by induction on the structure of G-clock constraints.
Bases cases:
• for the atomic G-clock constraints x < n and x− y < n, ϕ[r] represents the G-clock
constraint ϕ if x, y /∈ r. If x, y ∈ r, ϕ[r] represents the G-clock constraint true if
n 6= 0 and false if n = 0. For x− y < n, ϕ[r] represents the G-clock constraint y > n
if only x ∈ r, and x < n if only y ∈ r.
• for the atomic G-clock constraints x = n and x− y = n, ϕ[r] represents the G-clock
constraint ϕ if x, y /∈ r. If x, y ∈ r, ϕ[r] represents the G-clock constraint true if
n = 0 and false if n 6= 0. For x− y = n, ϕ[r] represents the G-clock constraint y = n
if only x ∈ r, and x = n if only y ∈ r.
• for the atomic G-clock constraints x > n and x− y > n, ϕ[r] represents the G-clock

constraint ϕ if x, y /∈ r. If x, y ∈ r, ϕ[r] represents the G-clock constraint false. For
x− y > n, ϕ[r] represents the G-clock constraint y < n if only x ∈ r, and x > n if
only y ∈ r.

Induction step: Consider the G-clock constraint ϕ = ϕ1♦ϕ2 for some G-clock con-
straints ϕ1 and ϕ2, and ♦ ∈ {∧,∨}, where the statement holds for ϕ1 and ϕ2, i.e., ϕ1[r]
and ϕ2[r] also represent G-clock constraints. (ϕ1♦ϕ2)[r] = ϕ1[r]♦ϕ2[r] because the reset
update does not change anything else than replacing all clock variables of r by zero. So,
in (ϕ1♦ϕ2)[r], the clock variables from r in both ϕ1 and ϕ2 are replaced by zero which
can equivalently be represented by ϕ1[r]♦ϕ2[r]. Since the combination of any two G-clock
constraints by ∧ and ∨ is also a G-clock constraint, (ϕ1♦ϕ2)[r] represents a G-clock
constraint.

Conclusion: By the principle of induction, the claim of Lemma D.4 holds for any
G-clock constraint ϕ. �

Lemma D.5 (∆-Time Invariance for NBP). Given G-clock constraints ϕ1 and ϕ2,
∃∆ ϕ↑∆1 ∧ ∀δ ≤ ∆ ϕ↑δ2 represents a G-clock constraint.

Proof. Let us indicate ∃∆ ϕ↑∆1 ∧ ∀δ ≤ ∆ ϕ↑δ2 by Φ. Take a clock valuation u1 represented

132

APPENDIX D. PROOFS OF CHAPTER 5

by a clock region of G, say rG ∈ RG, such that u1 |= Φ. According to Lemma D.1, it
suffices to prove that for any region rG and any two clock valuations u1 and u2 represented
by rG, u1 |= Φ iff u2 |= Φ. Because of symmetry considerations it suffices to prove that
u1 |= Φ implies u2 |= Φ. Let us assume u1 |= Φ. Then there exists some ∆1 such that
u1 |= ϕ↑∆1

1 and u1 |= ∀δ ≤ ∆1 ϕ
↑δ
2 . It is proved that there always exists a ∆2 for which

u2 |= ϕ↑∆2
1 and u2 |= ∀δ ≤ ∆2 ϕ

↑δ
2 . Let us say u↑∆1

1 ∈ r∆ for some r∆ ∈ RG. Then,
based on Lemma D.2, there exists a ∆2 ∈ R≥0 such that u↑∆2

2 ∈ r∆. Since u↑∆1
1 |= ϕ1

and u↑∆1
1 , u↑∆2

2 ∈ r∆, by Lemma D.1: u↑∆2
2 |= ϕ1. It suffices to prove that for all δ ≤ ∆2:

u2 |= ϕ↑δ2 . Take δ2 ≤ ∆2, and assume that u↑δ2
2 ∈ rδ, where rδ can be rG, r∆, or any

region in between. Based on Lemma D.2, there exists a δ1 such that u↑δ1
1 ∈ rδ. We prove

that δ1 ≤ ∆1 by contradiction. Assume δ1 > ∆1. Then, rδ already passed r∆, and this
contradicts the fact that rδ is either rG, r∆, or any other region in between. So, δ1 ≤ ∆1,
and u↑δ2

2 |= ϕ2 because u↑δ1
1 |= ϕ2, and u↑δ1

1 , u↑δ2
2 ∈ rδ. �

Lemma D.6 (Nonblocking Predicate). Given a plant G, N i(l) computed by Algorithm 5.1
in each iteration i and for each location l ∈ L represents a G-clock constraint.

Proof. We do the proof by induction on the number of iterations i.
Base case: i = 0. Then, N0(l) is either IG(l) or false, and in each case, this is a

G-clock constraint by definition.
Induction step: Assume that the statement holds for i, i.e., N i(l) is a G-clock

constraint for all l ∈ L. It suffices to prove that the statement holds for i+ 1, i.e., N i+1(l)
is a G-clock constraint for all l ∈ L. Consider Algorithm 5.1-line 6, N i+1 = 1 ∨ 2 ∨ 3 .
It suffices to prove that each of 1 , 2 , and 3 is a G-clock constraint because then, the
disjunction of them is also a G-clock constraint. 1 is a G-clock constraint as assumed.
2 is a G-clock constraint because g and IG(l′) are G-clock constraints by definition,
and N i(l′)[r] is a G-clock constraint since N i(l′) is a G-clock constraint as assumed, and
the reset update represents a G-clock constraint according to Lemma D.4. Then, the
conjunction of g, IG(l′), and N i(l′)[r] gives a G-clock constraint by definition. Finally, the
big disjuction in 2 is over a finite number of G-clock constraints as the number of edges
is finite. 3 is a G-clock constraint because IG(l) is a G-clock constraint by definition,
and N i(l′) is a G-clock constraint as assumed. So, based on Lemma D.5, 3 represents a
G-clock constraint.

Conclusion: By the principle of induction, the claim of Lemma D.6 holds for any
iteration i and location l ∈ L. �

Lemma D.7 (∆-Time Invariance for BSP). Given G-clock constraints ϕ1, ϕ2, and ϕ3,
∃∆ ϕ↑∆1 ∧ ∀δ ≤ ∆

(
ϕ↑δ2 ∧ ∀δ′ ≤ δ ϕ↑δ

′

3

)
also represents a G-clock constraint.

Proof. Let us indicate ∃∆ ϕ↑∆1 ∧
(
∀δ ≤ ∆ ϕ↑δ2 ∧∀δ′ ≤ δ ϕ↑δ

′

3

)
by Φ. Take a clock valuation

u1 represented by a clock region of G, say rG ∈ RG, such that u1 |= Φ. According to
Lemma D.1, it suffices to prove that for any region rG and any two clock valuations
u1, u2 ∈ rG: u1 |= Φ iff u2 |= Φ. Because of symmetry considerations it suffices to prove
that u1 |= Φ implies u2 |= Φ.

133

APPENDIX D. PROOFS OF CHAPTER 5

Consider an arbitrary region rG ∈ RG and arbitrary clock valuations u1, u2 ∈ r. Let
us assume u1 |= Φ. Then there exists some ∆1 such that u1 |= ϕ↑∆1

1 , and u1 |= ∀δ ≤
∆1 ϕ

↑δ
2 ∧ ∀δ′ ≤ δ ϕ↑δ

′

3 . It is proved that there always exists a ∆2 for which u2 |= ϕ↑∆2
1 , and

u2 |= ∀δ ≤ ∆2 ϕ
↑δ
2 ∧ ∀δ′ ≤ δ ϕ↑δ

′

3 . Let us say that u↑∆1
1 ∈ r∆ for some r∆ ∈ RG. Then,

based on Lemma D.2, there exists a ∆2 ∈ R≥0 such that u↑∆2
2 ∈ r∆. Since u↑∆1

1 |= ϕ1 and
u↑∆1

1 , u↑∆2
2 ∈ r∆, by Lemma D.1, we have u↑∆2

2 |= ϕ1.

What remains to prove is that for all δ ≤ ∆2: u2 |= ϕ↑δ2 and for all δ′ ≤ δ: u2 |= ϕ↑δ
′

3 .
Take δ2 ≤ ∆2, and assume u↑δ2

2 ∈ rδ, where rδ can be rG, r∆, or any region in between.
Then, for any δ′ ≤ δ2, u↑δ

′

2 moves to either rG, rδ, or any region in between. Let us take
δ′2 ≤ δ2, and assume that u↑δ

′
2

2 moves to rδ′ . Based on Lemma D.2, there exists a δ1 and a
δ′1 such that u↑δ1

1 ∈ rδ and u
↑δ′

1
1 ∈ rδ′

1
. We prove that δ1 ≤ ∆1 and δ′1 ≤ δ1 by contradiction.

1) Assume δ1 > ∆1. Then, rδ already passed r∆, and this contradicts the fact that rδ
is either rG, r∆, or any other region in between. 2) Assume δ′1 > δ1. Then, rδ′ already
passed rδ, and this contradicts the fact that rδ′ is either rG, rδ, or any other region in
between. �

Lemma D.8 (Bad State Predicate). Given a plant G and NBP(G), Bi(l) computed
by Algorithm 5.2 in each iteration i and for each location l ∈ L represents a G-clock
constraint.

Proof. This is proved in a similar way to the proof of Lemma D.6, where Lemma D.7 is
used to show that 6 represents a G-clock constraint. �

Lemma D.9 (Adapted Guards). Given a plant G, e.gm computed by Algorithm 5.3 in
each iteration m and for each edge e ∈ ES represents a G-clock constraint.

Proof. We do the proof by induction on the number of iterations m.
Base case: m = 0. Then, e.gm = e.g for any e ∈ ES which is a G-clock constraint by

definition.
Induction step: Assume that the statement holds for m, i.e., e.gm is a G-clock

constraint for all e ∈ ES. It suffices to prove that the statement holds for m + 1, i.e.,
e.gm+1 represents a G-clock constraint for all e ∈ ES. Consider Algorithm 5.3-line 13,
e.gm+1 = e.gm ∧ ¬Bn,m(l′)[r]. Now, e.gm is a G-clock constraint as assumed. Bn,m(l′) is a
G-clock constraint because according to the proof of Lemma D.8, in each iteration, the bad
state predicate of each location is a G-clock constraint. Based on Lemma D.4, Bn,m(l′)[r]
represents a G-clock constraint, and so due to Lemma D.3, ¬Bn,m(l′)[r] represents a G-
clock constraint. Then, the conjunction of e.gm, and ¬Bn,m(l′)[r] gives a G-clock constraint
by definition.

