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ABSTRACT 

This dissertation introduces a new metric in the area of High Performance 

Computing (HPC) application reliability and performance modeling. Derived via the 

time-dependent implementation of an existing inequality measure, the Failure index (FI) 

generates a coefficient representing the level of volatility for the failures incurred by an 

application running on a given HPC system in a given time interval. This coefficient 

presents a normalized cross-system representation of the failure volatility of applications 

running on failure-rich HPC platforms. Further, the origin and ramifications of 

application failures are investigated, from which certain mathematical conclusions yield 

greater insight into the behavior of these applications in failure-rich system 

environments. 

This work also includes background information on the problems facing HPC 

applications at the highest scale, the lack of standardized application-specific metrics 

within this arena, and a means of generating such metrics in a low latency manner. A 

case study containing detailed analysis showcasing the benefits of the FI is also included. 
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CHAPTER 1 

CONTRIBUTIONS AND AN INTRODUCTION TO 

HPC RESILIENCE 

1.1 Contributions 

The novel contribution of this work is the introduction of a normalized metric for 

measuring the time-dependent failure volatility of a High Performance Computing 

system. This metric - the Failure Index (FI) - is based on existing inequality measures 

such as the Gini [86], Atkinson [91] and Theil [92] indices and is formulated, 

specifically, as a time-dependent implementation of the Atkinson index. 

The FI generates coefficients based on the downtime resulting from all failures 

incurred by a given system in a given time interval. These coefficients represent the 

differences in downtime resulting from individual system failures in the time interval 

using a 0-to-l system, with FI coefficients closer to 1 representing higher levels of 

volatility amongst failures in the given time interval than FI coefficients closer to 0. This 

volatility is not captured by existing metrics such as Mean Time between Failure 

(MTBF) and system uptime percentage. Figure 1.1 illustrates the information captured 

by the FI relative to these measures. 

1 
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impact impact impact impact impact 
10 sec. 10 sec. 10 sec. 40 sec. 10 sec. 

• X X x x x • 
start | || || || | end 

5 m m . 5 m i n . 5 m i n . 5 ra in . 

total runtime total downtime 
30 min. 80 sec. 

Figure 1.1 Information Captured by the Failure Index 

The HPC system represented in Figure 1.1 runs for a total of 30 minutes. Its 

MTBF is 5 minutes. Likewise, the total uptime percentage of this system is 1720 / 1800 

seconds = 0.955 = 95.5%, or "one nine". However, neither metric captures that the 

system exhibits four failures that cause a downtime of 10 seconds each and one failure 

resulting in a downtime of 40 seconds. A Failure Index coefficient would represent this 

inequality. Specifically, given parameter s = 0.20 the FI coefficient for this example 

system is 0.2098798, representing a modest amount of downtime volatility. If each of the 

five failures resulted in a downtime of 10 seconds, the FI coefficient would be 0, 

meaning that every failure's impact on the system was equal. Likewise, in the case that 

four failures resulted in no downtime and a single failure caused all 80 seconds of 

downtime, the resulting FI coefficient would be 1. A mathematical introduction to the 

Failure Index is given in Chapter 4. 

The scale and location-invariant nature of FI coefficients allows us to compare 

the failure volatility of multiple systems regardless of size. This will be demonstrated in 

Chapter 5 when constructing FI coefficients for 23 different machines housed at Los 

Alamos National Laboratory, all of which contain different numbers of compute nodes. 
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The FI coefficient is a unitless value. As will be discussed in Chapter 2, many 

existing system reliability metrics are not standardized across the entire HPC arena, 

which allows for manipulation and corruption of system performance metrics. However, 

the unitless nature of the FI prevents this, as, given an assumption of globally defined 

failure events, FI coefficients represent similar levels of volatility across multiple 

machines. This allows for a true comparison of system failure volatility using a 

normalized scheme and should find a home as a quality of service measure for HPC 

system performance and resilience. 

