3,075 research outputs found

    Visualizing test diversity to support test optimisation

    Full text link
    Diversity has been used as an effective criteria to optimise test suites for cost-effective testing. Particularly, diversity-based (alternatively referred to as similarity-based) techniques have the benefit of being generic and applicable across different Systems Under Test (SUT), and have been used to automatically select or prioritise large sets of test cases. However, it is a challenge to feedback diversity information to developers and testers since results are typically many-dimensional. Furthermore, the generality of diversity-based approaches makes it harder to choose when and where to apply them. In this paper we address these challenges by investigating: i) what are the trade-off in using different sources of diversity (e.g., diversity of test requirements or test scripts) to optimise large test suites, and ii) how visualisation of test diversity data can assist testers for test optimisation and improvement. We perform a case study on three industrial projects and present quantitative results on the fault detection capabilities and redundancy levels of different sets of test cases. Our key result is that test similarity maps, based on pair-wise diversity calculations, helped industrial practitioners identify issues with their test repositories and decide on actions to improve. We conclude that the visualisation of diversity information can assist testers in their maintenance and optimisation activities

    Search algorithms for regression test case prioritization

    Get PDF
    Regression testing is an expensive, but important, process. Unfortunately, there may be insufficient resources to allow for the re-execution of all test cases during regression testing. In this situation, test case prioritisation techniques aim to improve the effectiveness of regression testing, by ordering the test cases so that the most beneficial are executed first. Previous work on regression test case prioritisation has focused on Greedy Algorithms. However, it is known that these algorithms may produce sub-optimal results, because they may construct results that denote only local minima within the search space. By contrast, meta-heuristic and evolutionary search algorithms aim to avoid such problems. This paper presents results from an empirical study of the application of several greedy, meta-heuristic and evolutionary search algorithms to six programs, ranging from 374 to 11,148 lines of code for 3 choices of fitness metric. The paper addresses the problems of choice of fitness metric, characterisation of landscape modality and determination of the most suitable search technique to apply. The empirical results replicate previous results concerning Greedy Algorithms. They shed light on the nature of the regression testing search space, indicating that it is multi-modal. The results also show that Genetic Algorithms perform well, although Greedy approaches are surprisingly effective, given the multi-modal nature of the landscape

    Model-Based Security Testing

    Full text link
    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST) is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Prioritizing MCDC test cases by spectral analysis of Boolean functions

    Get PDF
    Test case prioritization aims at scheduling test cases in an order that improves some performance goal. One performance goal is a measure of how quickly faults are detected. Such prioritization can be performed by exploiting the Fault Exposing Potential (FEP) parameters associated to the test cases. FEP is usually approximated by mutation analysis under certain fault assumptions. Although this technique is effective, it could be relatively expensive compared to the other prioritization techniques. This study proposes a cost-effective FEP approximation for prioritizing Modified Condition Decision Coverage (MCDC) test cases. A strict negative correlation between the FEP of a MCDC test case and the influence value of the associated input condition allows to order the test cases easily without the need of an extensive mutation analysis. The method is entirely based on mathematics and it provides useful insight into how spectral analysis of Boolean functions can benefit software testing

    Automatic Repair of Real Bugs: An Experience Report on the Defects4J Dataset

    Full text link
    Defects4J is a large, peer-reviewed, structured dataset of real-world Java bugs. Each bug in Defects4J is provided with a test suite and at least one failing test case that triggers the bug. In this paper, we report on an experiment to explore the effectiveness of automatic repair on Defects4J. The result of our experiment shows that 47 bugs of the Defects4J dataset can be automatically repaired by state-of- the-art repair. This sets a baseline for future research on automatic repair for Java. We have manually analyzed 84 different patches to assess their real correctness. In total, 9 real Java bugs can be correctly fixed with test-suite based repair. This analysis shows that test-suite based repair suffers from under-specified bugs, for which trivial and incorrect patches still pass the test suite. With respect to practical applicability, it takes in average 14.8 minutes to find a patch. The experiment was done on a scientific grid, totaling 17.6 days of computation time. All their systems and experimental results are publicly available on Github in order to facilitate future research on automatic repair
    • …
    corecore