Conclusion: By the principle of induction, the claim of Lemma D.9 holds for any
iteration m and edge e ∈ ES. �

Lemma D.10 (Adapted Invariants). Given a plant G, InS (l) computed by Algorithm 5.3
in each iteration n and for each location l ∈ L represents a G-clock constraint.

134

APPENDIX D. PROOFS OF CHAPTER 5

Proof. This is proved in a similar way to the proof of Lemma D.9. �

Remark. As Algorithm 5.3 terminates (See Appendix D.2.5), in the coming proofs, for
a given a plant G and TSCS(G), it is assumed that the outer loop (Loop-2) terminates
in n = N iterations, and for each 0 ≤ n ≤ N , the inner loop (Loop-1 inside Loop-2)
terminates in m = Mn iterations. SN,MN denotes the result of the final iteration, so that
S = SN,MN is the output of TSCS(G).
Lemma D.11 (Synthesis Intermediate Results). Given a plant G, the result of TSCS(G)
at any iteration n,m (n ≤ N,m ≤Mn) is a TA.

Proof. Initially, S is set to G, which is a TA. Then, at each iteration over n,m, only some
of the guards and invariants may change. According to Lemma D.9 and Lemma D.10, the
adapted guards and invariants are always clock constraints. So, based on Definition 5.3,
the result of TSCS(G) at any iteration n,m is a TA. �

Remark. As Lemma D.11 holds, in the coming proofs, the result of Algorithm 5.3 at
iteration n,m (n ≤ N,m ≤ Mn) is assumed to be the TA Sn,m, represented by the
automaton (C,L,ΣG, E

m
S , Lm, l0, I

n
S), where Em

S is the set of edges, and InS gives the
invariants of Sn,m.

D.2 Proofs of Properties and Theorems

D.2.1 Proof of Property 5.1
Based on Lemma D.6, in each iteration of the algorithm, say i, and for any location l ∈ L:
N i(l) represents a G-clock constraint. At Algorithm 5.1-line 6, N i(l) is adapted to the
G-clock constraint N i+1(l) = N i(l) ∨ (2 ∨ 3) for all l ∈ L. Both 2 and 3 represent
G-clock constraint as proved in Lemma D.6. So, Z(N i+1(l)) = Z(N i(l)) ∪ Z(2 ∨ 3)
where Z(2 ∨ 3) ∈ P(RG). Then, if Z(2 ∨ 3) ⊆ Z(N i(l)): Z(N i+1(l)) = Z(N i(l)). So,
N i+1(l) = N i(l), and the algorithm terminates (Algorithm 5.1-line 8). Otherwise, at least
a region rG ∈ RG is added to Z(N i(l)) so that Z(N i+1(l)) = Z(N i(l)) ∪ {rG}. Since L
and RG are both finite, this can occur only finitely many times.

D.2.2 Proof of Property 5.2
This property is proved in two parts:

1) take an arbitrary nonblocking state (l, u), and assume that from (l, u), a marked
state can be reached in j transitions. Since the algorithm terminates and in each iteration
(Algorithm 5.1-line 6), the nonblocking condition for a given location l is never strengthened,
it always holds that N i(l)⇒ N(l). So, to conclude that u |= N(l), we prove that u |= N i(l)
for some i by induction on j:

Base case: assume that from (l, u), a marked state is reached in 0 transitions. In
other words, l ∈ Lm, and so N0(l) = IG(l) by definition. Then, for i = 0, u |= N i(l) since

135

APPENDIX D. PROOFS OF CHAPTER 5

the semantic graph only contains states (l, u) for which the clock valuation satisfies the
invariant of the location; u |= IG(l).

Induction step: assume that from (l, u), a marked state is reached in j+ 1 transitions.
Also, assume that (l, u) leads to a state, say (l′, u′), in one transition (this means that
from (l′, u′), a marked state is reached in j transitions), where the statement holds for
(l′, u′) i.e., u′ |= N i(l′) for some i (by induction assumption). We prove that u |= N i+1(l).

If (l, u) moves to (l′, u′) by an event transition, say σ ∈ Σ, where this transition is
related to an edge, (l, σ, g, r, l′). Then, based on Definition 5.7, u |= g, and u[r] |= IG(l′).
Also, u[r] |= N i(l′) since u′ |= N i(l′) as assumed and u′ = u[r]. So, u |= N i+1(l) since
u |= 2 . If (l, u) moves to (l′, u′) by a time transition, say ∆. Then, u+ ∆ |= N i(l) because
based on Definition 5.7, l′ = l, u′ = u + ∆, and u′ |= N i(l′) as assumed. Also, for all
δ ≤ ∆: u+ δ |= IG(l) by definition. So, u |= N i+1(l) since u |= 3 .

Conclusion: for any state (l, u) in the semantic graph of G that is nonblocking:
u |= N(l).

2) take an arbitrary (l, u) for which u |= N(l). Since the algorithm terminates, and
in each iteration the nonblocking condition for a given location l is never strengthened,
there is always some i such that u |= N i(l). We prove by induction on i that from (l, u), a
marked state is reached:

Base case: assume u |= N0(l). Then, N0(l) cannot be false, and so from (l, u), a
marked state is reached (in 0 transitions) as l ∈ Lm.

Induction step: assume u |= N i+1(l), and the statement holds for i , i.e., for any
(l′, u′) with u′ |= N i(l′): from (l′, u′), a marked state is reached (induction assumption).

Considering the nonblocking predicate computation (line6), u |= N i+1(l) either because
already u |= N i(l), or because u |= 2 or u |= 3 .

If u |= N i(l). Then, from (l, u), a marked state is reached based on the induction
assumption.

If u |= 2 , then there exists at least one edge (l, σ, g, l′, r) such that u |= g ∧ IG(l′)[r] ∧
N i(l′)[r]. Since u |= N i(l′)[r] and u′ = u[r], u′ |= N i(l′). So, based on the induction
assumption, from (l′, u′), a marked state is reached. Also, since u |= g ∧ IG(l′)[r], due to
Definition 5.7, there is an event transition leading from (l, u) to (l′, u′). So, from (l, u), a
marked state is reached.

If u |= 3 , then there exists ∆ such that u+∆ |= N i(l), and for all δ ≤ ∆: u+δ |= IG(l)[r].
Since u + ∆ |= N i(l) with u′ = u + ∆, based on induction assumption, from (l′, u′), a
marked state is reached. Also, due to Definition 5.7, there is a time transition from (l, u)
to (l′, u′) as for all δ ≤ ∆: u+ δ |= IG(l)[r]. So, from (l, u), a marked state is reached.

Conclusion: from any state (l, u) in the semantic graph of G with u |= N(l), a marked
state is reached.

136

APPENDIX D. PROOFS OF CHAPTER 5

D.2.3 Proof of Property 5.3
This property is proved in a similar way to the proof of Property 5.1, where Lemma D.7 is
used to show that 6 represents a G-clock constraint.

D.2.4 Proof of Property 5.4
This property is proved in two parts:

1) take an arbitrary bad state (l, u), and assume that from (l, u) a blocking state can
be reached in j (uncontrollable) transitions. Since the algorithm terminates, and in each
iteration (Algorithm 5.2-line 6), the bad state condition for a given location l is never
strengthened, it always holds that Bi(l)⇒ B(l). So, to conclude that u |= B(l), we prove
that u |= Bi(l) for some i by induction on j:

Base case: from (l, u), a blocking state is reached in 0 transitions. Then, due to
Property 5.2 u 6|= N(l), and so for i = 0, u |= Bi(l) by definition.

Induction step: from (l, u), a blocking state can be reached in j + 1 (uncontrollable)
transitions. Assume that in one (uncontrollable) transition, (l, u) moves to a state, say
(l′, u′), where the statement holds for (l′, u′) i.e., u′ |= Bi(l′) for some i (by the induction
assumption). We prove that u |= Bi+1(l).

If (l, u) moves to (l′, u′) by an uncontrollable event transition that is related to an edge
(l, σ, g, r, l′). Then, based on Definition 5.7, u |= g, and u[r] |= IG(l′). Also, u[r] |= Bi(l′)
since u′ |= Bi(l′) as assumed and u′ = u[r]. So, u |= Bi+1(l) since u |= 5 .

If (l, u) moves to (l′, u′) by a time transition, say ∆, that is not preemptable. Then,
u |= Bi+1(l) since u |= 6 for the following reasons: 1) u + ∆ |= Bi(l) because based
on Definition 5.7, l′ = l, u′ = u + ∆, and u′ |= Bi(l′) as assumed, 2) for all δ ≤ ∆:
u+ δ |= IG(l) by definition, and 3) since ∆ is not a preemptable time transition, there is
no forcible event enabled at (l, u) so that the condition on forcible events always holds (is
true).

Conclusion: for any bad state (l, u) in (the semantic graph of) G: u |= B(l).
Assume that u |= Bi(l). We prove by induction on i that from (l, u), a blocking state

is reached within i uncontrollable transitions:
Base case: u |= B0(l). Then, u 6|= N(l) by definition. So, based on Property 5.2, (l, u)

is not a marked state, and any transition enabled at (l, u) does not lead to a nonblocking
state. So, from (l, u), a blocking state is reached in 0 uncontrollable transitions.

Induction step: assume u |= Bi+1(l), where the statement holds for i, i.e., for any
(l′, u′) with u′ |= Bi(l′): from (l′, u′), a blocking state is by the induction assumption
reached within i uncontrollable transitions.

Considering the bad state predicate computation, u |= Bi+1(l) because already u |=
Bi(l), or because u |= 5 or u |= 6 .