1.2 An Overview of the Dissertation 

Chapter 1 first summarizes the novel contributions of this work. It then provides 

an overview of the dissertation and an introduction to the resilience issues facing today's 

large scale HPC machines and applications. It covers a general introduction to the field 

of resilience and its importance in today's HPC arena, a look specifically at the issues 

facing applications computing on the world's fastest machines, and a review of existing 

approaches for combating such problems. Further, the current lack of application-specific 

metrics in the HPC research and development community is examined. This includes 

discussion on the lack of information stemming from large-scale systems as well as the 

need for standardization in HPC measures and definitions across the landscape, including 

government, academic and industrial entities. This chapter also represents the motivation 

for the work outlined in subsequent chapters in this dissertation. 

Chapter 2 introduces a module for generating relevant resilience-specific 

information from a given HPC application. This application, Gilgamesh [83], was 

developed by the author as a means for combating the application information gap 
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discussed in Chapter 1. An existing HPC dataset is then examined using traditional 

statistics. 

Chapter 3 begins the discussion of inequality indexing by demonstrating that such 

approaches are both possible and practical when applied in an HPC context. The Gini, 

Atkinson, and Theil indices are mathematically introduced and Gini and Atkinson 

coefficients are generated using an existing HPC performance dataset containing 

reliability information from multiple machines. Results are then discussed and 

conclusions pertinent to the use of such indices in examining HPC application behavior 

are drawn. 

Chapter 4 introduces the Failure Index (FI) from a theoretical standpoint, 

including its definition and mathematical construction. This chapter contains the bulk of 

the novel work undertaken in the research and as such it should be read carefully. 

Lastly, Chapter 5 demonstrates the utility of the FI by conducting a case study 

consisting of multiple models and analysis. In this analysis FI coefficients are generated 

in conjunction with the same HPC performance dataset utilized in Chapter 3. The scale-

and location-invariant nature of the metric allows us to obtain novel results related to all 

machines contained in the dataset. 

Chapter 6 contains conclusions drawn from the entirety of the work as well as 

proposed future studies in resilience, HPC applications and metric generation. 

1.3 The Current State of HPC Resilience 

High-end parallel computing is relying increasingly on large clusters with 

thousands or even tens of thousands of processors. Further, many of today's large scale 

systems such as the Road Runner machine at Los Alamos National Laboratory include 
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heterogeneous architectures, increasing the complexity of such machines even further. 

With so many nodes and with such complicated architectures, system and application 

failures are becoming increasingly commonplace on these machines. 

As an example, one of today's fastest systems - the BlueGene/L (BG/L) machine 

housed at Lawrence Livermore National Laboratory (LLNL), which contains 65,536 

compute nodes and 131,072 cores - was failing once nearly every 48 hours during its 

initial deployment in 2005 [1]. Each time one of those nodes failed, a 1024-processor 

midplane had to be temporarily shut down in order to replace a dual-processor compute 

card. This is clearly unacceptable from a quality of service standpoint, especially 

considering that each of these machines costs millions (or in the case of the afore

mentioned Road Runner, hundreds of millions) of dollars. Table 1.1 illustrates that the 

existing reliability of larger HPC clusters is currently constrained by a mean time 

between failures (MTBF) in the range of 1.2 - 351 hours depending on the age of the 

machine. 

Table 1.1 Publicly Available HPC System Reliability Statistics 

Installed 

2000 

2001 

2002 

2002 

2003 

2006 

System 

ASCI White 

PSC Lemieux 

NERSC Seaborg 

ASCIQ 

Google 

Blue/Gene L 

Processors 

8,192 

3,016 

6,656 

8,192 

15,000 

131,072 

MTBF 

40.0 hours 

9.7 hours 

351.0 hours 

6.5 hours 

1.2 hours 

47.8 hours 

Measured 

2002 

2004 

2007 

2002 

2004 

2006 

Source 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 
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Existing work [2] similarly suggests a system mean-time to failure (SMTTF) 

constraint of 5-6 hours, or 4 failures per day, for current HPC systems. The most 

common causes of failure were processor, memory and storage errors. Extrapolating 

from current system performance levels, a study by Los Alamos National Laboratory 

(LANL) estimates a MTBF of 1.25 hours for a petaflop machine [3]. Commercial 

installations such as Google experience an interpolated MTBF of just over one hour for 

an equivalent number of nodes (see Table 1.1) as the BG/L system. However, Google's 

fault-tolerant middleware hides such failures, leaving user services completely intact [4]. 

