3,641 research outputs found

    Many-Task Computing and Blue Waters

    Full text link
    This report discusses many-task computing (MTC) generically and in the context of the proposed Blue Waters systems, which is planned to be the largest NSF-funded supercomputer when it begins production use in 2012. The aim of this report is to inform the BW project about MTC, including understanding aspects of MTC applications that can be used to characterize the domain and understanding the implications of these aspects to middleware and policies. Many MTC applications do not neatly fit the stereotypes of high-performance computing (HPC) or high-throughput computing (HTC) applications. Like HTC applications, by definition MTC applications are structured as graphs of discrete tasks, with explicit input and output dependencies forming the graph edges. However, MTC applications have significant features that distinguish them from typical HTC applications. In particular, different engineering constraints for hardware and software must be met in order to support these applications. HTC applications have traditionally run on platforms such as grids and clusters, through either workflow systems or parallel programming systems. MTC applications, in contrast, will often demand a short time to solution, may be communication intensive or data intensive, and may comprise very short tasks. Therefore, hardware and software for MTC must be engineered to support the additional communication and I/O and must minimize task dispatch overheads. The hardware of large-scale HPC systems, with its high degree of parallelism and support for intensive communication, is well suited for MTC applications. However, HPC systems often lack a dynamic resource-provisioning feature, are not ideal for task communication via the file system, and have an I/O system that is not optimized for MTC-style applications. Hence, additional software support is likely to be required to gain full benefit from the HPC hardware

    Energy Demand Response for High-Performance Computing Systems

    Get PDF
    The growing computational demand of scientific applications has greatly motivated the development of large-scale high-performance computing (HPC) systems in the past decade. To accommodate the increasing demand of applications, HPC systems have been going through dramatic architectural changes (e.g., introduction of many-core and multi-core systems, rapid growth of complex interconnection network for efficient communication between thousands of nodes), as well as significant increase in size (e.g., modern supercomputers consist of hundreds of thousands of nodes). With such changes in architecture and size, the energy consumption by these systems has increased significantly. With the advent of exascale supercomputers in the next few years, power consumption of the HPC systems will surely increase; some systems may even consume hundreds of megawatts of electricity. Demand response programs are designed to help the energy service providers to stabilize the power system by reducing the energy consumption of participating systems during the time periods of high demand power usage or temporary shortage in power supply. This dissertation focuses on developing energy-efficient demand-response models and algorithms to enable HPC system\u27s demand response participation. In the first part, we present interconnection network models for performance prediction of large-scale HPC applications. They are based on interconnected topologies widely used in HPC systems: dragonfly, torus, and fat-tree. Our interconnect models are fully integrated with an implementation of message-passing interface (MPI) that can mimic most of its functions with packet-level accuracy. Extensive experiments show that our integrated models provide good accuracy for predicting the network behavior, while at the same time allowing for good parallel scaling performance. In the second part, we present an energy-efficient demand-response model to reduce HPC systems\u27 energy consumption during demand response periods. We propose HPC job scheduling and resource provisioning schemes to enable HPC system\u27s emergency demand response participation. In the final part, we propose an economic demand-response model to allow both HPC operator and HPC users to jointly reduce HPC system\u27s energy cost. Our proposed model allows the participation of HPC systems in economic demand-response programs through a contract-based rewarding scheme that can incentivize HPC users to participate in demand response

    Parallel Programming with Migratable Objects: Charm++ in Practice

    Get PDF
    The advent of petascale computing has introduced new challenges (e.g. Heterogeneity, system failure) for programming scalable parallel applications. Increased complexity and dynamism in science and engineering applications of today have further exacerbated the situation. Addressing these challenges requires more emphasis on concepts that were previously of secondary importance, including migratability, adaptivity, and runtime system introspection. In this paper, we leverage our experience with these concepts to demonstrate their applicability and efficacy for real world applications. Using the CHARM++ parallel programming framework, we present details on how these concepts can lead to development of applications that scale irrespective of the rough landscape of supercomputing technology. Empirical evaluation presented in this paper spans many miniapplications and real applications executed on modern supercomputers including Blue Gene/Q, Cray XE6, and Stampede

    Routing on the Channel Dependency Graph:: A New Approach to Deadlock-Free, Destination-Based, High-Performance Routing for Lossless Interconnection Networks

    Get PDF
    In the pursuit for ever-increasing compute power, and with Moore's law slowly coming to an end, high-performance computing started to scale-out to larger systems. Alongside the increasing system size, the interconnection network is growing to accommodate and connect tens of thousands of compute nodes. These networks have a large influence on total cost, application performance, energy consumption, and overall system efficiency of the supercomputer. Unfortunately, state-of-the-art routing algorithms, which define the packet paths through the network, do not utilize this important resource efficiently. Topology-aware routing algorithms become increasingly inapplicable, due to irregular topologies, which either are irregular by design, or most often a result of hardware failures. Exchanging faulty network components potentially requires whole system downtime further increasing the cost of the failure. This management approach becomes more and more impractical due to the scale of today's networks and the accompanying steady decrease of the mean time between failures. Alternative methods of operating and maintaining these high-performance interconnects, both in terms of hardware- and software-management, are necessary to mitigate negative effects experienced by scientific applications executed on the supercomputer. However, existing topology-agnostic routing algorithms either suffer from poor load balancing or are not bounded in the number of virtual channels needed to resolve deadlocks in the routing tables. Using the fail-in-place strategy, a well-established method for storage systems to repair only critical component failures, is a feasible solution for current and future HPC interconnects as well as other large-scale installations such as data center networks. Although, an appropriate combination of topology and routing algorithm is required to minimize the throughput degradation for the entire system. This thesis contributes a network simulation toolchain to facilitate the process of finding a suitable combination, either during system design or while it is in operation. On top of this foundation, a key contribution is a novel scheduling-aware routing, which reduces fault-induced throughput degradation while improving overall network utilization. The scheduling-aware routing performs frequent property preserving routing updates to optimize the path balancing for simultaneously running batch jobs. The increased deployment of lossless interconnection networks, in conjunction with fail-in-place modes of operation and topology-agnostic, scheduling-aware routing algorithms, necessitates new solutions to solve the routing-deadlock problem. Therefore, this thesis further advances the state-of-the-art by introducing a novel concept of routing on the channel dependency graph, which allows the design of an universally applicable destination-based routing capable of optimizing the path balancing without exceeding a given number of virtual channels, which are a common hardware limitation. This disruptive innovation enables implicit deadlock-avoidance during path calculation, instead of solving both problems separately as all previous solutions