If u |= Bi(l), then, (l, u) is a bad state based on the induction assumption.
If u |= 5 , then there exists at least one edge (l, σ, g, l′, r), labeled by an uncontrollable

137

APPENDIX D. PROOFS OF CHAPTER 5

event, such that u |= g ∧ IG(l′)[r] ∧ Bi(l′). Since u |= Bi(l′)[r] and u′[r] = u, u′ |= Bi(l′).
So, based on the induction assumption, (l′, u′) is a bad state.

Also, since u |= g ∧ IG(l′)[r], due to Definition 5.7, there is an uncontrollable event
transition from (l, u) to (l′, u′). So, (l, u) is a bad state.

If u |= 6 , then there exists ∆ such that u+∆ |= Bi(l), and for all δ ≤ ∆: u+δ |= IG(l)[r]
(note that there is no forcible event that can preempt time). Since u+ ∆ |= Bi(l) with
u′ = u+ ∆, based on the induction assumption, (l′, u′) is a bad state.

Also, since u+δ |= IG(l)[r] for all δ ≤ ∆, due to Definition 5.7, there is a time transition
from (l, u) to (l′, u′) that is not preemptable. So, (l, u) is a bad state.

Conclusion: for any state (l, u) in (the semantic graph of) G such that u |= B(l):
(l, u) is a bad state.

D.2.5 Proof of Property 5.5
Inside each iteration over n (loop-2), the iteration over m (loop-1) terminates because
the computation of both Nn,m and Bn,m terminate due to property 5.1 and property 5.3,
respectively. Also, whenever all the guards stay the same (Algorithm 5.3-line 16). Due to
Lemma D.9, in each iteration m and for any edge e ∈ ES, e.gm represents a clock constraint
which is adapted to the clock constraint e.gm+1 = e.gm ∧ ¬Bn,m(l′)[r] at Algorithm 5.3-
line 13. Based on the properties stated for Z, Z(e.gm+1) = Z(e.gm) ∩ Z(¬Bn,m(l′)[r]),
and so Z(e.gm+1) ⊆ Z(e.gm) for all e ∈ ES. In the case that Z(e.gm+1) = Z(e.gm) for all
e ∈ ES, the iteration over m terminates because e.gm+1 = e.gm for any e ∈ ES. Otherwise,
in each iteration, at least one region rG ∈ RG is excluded from Z(e.gm) for some e ∈ ES, i.e.,
Z(e.gm+1) = Z(e.gm) \ {r} such that r /∈ Z(e.gm), and so loop-1 can iterate only finitely
often as ES and RG are both finite. The iteration over n (loop-2) terminates whenever all
location invariants stay the same (Algorithm 5.3-line 25). Based on Lemma D.10, in each
iteration of the algorithm n, and for any location l ∈ L: InS (l) represents a clock constraint
which is adapted to In+1

S = InS (l) ∧ ¬Bn,m(l) at Algorithm 5.3-line 20. Then, for the same
reason stated for termination of loop-1, loop-2 also terminates.

D.2.6 Proof of Property 5.6
The proof follows immediately from Lemma D.11.

D.2.7 Proof of Property 5.7
According to Lemma D.11, for any n,m (n ≤ N,m ≤Mn): Sn,m is a TA. Also, according
to Property 5.6, S is a TA. To conclude that S ⊆ G, we prove that for all n ≤ N ,
for all m ≤ Mn: Sn,m ⊆ G using nested induction on n and m. Then, in particular
SN,MN = TSCS(G) ⊆ G, which is to be proven. Induction on n:

Base case: n = 0, and we prove that for all m ≤M0: S0,m ⊆ G by induction on m:
• Base case: S0,0 = G, and so S0,0 ⊆ G.

138

APPENDIX D. PROOFS OF CHAPTER 5

• Induction step: assume S0,m ⊆ G. Then, S0,m+1 differs from S0,m only in terms
of guards. So, considering Definition 5.5 and the construction of S in Algorithm 5.3,
it only suffices to prove that for all (ls, σ, gm+1

S , r, lt) ∈ Em+1
G : (ls, σ, gG, r, lt) ∈ EG

for some gG such that gm+1
S ⇒ gG.

Take arbitrary edge (ls, σ, gm+1
S , r, lt) ∈ Em+1

G . Then, considering Algorithm 5.3-
line 13, (ls, σ, gmS , r, lt) ∈ Em

S such that either gmS = gm+1
S , or it is strengthened, and

so gm+1
S ⇒ gmS . Also, since S0,m ⊆ G, then for (ls, σ, gmS , r, lt) ∈ Em

S : (ls, σ, gG, r, lt) ∈
EG for some gG such that gmS ⇒ gG. Thereto, for all (ls, σ, gm+1

S , r, lt) ∈ Em+1
G :

(ls, σ, gG, r, lt) ∈ EG for some gG such that gm+1
S ⇒ gG.

• Conclusion: for all m ≤M0: S0,m ⊆ G.
Induction step: assume Sn,m ⊆ G for all m ≤Mn. We prove that Sn+1,m ⊆ G for all

m ≤Mn+1 using induction on m:
• Base case: Sn,0 ⊆ G by assumption. Sn+1,0 differs from Sn,0 only in terms of
invariants. So, considering Definition 5.5, it suffices to prove that for all l ∈ L:
In+1
S (l) ⇒ IG(l). Take arbitrary l ∈ L. Then, InS (l) ⇒ IG(l) since Sn,0 ⊆ G.
Considering Algorithm 5.3-line 20, at iteration n + 1, either the invariant stays
the same, or it is strengthened such that In+1

S (l) ⇒ InS (l). So, In+1
S (l) ⇒ IG(l) as

InS (l)⇒ IG(l).
• Induction step: assume Sn+1,m ⊆ G for all m ≤ Mn+1. Then, Sn+1,m+1 differs

from Sn+1,m only in terms of guards. Then, Sn+1,m+1 ⊆ G for the same reason stated
in the previous induction step on m.
• Conclusion: for all m ≤Mn: Sn,m ⊆ G.
Conclusion: for all n ≤ N , for all m ≤Mn: Sn,m ⊆ G.

D.2.8 Proof of Property 5.8
Take arbitrary state (l, u) that is reachable in (the semantic graph of) S. We prove that
u 6|= B(l) by using induction on the length of the path from (l0, u0) to (l, u).

Base case: (l, u) = (l0, u0). Then, we already have assumed that u0 6|= B(l0).
Induction step: Assume that (l, u) is reached from a (reachable) state, say (l′, u′)

(by an event or time transition), where the statement holds for (l′, u′) (by induction
assumption), i.e., u′ 6|= B(l′). We prove that the statement holds for (l, u), i.e., u 6|= B(l)
for different cases of transitions from (l′, u′) to (l, u).

(l, u) is reached from (l′, u′) by σ ∈ Σc, and assume that this transition is related to
an edge (l′, σ, gMN , r, l) ∈ EN,MN

S . According to Definition 5.7, u′ |= gMN . Also, based on
Algorithm 5.3-line 13, gMN has been adapted in the last iteration such that u′ |= ¬B(l)[r],
which is equivalent to u′[r] |= ¬B(l). Again according to Definition 5.7, u = u′[r], and so
u |= ¬B(l), which is equivalent to u 6|= B(l).

(l, u) is reached from (l′, u′) by a time transition, say ∆, where FS(l) 6= ∅. According
to Definition 5.7, u′ + ∆ |= IN (l). Based on Algorithm 5.3-line 20, INS (l) has been adapted
in the last iteration such that u′ + ∆ 6|= B(l′). Again according to Definition 5.7, l′ = l,

139

APPENDIX D. PROOFS OF CHAPTER 5

and u = u′ + ∆. So, u 6|= B(l)
(l, u) is reached from (l′, u′) by σ ∈ Σuc, and assume that this transition is related

to an edge (l′, σ, gMN , r, l) ∈ EN,MN
S . Then, u′ |= gMN ∧ INS (l)[r] by Definition 5.7. By

contradiction, assume that u |= B(l). Then, u′ |= B(l)[r] because u′ = u[r]. So, u′ |= B(l′)
as u′ |= 5 in the bad state predicate computation of l′. u′ |= B(l′) contradicts the
induction assumption, and consequently it must be the case that u 6|= B(l) as required.

(l, u) is reached from (l′, u′) by a time transition, say ∆, where FS(l) = ∅. Then, Also,
u′ + δ |= INS (l) for all δ ≤ ∆ by Definition 5.7. By contradiction, assume that u |= B(l).
Then u′ + ∆ |= B(l)[r] because u′ = u+ ∆. Since FS(l) = ∅, the condition on δ′ in the
bad state predicate computation of l′ always gives true. As a result, u′ |= B(l′) as u′ |= 6
in the bad state predicate computation. u′ |= B(l′) contradicts the induction assumption,
and consequently it must be the case that u 6|= B(l) as required.

Conclusion: for any reachable state (l, u) (in the semantic graph) of S: u 6|= B(l).

D.2.9 Proof of Theorem 5.1
We need to prove that for any w ∈ L(S||G) and σ ∈ Σuc ∪ R≥0, whenever wσ ∈ L(G),
then wσ ∈ L(S||G), or σ ∈ R≥0 and wσ′ ∈ L(S||G) for some σ′ ∈ Σfor . Consider arbitrary
w ∈ L(S||G) and σ ∈ Σuc ∪R≥0, and assume that wσ ∈ L(G). Now assume that σ 6∈ R≥0
or wσ′ 6∈ L(S||G) for all σ′ ∈ Σfor . It suffices to prove that wσ ∈ L(S||G). Since S ⊆ G
(based on Property 5.7), it suffices to prove wσ ∈ L(S).

To conclude that wσ ∈ L(S), we prove that for all n ≤ N , for allm ≤Mn: wσ ∈ L(Sn,m)
using nested induction on n and m. Induction on n:

Base case: n = 0. We prove that for all m ≤ M0, wσ ∈ L(S0,m) using induction on
m:
• Base case: wσ ∈ L(S0,0) since S0,0 = G and wσ ∈ L(G) as assumed.
• Induction step: assume wσ ∈ L(S0,m).
S0,m+1 may differ from S0,m only because the guards of some edges labeled by
controllable events have been modified. Thereto, nothing changes in terms of the
occurrence of an uncontrollable event or a time transition so that wσ ∈ L(S0,m+1).
• Conclusion: for all m ≤M0: wσ ∈ L(S0,m).
Induction step: assume that for all m ≤ Mn, wσ ∈ L(Sn,m). We prove that for all

m ≤Mn+1, wσ ∈ L(Sn+1,m) using induction on m:
• Base case: we prove that wσ ∈ L(Sn+1,0).