It must be noted that parallel applications still maintain reduced completion times 

in comparison to their single threaded counterparts. However, when substantially 

increasing the number of nodes located within an HPC system and assuming theoretical 

linear scalability for applications, application completion times do not necessarily 

decrease proportionally. In fact, based on results obtained in [6], the opposite is true -

while application completion time initially decreases as more nodes share the work, at 

some critical point this value begins to rise substantially due to the increased likelihood 

of reliability issues stemming from addition of computational units. Figure 1.2 illustrates 

this. 
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Figure 1.2 Application Completion Time vs. Number of Nodes 

Recent accomplishments in providing an insight into HPC resilience showed that 

some HPC system failures can be anticipated by detecting deteriorating system health 

through hardware monitoring [5]. Further recent work focused on capturing the 

availability of large-scale systems using combinatorial and Markov models and 

subsequently comparing these results with statistics from large-scale U.S. Department of 

Energy (DOE) installations [6, 7]. 

However, the health data collection and processing algorithms outlined in these 

studies do not efficiently perform on large-scale HPC systems. Furthermore, fair and 

meaningful reliability comparisons between systems are impossible due to different 

hardware and software architectures, failure modes, and system health and failure 

reporting mechanisms. Others have suggested [6] that reliability and availability metrics 

standard for HPC were needed, as well as scalable, non-intrusive system health data 

collection and processing algorithms. Both of these topics are discussed at length in the 

body of this dissertation. 
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To prevent lost computation time due to failure, checkpoint/restart (C/R) 

algorithms have become a requirement for most long-running HPC jobs. Current C/R 

mechanisms commonly allow checkpoints to be written to a global file system. This 

allows an entire MPI (Message Passing Interface) job to be restarted from its last 

checkpoint in the event of failure. One example of such a solution is LAM (Local Area 

Multicomputer)/MPI's [8] C/R support through Berkeley Labs C/R (BLCR) [9]. 

C/R, like many other existing techniques, is a reactive scheme. Such techniques 

allow a computation to recover once a failure has occurred. The Los Alamos study 

leveraged these techniques to estimate the checkpoint overhead requirements of a 

petaflop machine. It found that based on current techniques, a 100 hour, failure-free job 

will be prolonged by an additional 151 hours in petaflop systems. 

Some recent studies suggest collecting data from existing machines and using 

that information in a reactive manner to derive a checkpoint interval that trades off 

checkpoint cost against restart cost [10]. Instead of a reactive scheme for fault tolerance, 

others are promoting a proactive approach that migrates processes away from unhealthy 

nodes and onto healthy ones. Such an algorithm has the advantage that checkpoint 

frequencies can be reduced as sudden, unexpected faults should become less common 

[11]. 

Further still, failure prediction has become a relevant and highly researched topic 

due to the substantial growth in size and scope of HPC deployments and the 

corresponding increase in system failure rate [12]. Predicting and proactively treating 

failures via the use of appropriate resilience mechanisms such as the ones previously 

mentioned substantially reduces the amount of wasteful re-computation time required in 
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the triage period following a failure. However, most contemporary failure prediction 

techniques involve MTTF approximation and post-event analysis of system logs [13, 14]. 

Others suggest a need for analysis based on individual compute node reliability in 

conjunction with system health [15]. 

The feasibility of health monitoring at various levels has recently been 

demonstrated for temperature-aware monitoring via the utilization of ACPI [16] and 

more generically by critical-event prediction [17]. Such approaches in systems with 

thousands of processors such as BG/L range from application runtime-level techniques to 

the level of operating system (OS) schedulers [18]. 

While process-level C/R has received much attention in the HPC arena, recent 

results on OS-level C/R show that OS virtualization is a viable alternative. More 

specifically, experiments were conducted with process-level BLCR [19] and Xen [20] to 

assess the overhead of saving and restoring the image of an MPI application on a faulty 

node. For BLCR this comprises the process of an MPI task, while for Xen the entire 

guest OS is saved. Tests for NAS PB programs under Class C inputs show an overhead 

of 8-10 seconds per one-minute run of BLCR and 15-23 seconds per one-minute run of 

Xen on the same experimental platform [21]. Variations are mostly due to the memory 

requirements of specific benchmarks. These memory requirements also dominate those 

of the underlying OS, which explains why Xen remains competitive in these 

experiments. 