    A failure index for high performance computing applications

    Get PDF
    This dissertation introduces a new metric in the area of High Performance Computing (HPC) application reliability and performance modeling. Derived via the time-dependent implementation of an existing inequality measure, the Failure index (FI) generates a coefficient representing the level of volatility for the failures incurred by an application running on a given HPC system in a given time interval. This coefficient presents a normalized cross-system representation of the failure volatility of applications running on failure-rich HPC platforms. Further, the origin and ramifications of application failures are investigated, from which certain mathematical conclusions yield greater insight into the behavior of these applications in failure-rich system environments. This work also includes background information on the problems facing HPC applications at the highest scale, the lack of standardized application-specific metrics within this arena, and a means of generating such metrics in a low latency manner. A case study containing detailed analysis showcasing the benefits of the FI is also included

    Carbon-Awareness in CI/CD

    Full text link
    While the environmental impact of digitalization is becoming more and more evident, the climate crisis has become a major issue for society. For instance, data centers alone account for 2.7% of Europe's energy consumption today. A considerable part of this load is accounted for by cloud-based services for automated software development, such as continuous integration and delivery (CI/CD) workflows. In this paper, we discuss opportunities and challenges for greening CI/CD services by better aligning their execution with the availability of low-carbon energy. We propose a system architecture for carbon-aware CI/CD services, which uses historical runtime information and, optionally, user-provided information. We examined the potential effectiveness of different scheduling strategies using real carbon intensity data and 7,392 workflow executions of Github Actions, a popular CI/CD service. Our results show, that user-provided information on workflow deadlines can effectively improve carbon-aware scheduling.Comment: 21st International Conference on Service-Oriented Computing (ICSOC '24) Workshop

    BIGhybrid: A Simulator for MapReduce Applications in Hybrid Distributed Infrastructures Validated with the Grid5000 Experimental Platform

    Get PDF
    International audienceSUMMARY Cloud computing has increasingly been used as a platform for running large business and data processing applications. Conversely, Desktop Grids have been successfully employed in a wide range of projects, because they are able to take advantage of a large number of resources provided free of charge by volunteers. A hybrid infrastructure created from the combination of Cloud and Desktop Grids infrastructures can provide a low-cost and scalable solution for Big Data analysis. Although frameworks like MapReduce have been designed to exploit commodity hardware, their ability to take advantage of a hybrid infrastructure poses significant challenges due to their large resource heterogeneity and high churn rate. In this paper is proposed BIGhybrid, a simulator for two existing classes of MapReduce runtime environments: BitDew-MapReduce designed for Desktop Grids and BlobSeer-Hadoop designed for Cloud computing, where the goal is to carry out accurate simulations of MapReduce executions in a hybrid infrastructure composed of Cloud computing and Desktop Grid resources. This work describes the principles of the simulator and describes the validation of BigHybrid with the Grid5000 experimental platform. Owing to BigHybrid, developers can investigate and evaluate new algorithms to enable MapReduce to be executed in hybrid infrastructures. This includes topics such as resource allocation and data splitting. Concurrency and Computation: Practice and Experienc

    Resource management for extreme scale high performance computing systems in the presence of failures

    Get PDF
    2018 Summer.Includes bibliographical references.High performance computing (HPC) systems, such as data centers and supercomputers, coordinate the execution of large-scale computation of applications over tens or hundreds of thousands of multicore processors. Unfortunately, as the size of HPC systems continues to grow towards exascale complexities, these systems experience an exponential growth in the number of failures occurring in the system. These failures reduce performance and increase energy use, reducing the efficiency and effectiveness of emerging extreme-scale HPC systems. Applications executing in parallel on individual multicore processors also suffer from decreased performance and increased energy use as a result of applications being forced to share resources, in particular, the contention from multiple application threads sharing the last-level cache causes performance degradation. These challenges make it increasingly important to characterize and optimize the performance and behavior of applications that execute in these systems. To address these challenges, in this dissertation we propose a framework for intelligently characterizing and managing extreme-scale HPC system resources. We devise various techniques to mitigate the negative effects of failures and resource contention in HPC systems. In particular, we develop new HPC resource management techniques for intelligently utilizing system resources through the (a) optimal scheduling of applications to HPC nodes and (b) the optimal configuration of fault resilience protocols. These resource management techniques employ information obtained from historical analysis as well as theoretical and machine learning methods for predictions. We use these data to characterize system performance, energy use, and application behavior when operating under the uncertainty of performance degradation from both system failures and resource contention. We investigate how to better characterize and model the negative effects from system failures as well as application co-location on large-scale HPC computing systems. Our analysis of application and system behavior also investigates: the interrelated effects of network usage of applications and fault resilience protocols; checkpoint interval selection and its sensitivity to system parameters for various checkpoint-based fault resilience protocols; and performance comparisons of various promising strategies for fault resilience in exascale-sized systems
    • …
    corecore