Since w ∈ L(S||G), w ∈ L(S), and so w ∈ L(Sn,m) for any n,m as S is the final result
of the algorithm. For w ∈ L(Sn,0) (it holds by the induction assumption), assume
that there exists some ls ∈ L and a clock valuation us such that (ls, us) is reached
from (l0,0) by w in (the semantic graph of) Sn,0. To conclude wσ ∈ L(Sn+1,0), we
prove that σ occurs at (ls, us) in Sn+1,0 for different cases of σ:
σ ∈ Σuc. Based on the assumption, σ occurs at (ls, us) in Sn,0. Assume that

140

APPENDIX D. PROOFS OF CHAPTER 5

σ transition is related to an edge e = (ls, σ, g, r, lt) in Sn,0. Then, according to
Definition 5.7: us |= e.g0 and us[r] |= InS (lt). So, us |= e.g0, and it suffices to
prove that us[r] |= In+1

S (lt). We continue the proof by contradiction. Assume that
us[r] 6|= In+1

S (lt). Then, based on Algorithm 5.3-line 20, us[r] |= Bn,0(lt) because
already us[r] |= InS (lt) as assumed. Considering the computation of the bad state
predicate of ls, us |= Bn,0(ls) because us |= e.g0 ∧ InS (lt)[r] ∧Bn,0(lt)[r].
Since us |= Bn,0(ls), based on Property 5.4, (ls, us) is a bad state, and this contradicts
the assumption that (ls, us) is reachable in S because then due to Property 5.8,
(ls, us) is not a bad state.
σ = ∆, and there is no σ′ ∈ Σfor such that wσ′ ∈ L(S||G). Then, for wσ ∈ L(Sn,0),
according to Definition 5.7: us + δ |= InS (ls) for all δ ≤ ∆. Also, the algorithm does
not change the invariant as FS(ls) = ∅ so that In+1

S (ls) = InS (ls). So, σ occurs at
(ls, us) in Sn+1,0.
• Induction step: assume wσ ∈ L(Sn+1,m). Then, wσ ∈ L(Sn+1,m+1) for the same

reason stated in the previous induction step on m.
• Conclusion: for all m ≤Mn, wσ ∈ L(Sn,m).
Conclusion: for all n ≤ N , for all m ≤Mn: wσ ∈ L(Sn,m).

D.2.10 Proof of Theorem 5.2
First of all L(S) ⊆ L(G), and so L(S||G) = L(S). So, it suffices to prove that S is
nonblocking, i.e., any reachable state in (the semantic graph of) S is nonblocking.

Take arbitrary state (l, u) that is reachable in (the semantic graph of) S. According to
Property 5.8, u 6|= BN,MN (l). This, based on Property 5.4, means that (l, u) is not a bad
state in SN,MN where SN,MN = S (SN,MN is the final result of the algorithm). So, (l, u) is
not a blocking state in (the semantic graph of) S as (l, u) is not a bad state.

D.2.11 Proof of Theorem 5.3
We need to prove that for any other proper supervisor S ′: L(S ′||G) ⊆ L(S||G). Take
arbitrary w ∈ L(S ′||G). We need to prove that w ∈ L(S||G). Since L(S) ⊆ L(G), it
suffices to prove that w ∈ L(S). We do the proof by induction on the structure of w:

Base case: Assume w = ε. Then w ∈ L(S) by definition.
Induction step: Assume w = vσ for some v ∈ (ΣG ∪ R≥0)∗ and σ ∈ ΣG ∪ R≥0 where

the statement holds for v, i.e., v ∈ L(S). It suffices to prove that the statement holds
for vσ, i.e., vσ ∈ L(S). To conclude that vσ ∈ L(S), we prove that for all n ≤ N , for all
m ≤Mn: vσ ∈ L(Sn,m) using nested induction on n and m. Induction on n:
• Base case: n = 0. We prove that for all m ≤M0: vσ ∈ S0,m by induction on m:

– Base case: vσ ∈ L(S0,0) because S0,0 = G, and vσ ∈ L(G) as vσ ∈ L(S ′||G)
by assumption.

– Induction step: assume that vσ ∈ L(S0,m). It suffices to prove that vσ ∈

141

APPENDIX D. PROOFS OF CHAPTER 5

L(S0,m+1). S0,m+1 differs from S0,m only in terms of the guards of (some)
controllable edges. So, according to Definition 5.7, vσ ∈ L(S0,m+1) for σ ∈
Σuc ∪ R≥0 since the guards of uncontrollable edges and the invariants stay the
same, and already vσ ∈ L(S0,m).
Let us say that σ ∈ Σc, and assume that for vσ ∈ L(S0,m), there exists
states (ls, us) (in the semantic graph of S0,m) reached by v from the initial
state, and (lt, ut) reached from (ls, us) by σ. Then, due to Definition 5.7,
us |= e.gm, and us[r] |= I0(lt). To conclude that vσ ∈ L(S0,m+1), it suffices to
prove that us |= e.gm+1 because the invariants stay the same. Assume that
us 6|= e.gm+1. Then, considering Algorithm 5.3-line 13, us |= B0,m(lt)[r]. Again
by Definition 5.7, us[r] = ut. So, ut |= B0,m(lt) as us |= B0,m(lt)[r]. Then, by
Property 5.4, (lt, ut) is a bad state, and this contradicts the assumption that
S ′ is a proper supervisor as it does not prevent all the bad states to take care
nonblockingness and controllability.

– Conclusion: for all m ≤M0: vσ ∈ L(S0,m).
• Induction step: assume that for all m ≤Mn: vσ ∈ L(Sn,m). We prove that for all
m ≤Mn+1: vσ ∈ L(Sn+1,m) using induction on m.
– Base case: We need to prove that vσ ∈ L(Sn+1,0).

For vσ ∈ L(Sn,0) (it holds by the induction assumption), assume that there
exists some ls ∈ L and a clock valuation us such that (ls, us) is reached from
(l0,0) by v in (the semantic graph of) Sn,0. To conclude vσ ∈ L(Sn+1,0), we
prove that σ occurs at (ls, us) in Sn+1,0 for different cases of σ:
σ is an event transition, related to an edge (ls, σ, g, r, lt). Then, according to
Definition 5.7: us |= e.g0 and us[r] |= InS (lt). So, us |= e.g0, and it suffices to
prove that us[r] |= In+1

S (lt). We continue the proof by contradiction. Assume
that us[r] 6|= In+1

S (lt). Then, based on Algorithm 5.3-line 20, us[r] |= Bn,0(lt)
because already us[r] |= InS (lt) as assumed. So, ut |= Bn,0(lt) as us[r] = ut
(again by Definition 5.7), and based on Property 5.4, (lt, ut) is a bad state, and
this contradicts the assumption that S ′ is a proper supervisor.
σ is a time transition, say ∆. Then, for vσ ∈ L(Sn,0), according to Definition 5.7:
us + δ |= InS (ls) for all δ ≤ ∆. Also, lt = ls, and ut = us + ∆. It suffices to prove
that us + δ |= In+1

S (ls) for all δ ≤ ∆. By contradiction, assume that for some
δ ≤ ∆, us+δ 6|= In+1

S (ls). Then, based on Algorithm 5.3-line 20, us+δ |= Bn,0(ls)
because us+δ |= In+1

S (ls). In this case, based on Property 5.4, (lt, us+δ) is a bad
state. This contradicts the assumption that S ′ is a proper supervisor because,
as a proper supervisor, it should prevent (lt, us + δ). However, (lt, us + δ) can
be reached through the ∆ transition that occurs in S ′.

– Induction step: assume that vσ ∈ L(Sn+1,m). Then, vσ ∈ L(Sn+1,m+1) for
the same reason states in the previous induction step on m.

– Conclusion: for all m ≤Mn: vσ ∈ L(Sn,m).
• Conclusion: for all n ≤ N , for all m ≤Mn: vσ ∈ L(Sn,m).

142

APPENDIX D. PROOFS OF CHAPTER 5

Conclusion: by the principle of induction, w ∈ L(S||G) for all w ∈ L(S ′||G).

D.2.12 Proof of Theorem 5.4
This proof is inspired from the proof of safety in [TAC-NSC]. Since S and G has the
same event set ΣG and ΣR ⊆ ΣG, ΣG ∩ ΣR = ΣR. So, it suffices to prove that if we take
any w ∈ PΣR(L(S ||(G||R⊥))): w ∈ L(R). Take w ∈ PΣR(L(S ||(G||R⊥))), then due to
the projection properties, there exists w′ ∈ L(S ||(G||R⊥)) such that PΣR(w′) = w. Also,
based on Property 5.7, L(S) ⊆ L(G||R⊥), and so w′ ∈ L(G||R⊥). Applying the projection
on ΣR gives PΣR(w′) ∈ L(R⊥). For w ∈ PΣR(L(S ||(G||R⊥))) ∩ L(R⊥), w ∈ L(R) since
the blocking state qd added to G||R to make G||R⊥ is removed by S as guaranteed by
Theorem 5.2.

143

Bibliography

Akesson, K., M. Fabian, H. Flordal, and R. Malik (2006). “Supremica-an integrated
environment for verification, synthesis and simulation of discrete event systems”. Discrete
Event Systems, 2006 8th International Workshop on. IEEE, pp. 384–385.

Alur, R. (1999). “Timed automata”. International Conference on Computer Aided Verifi-
cation. Springer, pp. 8–22.

Alur, R. (2015). Principles of cyber-physical systems. MIT Press.
Alur, R. and D. L. Dill (1994). “A Theory of Timed Automata”. Theoretical Computer
Science vol. 126, pp. 183–235.

Alur, R., T. A. Henzinger, G. Lafferriere, and G. J. Pappas (2000). “Discrete abstractions
of hybrid systems”. Proceedings of the IEEE vol. 88, no. 7, pp. 971–984.

Alves, M. V. S., L. K. Carvalho, and J. C. Basilio (2017). “Supervisory control of timed
networked discrete event systems”. 2017 IEEE 56th Annual Conference on Decision and
Control (CDC), pp. 4859–4865.

Alves, M. V. S., J. C. Basilio, A. E. C. da Cunha, L. K. Carvalho, and M. V. Moreira
(2014). “Robust supervisory control against intermittent loss of observations”. IFAC
Proceedings Volumes vol. 47, no. 2, pp. 294–299.

Amin, S., X. Litrico, S. S. Sastry, and A. M. Bayen (2010). “Stealthy deception attacks
on water SCADA systems”. Proceedings of the 13th ACM international conference on
Hybrid systems: computation and control. ACM, pp. 161–170.

Antsaklis, P. and J. Baillieul (2007). “Special issue on technology of networked control
systems”. Proceedings of the IEEE vol. 95, no. 1, pp. 5–8.

Asarin, E., O. Maler, A. Pnueli, and J. Sifakis (1998). “Controller synthesis for timed
automata”. IFAC Proceedings Volumes vol. 31, no. 18, pp. 447–452.

Atampore, F., J. Dingel, and K. Rudie (2016). “Automated service composition via
supervisory control theory”. 2016 13th International Workshop on Discrete Event
Systems (WODES), pp. 28–35.

Baeten, J. C., J. M. van de Mortel-Fronczak, and J. E. Rooda (2016). “Integration of
supervisory control synthesis in model-based systems engineering”. Complex Systems.
Springer, pp. 39–58.

Baheti, R. and H. Gill (2011). “Cyber-physical systems”. The impact of control technology
vol. 12, no. 1, pp. 161–166.

Balemi, S. (1992). “Communication delays in connections of input/output discrete event
processes”. 1992 31st IEEE Conference on Decision and Control. IEEE, pp. 3374–3379.

145

BIBLIOGRAPHY

Basile, F. and P. Chiacchio (2007). “On the implementation of supervised control of
discrete event systems”. IEEE Transactions on Control Systems Technology vol. 15,
no. 4, pp. 725–739.

van Beek, D. A., W. Fokkink, D. Hendriks, A. Hofkamp, J. Markovski, J. Van De Mortel-
Fronczak, and M. A. Reniers (2014). “CIF 3: Model-based engineering of supervisory
controllers”. International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, pp. 575–580.

Behrmann, G., A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime (2007).
“Uppaal-tiga: Time for playing games!” International Conference on Computer Aided
Verification. Springer, pp. 121–125.

Bengtsson, J. and W. Yi (2004). “Timed Automata: Semantics, Algorithms and Tools”.
Lectures on Concurrency and Petri Nets: Advances in Petri Nets. Springer Berlin
Heidelberg, pp. 87–124.

Bérard, B., J. Mullins, and M. Sassolas (2015). “Quantifying opacity”. Mathematical
Structures in Computer Science vol. 25, no. 2, pp. 361–403.

Brandin, B. A. and W. M. Wonham (1994). “Supervisory control of timed discrete-event
systems”. IEEE Transactions on Automatic Control vol. 39, no. 2, pp. 329–342.

Cai, K., R. Zhang, and W. M. Wonham (2016). “Relative Observability and Coobservability
of Timed Discrete-Event Systems”. IEEE Transactions on Automatic Control vol. 61,
no. 11, pp. 3382–3395.

Camtepe, S. A. and B. Yener (2007). “Modeling and detection of complex attacks”. Security
and Privacy in Communications Networks and the Workshops, 2007. SecureComm 2007.
Third International Conference on. IEEE, pp. 234–243.

Cardenas, A. A., S. Amin, and S. Sastry (2008). “Secure control: Towards survivable
cyber-physical systems”. Distributed Computing Systems Workshops, 2008. ICDCS’08.
28th International Conference on. IEEE, pp. 495–500.

Cardenas, A., S. Amin, B. Sinopoli, A. Giani, A. Perrig, and S. Sastry (2009). “Challenges
for securing cyber physical systems”. Workshop on future directions in cyber-physical
systems security. Vol. 5.

Carroll, J. and D. Long (1989). Theory of Finite Automata with an Introduction to Formal
Languages. Prentice-Hall, Inc.

Carvalho, L. K., Y.-C. Wu, R. Kwong, and S. Lafortune (2018). “Detection and mitigation
of classes of attacks in supervisory control systems”. Automatica vol. 97, pp. 121–133.

Cassandras, C. G. and S. Lafortune (2009). Introduction to discrete event systems. Springer
Science & Business Media.

Cassez, F., A. David, E. Fleury, K. G. Larsen, and D. Lime (2005). “Efficient on-the-fly
algorithms for the analysis of timed games”. International Conference on Concurrency
Theory. Springer, pp. 66–80.

Cassez, F., J. Dubreil, and H. Marchand (2012). “Synthesis of opaque systems with static
and dynamic masks”. Formal Methods in System Design vol. 40, no. 1, pp. 88–115.

Ciancamerla, E., B. Fresilli, M. Minichino, T. Patriarca, and S. Iassinovski (2014). “An
electrical grid and its SCADA under cyber attacks: Modelling versus a Hybrid Test Bed”.
2014 International Carnahan Conference on Security Technology (ICCST), pp. 1–6.

146

BIBLIOGRAPHY

Cuijpers, P. J. L., M. A. Reniers, and W. P. M. H. Heemels (2002). “Hybrid transition sys-
tems”. Technical Report. CS-Report 02-12. Department of Computer Science, Eindhoven
University of Technology.

Derler, P., E. A. Lee, and A. S. Vincentelli (2011). “Modeling cyber–physical systems”.
Proceedings of the IEEE vol. 100, no. 1, pp. 13–28.

Dubey, A. (2009). “A discussion on supervisory control theory in real-time discrete event
systems”. ISIS vol. 9, p. 112.

Dubreil, J., P. Darondeau, and H. Marchand (2010). “Supervisory Control for Opacity”.
IEEE Transactions on Automatic Control vol. 55, no. 5, pp. 1089–1100.

Ehlers, R., S. Lafortune, S. Tripakis, and M. Y. Vardi (2017). “Supervisory control and
reactive synthesis: a comparative introduction”. Discrete Event Dynamic Systems vol. 27,
no. 2, pp. 209–260.

Eliades, D. G. and M. M. Polycarpou (2010). “A fault diagnosis and security framework
for water systems”. IEEE Transactions on Control Systems Technology vol. 18, no. 6,
pp. 1254–1265.

Fabian, M. and A. Hellgren (1998). “PLC-based implementation of supervisory control
for discrete event systems”. Decision and Control, 1998. Proceedings of the 37th IEEE
Conference on. Vol. 3. IEEE, pp. 3305–3310.

Fawzi, H., P. Tabuada, and S. Diggavi (2014). “Secure estimation and control for cyber-
physical systems under adversarial attacks”. IEEE Transactions on Automatic Control
vol. 59, no. 6, pp. 1454–1467.

Flordal, H., R. Malik, M. Fabian, and K. Åkesson (2007). “Compositional Synthesis
of Maximally Permissive Supervisors Using Supervision Equivalence”. Discrete Event
Dynamic Systems vol. 17, no. 4, pp. 475–504.

Góes, R. M., E. Kang, R. Kwong, and S. Lafortune (2017). “Stealthy deception attacks
for cyber-physical systems”. Decision and Control (CDC), 2017 IEEE 56th Annual
Conference on. IEEE, pp. 4224–4230.

Gunes, V., S. Peter, T. Givargis, and F. Vahid (2014). “A survey on concepts, applications,
and challenges in cyber-physical systems.” KSII Transactions on Internet & Information
Systems vol. 8, no. 12.

Gupta, R. A. and M.-Y. Chow (2010). “Networked control system: Overview and research
trends”. IEEE Transactions on Industrial Electronics vol. 57, no. 7, pp. 2527–2535.

Heemels, W. M. H., A. R. Teel, N. Van de Wouw, and D. Nesic (2010). “Networked control
systems with communication constraints: Tradeoffs between transmission intervals,
delays and performance”. IEEE Transactions on Automatic Control vol. 55, no. 8,
pp. 1781–1796.

Heemels, W., D. Lehmann, J. Lunze, and B. De Schutter (2009). “Introduction to hybrid
systems”. Handbook of Hybrid Systems Control: Theory, Tools, Applications. Cambridge
University Press.

Hellgren, A., M. Fabian, and B. Lennartson (2001). “Modular implementation of discrete
event systems as sequential function charts applied to an assembly cell”. Proceedings
of the 2001 IEEE International Conference on Control Applications (CCA’01) (Cat.
No.01CH37204), pp. 453–458.

Henzinger, T. A. (2000). “The theory of hybrid automata”. Verification of digital and
hybrid systems. Springer, pp. 265–292.

147

BIBLIOGRAPHY

Hopcroft, J. E., R. Motwani, and J. D. Ullman (2006). Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley.

Jacob, R., J.-J. Lesage, and J.-M. Faure (2016). “Overview of discrete event systems
opacity: Models, validation, and quantification”. Annual reviews in control vol. 41,
pp. 135–146.

Jech, T. (2013). Set theory. Springer Science & Business Media.
Jha, S., O. Sheyner, and J. Wing (2002). “Two formal analyses of attack graphs”. Computer
Security Foundations Workshop, 2002. Proceedings. 15th IEEE. IEEE, pp. 49–63.

Ji, Y., Y.-C. Wu, and S. Lafortune (2018). “Enforcement of opacity by public and private
insertion functions”. Automatica vol. 93, pp. 369–378.

Kang, E., S. Adepu, D. Jackson, and A. P. Mathur (2016). “Model-Based Security Analysis
of a Water Treatment System”. 2016 IEEE/ACM 2nd International Workshop on
Software Engineering for Smart Cyber-Physical Systems (SEsCPS), pp. 22–28.

Khoumsi, A. (2002). “Supervisory control of dense real-time discrete-event systems with
partial observation”. Proceedings of the 6th International Workshop on Discrete Event
Systems (WODES’02). IEEE, pp. 105–112.

Khoumsi, A. and M. Nourelfath (2002). “An efficient method for the supervisory control of
dense real-time discrete event systems”. Proceedings of the 8th International Conference
on Real-Time Computing Systems (RTCSA).

Kordy, B., L. Piètre-Cambacédès, and P. Schweitzer (2014). “DAG-based attack and
defense modeling: Don’t miss the forest for the attack trees”. Computer science review
vol. 13, pp. 1–38.

Koutsoukos, X. D., P. J. Antsaklis, J. A. Stiver, and M. D. Lemmon (2000). “Supervisory
control of hybrid systems”. Proceedings of the IEEE vol. 88, no. 7, pp. 1026–1049.

Lafortune, S., F. Lin, and C. N. Hadjicostis (2018). “On the history of diagnosability and
opacity in discrete event systems”. Annual Reviews in Control vol. 45, pp. 257–266.

Leal, A. B., D. L. Da Cruz, and M. d. S. Hounsell (2009). “Supervisory control implementa-
tion into programmable logic controllers”. Emerging Technologies & Factory Automation,
2009. ETFA 2009. IEEE Conference on. IEEE, pp. 1–7.

Lima, P. M., L. K. Carvalho, and M. V. Moreira (2018). “Detectable and Undetectable
Network Attack Security of Cyber-physical Systems”. IFAC-PapersOnLine vol. 51, no. 7,
pp. 179–185.

Lima, P. M., M. V. Alves, L. K. Carvalho, and M. V. Moreira (2017). “Security Against
Network Attacks in Supervisory Control Systems”. IFAC-PapersOnLine vol. 50, no. 1,
pp. 12333–12338.

Lin, F. (2011). “Opacity of discrete event systems and its applications”. Automatica vol. 47,
no. 3, pp. 496–503.

Lin, F. (2014). “Control of Networked Discrete Event Systems: Dealing with Communication
Delays and Losses”. SIAM Journal on Control and Optimization vol. 52, no. 2, pp. 1276–
1298.

Lin, F. (2020). “Modeling and Control of Networked Discrete-Event Systems”. Wiley
Encyclopedia of Electrical and Electronics Engineering, pp. 1–27.

Lin, L., S. Thuijsman, Y. Zhu, S. Ware, R. Su, and M. Reniers (2018a). “Synthesis of
Successful Actuator Attackers on Supervisors”. arXiv preprint arXiv:1807.06720.

148

BIBLIOGRAPHY

Lin, L., S. Thuijsman, Y. Zhu, S. Ware, R. Su, and M. Reniers (2018b). “Synthesis of
Supremal Successful Normal Actuator Attackers on Normal Supervisors”. American
Control Conference.

Liu, Z., X. Yin, S. Shu, and S. Li (2019). “Online Supervisory Control of Networked
Discrete-Event Systems with Control Delays”. 2019 IEEE 58th Conference on Decision
and Control (CDC). IEEE, pp. 6706–6711.

Maler, O., A. Pnueli, and J. Sifakis (1995). “On the synthesis of discrete controllers
for timed systems”. Annual Symposium on Theoretical Aspects of Computer Science.
Springer, pp. 229–242.

Malik, P. (2002). “Generating controllers from discrete-event models”.
Meira-Góes, R., E. Kang, R. H. Kwong, and S. Lafortune (2020). “Synthesis of sensor
deception attacks at the supervisory layer of Cyber–Physical Systems”. Automatica
vol. 121, p. 109172.

Miao, C., S. Shu, and F. Lin (2019). “Predictive Supervisory Control for Timed Discrete
Event Systems under Communication Delays”. 2019 IEEE 58th Conference on Decision
and Control (CDC). IEEE, pp. 6724–6729.

Miremadi, S., Z. Fei, K. Åkesson, and B. Lennartson (2015). “Symbolic supervisory control
of timed discrete event systems”. IEEE Transactions on Control Systems Technology
vol. 23, no. 2, pp. 584–597.

Moor, T. (2016). “A discussion of fault-tolerant supervisory control in terms of formal
languages”. Annual Reviews in Control vol. 41, pp. 159–169.

Nicolaou, N., D. G. Eliades, C. Panayiotou, and M. M. Polycarpou (2018). “Reducing
Vulnerability to Cyber-Physical Attacks in Water Distribution Networks”. 2018 Inter-
national Workshop on Cyber-physical Systems for Smart Water Networks (CySWater).
IEEE, pp. 16–19.

Ostroff, J. S. (1990). “Deciding properties of timed transition models”. IEEE Transactions
on Parallel and Distributed Systems vol. 1, no. 2, pp. 170–183.

Ouedraogo, L., M. N. El Fath, and A. Khoumsi (2008). Setexp: A method of transformation
of timed automata into finite state automata. CIRRELT.

Ouedraogo, L., A. Khoumsi, and M. Nourelfath (2010). “SetExp: a method of transforma-
tion of timed automata into finite state automata”. Real-Time Systems vol. 46, no. 2,
pp. 189–250.

Ouedraogo, L., R. Kumar, R. Malik, and K. Akesson (2011). “Nonblocking and safe control
of discrete-event systems modeled as extended finite automata”. IEEE Transactions on
Automation Science and Engineering vol. 8, no. 3, pp. 560–569.

Paoli, A. and S. Lafortune (2005). “Safe diagnosability for fault-tolerant supervision of
discrete-event systems”. Automatica vol. 41, no. 8, pp. 1335–1347.

Paoli, A., M. Sartini, and S. Lafortune (2011). “Active fault tolerant control of discrete
event systems using online diagnostics”. Automatica vol. 47, no. 4, pp. 639–649.

Park, S.-J. (2012). “Robust and nonblocking supervisory control of nondeterministic
discrete event systems with communication delay and partial observation”. International
journal of control vol. 85, no. 1, pp. 58–68.

Park, S.-J. and K.-H. Cho (2006). “Delay-robust supervisory control of discrete-event
systems with bounded communication delays”. IEEE Transactions on Automatic Control
vol. 51, no. 5, pp. 911–915.

149

BIBLIOGRAPHY

Park, S.-J. and K.-H. Cho (2008). “Nonblocking supervisory control of timed discrete event
systems under communication delays: The existence conditions”. Automatica vol. 44,
no. 4, pp. 1011–1019.

Pasqualetti, F., F. Dörfler, and F. Bullo (2013). “Attack Detection and Identification in
Cyber-Physical Systems”. IEEE Transactions on Automatic Control vol. 58, no. 11,
pp. 2715–2729.

Pasqualetti, F., F. Dörfler, and F. Bullo (2011). “Cyber-physical attacks in power net-
works: Models, fundamental limitations and monitor design”. Decision and Control
and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on. IEEE,
pp. 2195–2201.

Prenzel, L. and J. Provost (2018). “PLC implementation of symbolic, modular supervisory
controllers”. IFAC-PapersOnLine vol. 51, no. 7, pp. 304–309.

van Putten, B. J. C., B. van der Sanden, M. Reniers, J. Voeten, and R. Schiffelers
(2020). “Supervisor synthesis and throughput optimization of partially-controllable
manufacturing systems”. Discrete Event Dynamic Systems, pp. 1–33.

Ramadge, P. J. and W. M. Wonham (1987). “Supervisory control of a class of discrete
event processes”. SIAM Journal on Control and Optimization vol. 25, no. 1, pp. 206–230.

Ramadge, P. and W. Wonham (1984). “Supervisory control of a class of discrete event
processes”. Analysis and Optimization of Systems. Springer, pp. 475–498.

Rashidinejad, A., P. van der Graaf, and M. Reniers (2020a). “Nonblocking Supervisory
Control Synthesis of Timed Automata using Abstractions and Forcible Events”. 2020
16th International Conference on Control, Automation, Robotics and Vision (ICARCV).
IEEE, pp. 1–8.

Rashidinejad, A., P. van der Graaf, M. Reniers, and M. Fabian (2020b). “Non-blocking
Supervisory Control of Timed Automata Using Forcible Events”. 15th International
Workshop on Discrete Event Systems (WODES 2020). Accepted. IEEE.

Rashidinejad, A., M. Reniers, and M. Fabian (2019a). “Supervisory control of discrete-
event systems in an asynchronous setting”. 2019 IEEE 15th International Conference
on Automation Science and Engineering (CASE). IEEE, pp. 494–501.

Rashidinejad, A., M. Reniers, and M. Fabian (2021a). “Networked Supervisory Control
Synthesis of Timed Discrete-Event Systems”. arXiv preprint arXiv 2102.09255.

Rashidinejad, A., M. Reniers, and M. Fabian (2021b). “Supervisory Control Synthesis of
Timed Automata Using Forcible Events”. arXiv preprint arXiv 2102.09338.

Rashidinejad, A., M. Reniers, and L. Feng (2018). “Supervisory Control of Timed Discrete-
Event Systems Subject to Communication Delays and Non-FIFO Observations”. IFAC-
PapersOnLine vol. 51, no. 7. 14th IFAC Workshop on Discrete Event Systems WODES
2018, pp. 456–463.

Rashidinejad, A., B. Wetzels, M. Reniers, L. Lin, Y. Zhu, and R. Su (2019b). “Supervisory
control of discrete-event systems under attacks: an overview and outlook”. 2019 18th
European Control Conference (ECC). IEEE, pp. 1732–1739.

Reijnen, F. F., M. A. Goorden, J. M. van de Mortel-Fronczak, and J. E. Rooda (2020).
“Modeling for supervisor synthesis–a lock-bridge combination case study”. Discrete
Event Dynamic Systems vol. 30, no. 3, pp. 499–532.

150

BIBLIOGRAPHY

Reniers, M., J. van de Mortel-Fronczak, and K. Roelofs (2017). “Model-based engineering
of supervisory controllers for cyber-physical systems”. Industrial Internet of Things.
Springer, pp. 111–136.

Rohloff, K. (2012). “Bounded sensor failure tolerant supervisory control.” WODES, pp. 272–
277.

Saboori, A. and C. N. Hadjicostis (2007). “Notions of security and opacity in discrete event
systems”. Decision and Control, 2007 46th IEEE Conference on. IEEE, pp. 5056–5061.

Saboori, A. and C. N. Hadjicostis (2012). “Opacity-enforcing supervisory strategies via
state estimator constructions”. IEEE Transactions on Automatic Control vol. 57, no. 5,
pp. 1155–1165.

Sha, L., S. Gopalakrishnan, X. Liu, and Q. Wang (2008). “Cyber-physical systems: A new
frontier”. 2008 IEEE International Conference on Sensor Networks, Ubiquitous, and
Trustworthy Computing (sutc 2008). IEEE, pp. 1–9.

Shi, J., J. Wan, H. Yan, and H. Suo (2011). “A survey of cyber-physical systems”. Wireless
Communications and Signal Processing (WCSP), 2011 International Conference on.
IEEE, pp. 1–6.

Shu, S. and F. Lin (2014). “Fault-Tolerant Control for Safety of Discrete-Event Systems”.
IEEE Transactions on Automation Science and Engineering vol. 11, no. 1, pp. 78–89.

Shu, S. and F. Lin (2015). “Supervisor synthesis for networked discrete event systems
with communication delays”. IEEE Transactions on Automatic Control vol. 60, no. 8,
pp. 2183–2188.

Shu, S. and F. Lin (2017a). “Deterministic Networked Control of Discrete Event Sys-
tems with Nondeterministic Communication Delays”. IEEE Transactions on Automatic
Control vol. 62, no. 1, pp. 190–205.

Shu, S. and F. Lin (2017b). “Predictive Networked Control of Discrete Event Systems”.
IEEE Transactions on Automatic Control vol. 62, no. 9, pp. 4698–4705.

Skoldstam, M., K. Akesson, and M. Fabian (2007). “Modeling of discrete event systems
using finite automata with variables”. 2007 46th IEEE Conference on Decision and
Control. IEEE, pp. 3387–3392.

Sridhar, S., A. Hahn, and M. Govindarasu (2011). “Cyber–physical system security for
the electric power grid”. Proceedings of the IEEE vol. 100, no. 1, pp. 210–224.

Su, R. (2018). “Supervisor synthesis to thwart cyber attack with bounded sensor reading
alterations”. Automatica vol. 94, pp. 35–44.

Svoreňová, M. and M. Kwiatkowska (2016). “Quantitative verification and strategy syn-
thesis for stochastic games”. European Journal of Control vol. 30, pp. 15–30.

Swartjes, L., D. van Beek, W. J. Fokkink, and J. van Eekelen (2017). “Model-based design
of supervisory controllers for baggage handling systems”. Simulation Modelling Practice
and Theory vol. 78, pp. 28–50.

Takai, S. and T. Ushio (2006). “A new class of supervisors for timed discrete event systems
under partial observation”. Discrete Event Dynamic Systems vol. 16, no. 2, pp. 257–278.

Teixeira, A., H. Sandberg, and K. H. Johansson (2010). “Networked control systems under
cyber attacks with applications to power networks”. Proceedings of the 2010 American
Control Conference, pp. 3690–3696.

151

BIBLIOGRAPHY

Teixeira, A., D. Pérez, H. Sandberg, and K. H. Johansson (2012). “Attack Models and Sce-
narios for Networked Control Systems”. Proceedings of the 1st International Conference
on High Confidence Networked Systems. Beijing, China: ACM, pp. 55–64.

Theunissen, R. J., M. Petreczky, R. R. Schiffelers, D. A. van Beek, and J. E. Rooda
(2013). “Application of supervisory control synthesis to a patient support table of a
magnetic resonance imaging scanner”. IEEE Transactions on Automation Science and
Engineering vol. 11, no. 1, pp. 20–32.

Thoben, K.-D., S. Wiesner, and T. Wuest (2017). ““Industrie 4.0” and smart manufacturing-
a review of research issues and application examples”. International journal of automation
technology vol. 11, no. 1, pp. 4–16.

Thorsley, D. and D. Teneketzis (2006). “Intrusion detection in controlled discrete event
systems”. Decision and Control, 2006 45th IEEE Conference on. IEEE, pp. 6047–6054.

Tiwari, A. (2008). “Abstractions for hybrid systems”. Formal Methods in System Design
vol. 32, no. 1, pp. 57–83.

Tong, Y., K. Cai, and A. Giua (2018a). “Decentralized Opacity Enforcement in Discrete
Event Systems Using Supervisory Control”. 2018 57th Annual Conference of the Society
of Instrument and Control Engineers of Japan (SICE), pp. 1053–1058.

Tong, Y., Z. Li, C. Seatzu, and A. Giua (2018b). “Current-state opacity enforcement
in discrete event systems under incomparable observations”. Discrete Event Dynamic
Systems vol. 28, no. 2, pp. 161–182.

Tripakis, S. and K. Altisen (1999). “On-the-fly controller synthesis for discrete and dense-
time systems”. International Symposium on Formal Methods. Springer, pp. 233–252.

Tripakis, S. and S. Yovine (2001). “Analysis of timed systems using time-abstracting
bisimulations”. Formal Methods in System Design vol. 18, no. 1, pp. 25–68.

Uma, M. and G. Padmavathi (2013). “A Survey on Various Cyber Attacks and their
Classification.” IJ Network Security vol. 15, no. 5, pp. 390–396.

Ushio, T. and S. Takai (2016). “Nonblocking supervisory control of discrete event systems
modeled by mealy automata with nondeterministic output functions”. IEEE Transactions
on Automatic Control vol. 61, no. 3, pp. 799–804.

Wakaiki, M., P. Tabuada, and J. P. Hespanha (2017). “Supervisory control of discrete-event
systems under attacks”. Dynamic Games and Applications, pp. 1–19.

Ware, S. and R. Malik (2008). “The Use of language projection for compositional verification
of discrete event systems”. 2008 9th International Workshop on Discrete Event Systems.
IEEE, pp. 322–327.

Wittmann, T., J. Richter, and T. Moor (2012). “Fault-tolerant control of discrete event
systems based on fault-accommodating models”. IFAC Proceedings Volumes vol. 45,
no. 20, pp. 854–859.

Wong-Toi, H. and G. Hoffmann (1991). “The control of dense real-time discrete event
systems”. Proceedings of the 30th IEEE Conference on Decision and Control, pp. 1527–
1528.

Wonham, W. M. (2015). “Supervisory control of discrete-event systems”. Encyclopedia of
Systems and Control, pp. 1396–1404.

Wonham, W. M. and K. Cai (n.d.). Supervisory control of discrete-event systems. Springer.

152

BIBLIOGRAPHY

Wu, B., J. Dai, and H. Lin (2018). “Synthesis of insertion functions to enforce decentralized
and joint opacity properties of discrete-event systems”. 2018 Annual American Control
Conference (ACC). IEEE, pp. 3026–3031.

Wu, Y.-C. and S. Lafortune (2014). “Synthesis of insertion functions for enforcement of
opacity security properties”. Automatica vol. 50, no. 5, pp. 1336–1348.

Xu, P., S. Shu, and F. Lin (2017). “Nonblocking networked control of discrete event
systems”. 2017 Chinese Automation Congress (CAC), pp. 1911–1916.

Xu, S. and R. Kumar (2008). “Asynchronous implementation of synchronous discrete event
control”. Discrete Event Systems, 2008. WODES 2008. 9th International Workshop on.
IEEE, pp. 181–186.

Yao, J., X. Yin, and S. Li (2020). “On Attack Mitigation in Supervisory Control Systems:
A Tolerant Control Approach”. 2020 59th IEEE Conference on Decision and Control
(CDC). IEEE, pp. 4504–4510.

Yin, X. (2017). “Supervisor synthesis for mealy automata with output functions: A model
transformation approach”. IEEE Transactions on Automatic Control vol. 62, no. 5,
pp. 2576–2581.

Yin, X. and S. Lafortune (2015). “Synthesis of maximally permissive supervisors for
partially-observed discrete-event systems”. IEEE Transactions on Automatic Control
vol. 61, no. 5, pp. 1239–1254.

Yin, X. and S. Lafortune (2016). “A uniform approach for synthesizing property-enforcing
supervisors for partially-observed discrete-event systems”. IEEE Transactions on Auto-
matic Control vol. 61, no. 8, pp. 2140–2154.

Yin, X. and S. Li (2018a). “Synthesis of dynamic masks for infinite-step opacity”. IFAC-
PapersOnLine vol. 51, no. 7, pp. 343–348.

Yin, X. and S. Li (2018b). “Verification of opacity in networked supervisory control systems
with insecure control channels”. 2018 IEEE Conference on Decision and Control (CDC).
IEEE, pp. 4851–4856.

Zaytoon, J. and B. Riera (2017). “Synthesis and implementation of logic controllers–a
review”. Annual reviews in control vol. 43, pp. 152–168.

Zhang, Q., Z. Li, C. Seatzu, and A. Giua (2018). “Stealthy Attacks for Partially-Observed
Discrete Event Systems”. 2018 IEEE 23rd International Conference on Emerging Tech-
nologies and Factory Automation (ETFA). Vol. 1. IEEE, pp. 1161–1164.

Zhao, B., F. Lin, C. Wang, X. Zhang, M. P. Polis, and L. Y. Wang (2017). “Supervisory
control of networked timed discrete event systems and its applications to power dis-
tribution networks”. IEEE Transactions on Control of Network Systems vol. 4, no. 2,
pp. 146–158.

Zhu, Q. and T. Başar (2011). “Robust and resilient control design for cyber-physical
systems with an application to power systems”. Decision and Control and European
Control Conference (CDC-ECC), 2011 50th IEEE Conference on. IEEE, pp. 4066–4071.

Zhu, Y., L. Lin, and R. Su (2019a). “Supervisor obfuscation against actuator enablement
attack”. 2019 18th European Control Conference (ECC). IEEE, pp. 1760–1765.

Zhu, Y., L. Lin, S. Ware, and R. Su (2019b). “Supervisor synthesis for networked dis-
crete event systems with communication delays and lossy channels”. 2019 IEEE 58th
Conference on Decision and Control (CDC). IEEE, pp. 6730–6735.

153

Acknowledgments

Gaining a Ph.D. degree is not solely about growing knowledge; it is a masterclass of
personal development. I would like to thank the following people, whose presence in my
life made this journey happen.

My first promoter, Michel, words cannot express how thankful I am for your great
supervision and guidance through each step of this process. You patiently helped me to
not only enhance my knowledge but also my interpersonal skills. You always supported
and trusted me and my ideas. This thesis involves a lot of analytical proofs, which looked
almost impossible to have. Our meetings sometimes lasted three hours to eventually make
them possible.

My second promoter, Martin, I was thrilled when you accepted to become my supervisor,
and as time passed, I started to feel more and more proud about it. I know I asked for
comments many times, but I did not expect to be surprised each time by the number of
detailed and to-the-point comments that I received from you. I cannot thank you enough
for the time and effort you dedicated to improving the quality of this work.

Other committee members, Christoforos, Jeroen, Wan, I truly appreciate the time and
effort you dedicated to reviewing my thesis and all the positive feedback.

From the CST group, Maurice and Maarten, I am grateful for providing me the
opportunity to experience teaching at TU/e. Maurice, you were my first promoter for a
short time in the beginning. But yet it was amazing, and I was always excited for our
meetings. Thomas, Martijn, Ferdie, Joshua, with whom I shared office the longest, you
are the most hardworking people I ever know, and this always inspired me to work harder.
Roy, I enjoyed our coffee chats during the time that we shared office. My talented students,
Pepijn, Bart, Sander, and Patrick, it was my pleasure to be your supervisor; with special
thanks to Patrick whose initial effort helped me create two interesting chapters of this
thesis. Albert, thank you for putting effort into implementing our technique in CIF. Petra,
Nancy, Roos, and Geertje, you were always so kind to me. I enjoyed any moment of
chatting with you.

I was among 15 Ph.D. students involved in the oCPS project. I thank the organizers
for arranging meetings, courses, internships, and summer schools. All those experiences
allowed us to grow our knowledge, collaboration, communication, and presentation skills,
and of course, we traveled a lot and had a lot of fun; with special thanks to Asad, Hadi,
Tahira, and Precious for all the fun chats during the breaks. Lei, I am grateful for our
in-depth discussions during my visit to KTH, which resulted in a great publication. Dragan,

155

although I had a short visit to Siemens, our meetings gave me the opportunity to get
inspired and realize how my research can be beneficial in practice. Rong Su and Liyong
Lin from Nanyang University, Singapore, it might be challenging to collaborate with you
regarding the time difference, but yet very fruitful.

Needless to say that my friends had an important role in improving my work-life balance
in this journey. I thank them all and especially the following ones. Samaneh, I specifically
appreciate your kind support in the first months of this journey; you highly helped me to
control the feeling of migration. Marzieh, thank you for being there with me any time I
needed to share my feelings. Whenever I felt happy, sad, angry, or anxious, I knew that I
have you to talk to, to cheer, to cry, and to chill together. Yasaman, thank you for always
encouraging me to find time to dance. Arezoo, many times we had a heavy workload, but
yet we managed to have our coffee chats. My cousin, Farnoosh, it feels great to have you
in the Netherlands. With you, I feel at home, especially when we talk about our sweet
childhood memories. Tahsin, I never forget the taste of the delicious meals you made
for me. Sina, thank you for making coffee and lunch breaks so fun and memorable. My
friends since doing a bachelor’s degree, Elham, Yasaman, and Zahra (just the 4 of us),
my adulthood is full of nice memories with you; with special thanks to Zahra, you have
always supported me, no matter how far I am. My lovely neighbors, thank you for all
the support, specifically during the lockdown. Kaveh, gardash, you make the weekends
great by bringing so much joy, positive energy, and wonderful gifts with you. Mrs. and Mr.
Samadikhah, you are always so kind to me. Every time I talk to you, my soul becomes
full of happiness and love. My dearest Pouya, you are the most influential person in my
life and my today’s success. You always believed in me and encouraged me to keep going,
be strong (Coach Kozak and Claudia: you are a fighter, not a quitter), and ambitious.
I cannot thank you enough for all your love, support, and caring during this time. You
are the one, who always makes all the happy moments memorable, and in all the difficult
moments, you not only feel my problems as they are yours but also hold my hands tight
until I overcome them.

Definitely, my family had the highest impact on who I am today. My sister, Atena, you
always encouraged me to study hard since my childhood, and I believe it is time to see
the result. My niece, Hanita, you are the youngest but yet one of the most important
members of my support team. Every time I feel low, it is enough to picture your cute face
to boost my mood. My father, Hossein, you have always supported me in every stage
of my life, in whatever aspect and at any age. I vividly remember the way you taught
me math and art; you transferred your passion to me and made them mine. My mother,
Narges, you are the kindest and the most patient person that I ever know. I learned how
to be grateful, be patient, make friends and be kind to people, handle problems, and even
be a good cook from you. Maman and Baba, you encouraged me to go and grow, while
trying to deal with my absence. I dedicate this thesis to you with love.

Aida Rashidinejad
April, 2021

About the Author

Aida Rashidinejad was born on July 20, 1989, in Tehran, Iran.
She received her Bachelor of Science degree (graduated with
honors) in electrical engineering with a specialization in con-
trol engineering from Iran University of Science and Technology
(IUST), Tehran, Iran, in 2011. She received her Master of Science
degree in electrical engineering with a specialization in control
engineering from Amirkabir University of Technology (AUT),
Tehran, Iran, in 2014.

In July 2016, she started to pursue a Ph.D. degree within
the Control Systems Technology group at the Department of
Mechanical Engineering at Eindhoven University of Technology
(TU/e), under the supervision of Michel Reniers from TU/e and
Martin Fabian from Chalmers University of Technology, Gothenburg, Sweden. Her research
project was part of a research program “optimization of Cyber-Physical Systems (oCPS)”
funded from the European Union’s Horizon 2020 Framework Program and was focused on
the model-based supervisory control of cyber-physical systems. The main results of her
research are printed in this dissertation. During her Ph.D., Aida was a visiting researcher
at KTH Royal Institute of Technology, Stockholm, Sweden, and at Siemens Corporate
Technology, Munich, Germany.

It’s all about time!

	Societal Summary
	Abstract
	List of Publications
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem Description
	1.3 Research Questions
	1.4 Main Contributions
	1.5 Outline of the Thesis

	2 Asynchronous Supervisory Control of Discrete-Event Systems
	2.1 Introduction
	2.2 Background
	2.3 Asynchronous Supervisory Control Setting
	2.4 Synthesis
	2.5 Conclusions

	3 Networked Supervisory Control of Timed Discrete-Event Systems
	3.1 Introduction
	3.2 Basic NSC Problem
	3.2.1 Conventional Supervisory Control Synthesis of TDES
	3.2.2 Motivating Examples
	3.2.3 NSC Framework

	3.3 Networked Supervisory Control Synthesis
	3.3.1 Networked Plant
	3.3.2 Synthesis
	3.3.3 Possible Variants

	3.4 Requirement Automata
	3.5 Conclusions

	4 Supervisory Control of Timed Automata using Abstractions
	4.1 Introduction
	4.2 Background
	4.2.1 Timed Automata
	4.2.2 Time-Abstraction

	4.3 Synthesis
	4.4 Time-Refinement
	4.5 Example: Bus-Pedestrian
	4.6 Conclusions

	5 Supervisory Control of Timed Automata without Abstractions
	5.1 Introduction
	5.2 Preliminaries
	5.3 Basic TSC Synthesis
	5.3.1 Nonblocking Condition
	5.3.2 Bad State Condition
	5.3.3 Synthesis

	5.4 Requirement Automata
	5.5 Case Study
	5.6 Conclusions

	6 Supervisory Control of Discrete-Event Systems under Attacks
	6.1 Introduction
	6.2 Framework
	6.2.1 Attack Location
	6.2.2 Attack Impact on Transmitted Data
	6.2.3 Security Mechanism

	6.3 Classification
	6.4 Comparison of Security Approaches
	6.4.1 IDM vs Synthesis
	6.4.2 New Synthesis vs. Conventional Synthesis

	6.5 Related Work
	6.5.1 Supervisory Control under Communication Problems
	6.5.2 Fault-tolerant Supervisory Control of Discrete Event Systems
	6.5.3 Attacker Synthesis

	6.6 Topics to Investigate
	6.6.1 Actuator Disablement Attack and Replacement Attack
	6.6.2 Attacks with Delay/Disordering Impact
	6.6.3 Non-risky versus risky attackers
	6.6.4 Active Attacker with Partial Observation of o
	6.6.5 Passive Attacks and Opacity Enforcement
	6.6.6 Supervisor Obfuscation
	6.6.7 Other Topics

	6.7 Conclusions

	7 Conclusion
	7.1 Concluding Remarks
	7.2 Recommendations for Future Work
	7.2.1 Putting the Results into Practice
	7.2.2 Extensions Based on the Thesis Framework
	7.2.3 Adding New Dimensions

	A Proofs of Chapter 2
	A.1 Technical Lemmas
	A.2 Proofs of Properties and Theorems
	A.2.1 Proof of Property 2.1
	A.2.2 Proof of Property 2.2
	A.2.3 Proof of Theorem 2.1

	B Proofs of Chapter 3
	B.1 Technical Lemmas
	B.2 Proofs of Properties and Theorems
	B.2.1 Proof of Property 3.1
	B.2.2 Proof of Property 3.2
	B.2.3 Proof of Property 3.3
	B.2.4 Proof of Theorem 3.1
	B.2.5 Proof of Theorem 3.2
	B.2.6 Proof of Theorem 3.3
	B.2.7 Proof of Theorem 3.4
	B.2.8 Proof of Theorem 3.5

	C Proofs of Chapter 4
	C.1 Technical Lemmas
	C.2 Proofs of Properties and Theorems
	C.2.1 Proof of Theorem 4.1

	D Proofs of Chapter 5
	D.1 Technical Lemmas
	D.2 Proofs of Properties and Theorems
	D.2.1 Proof of Property 5.1
	D.2.2 Proof of Property 5.2
	D.2.3 Proof of Property 5.3
	D.2.4 Proof of Property 5.4
	D.2.5 Proof of Property 5.5
	D.2.6 Proof of Property 5.6
	D.2.7 Proof of Property 5.7
	D.2.8 Proof of Property 5.8
	D.2.9 Proof of Theorem 5.1
	D.2.10 Proof of Theorem 5.2
	D.2.11 Proof of Theorem 5.3
	D.2.12 Proof of Theorem 5.4

	Bibliography
	Acknowledgments