1.4 Preliminary Studies and Related Work 

Detailed analysis was performed on system event records generated by the four 

Advanced Scientific Computing (ASC) machines (White, Frost, Ice, and Snow) housed 
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at LLNL [2]. Using Markov modeling, time to failure (TTF) data for the 512-nodes ASC 

White machine covering a four-year operational period [22] was generated. The average 

per-node SMTTF was found to be approximately 3293 hours, or around four months. 

This failure information was then taken and compared to a variety of statistical 

distributions, using the Kolmogorov-Smirnov (K-S) test to obtain the most appropriate 

fit. The K-S test yields a best fit between the empirical data and four theoretical 

distributions - namely the exponential, Weibull, Gamma and Log-normal distributions. 

K-S testing was performed on 512 different nodes and time period permutations 

assimilated from the ASC White logs. The data suggested that the failure rate varies over 

time. It was found that, as such, Weibull, Gamma, and Log-normal distributions, all of 

which suggest variable response in conjunction with time change, provide a more 

accurate basis for reliability modeling than an exponential distribution, which implies 

constant failure behavior, as shown in Table 1.2. 

Table 1.2 Best Fit Cases, ASC White 

Distribution 

Exponential 

Weibull 

Gamma 

Log-normal 

Number of Best Fit Cases 

185 

334 

328 

318 

In a separate investigation on raw LLNL Blue Gene/L system logs, the XCR 

team at Louisiana Tech University [23] found that both hardware and software failures 

could not be easily obtained from the log file. The team also introduced a novel approach 
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for deriving software interrupts from raw system failures using the system time to repair 

(TTR). It was suggested that this data be used for higher-level knowledge discovery such 

as reliability analysis or failure prediction. 

Additionally, the XCR team presented optimistic and pessimistic approaches for 

estimating a system's failure behavior, representing best-case and worst-case behaviors 

respectively. Results showed that the failure behavior bounds - both best-case and worst-

case - vary greatly due to a multitude of undetermined events that are flagged as fatal 

system failures. Problems arose in attempting to determine if such events were truly fatal 

behaviors or false positives. This problem confirmed the importance of failure 

identification mechanisms such as system monitoring and logging. 

We have also developed a reliability-aware resource allocation model for parallel 

programs [24] and an optimal checkpoint/restart model [25]. The reliability-aware 

resource allocation model aims to minimize performance loss due to failure. Results 

indicate that applying a reliability-aware resource allocation technique reduces the 

overall waste time of parallel jobs by as much as 30%. The improved checkpoint model 

optimizes wasted time (checkpoint overhead, recovery time, and re-computational time) 

by balancing both checkpoint overhead and re-computational time. 

In addition, a fault tolerance framework [26] was developed that enables an HPC 

system to self-heal/self-clone in order to tolerate a system failure by using 

checkpoint/restart mechanisms. This framework was implemented on Linux-based HPC 

systems and integrated an optimal checkpoint placement model. This model was further 

extended to act as a feedback control loop - a fundamental part of the resilience 

framework. 
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Additionally, the author assisted in the formation of a Resilience Consortium 

consisting of top researchers in the field of HPC resilience. Stated goals include the 

standardization of terms, methods, and algorithms encountered in resilience research and 

the development of fault tolerant large-scale computing systems. This consortium is an 

open community of HPC leaders from industry, academia, and research institutions. 

Preliminary studies concluded that better data acquisition coupled with improved 

reliability and prediction models as well as continued enhancement to the feedback 

control loop will lead to an improved resilience model that increases application 

productivity. 

As in this dissertation, most contemporary studies which conduct reliability 

analysis on large-scale computing systems assume that failures transpiring within various 

components or nodes are independent [27-29]. However, other studies exist suggesting 

some inter-constituent dependencies in failure origin, especially at the application level 

[30]. Dependencies reported by these studies occur mostly in system configuration and 

within the operation environment [31]. Such dependencies are not accounted for in this 

work. 

To improve reliability model accuracy, a relaxation in the assumption of 

independent failure behavior was suggested, as the model should represent the failure 

probability of each node as well as of the cross-application runtime environment. 

Another important discovery derived from reliability analysis of HPC systems is that for 

a given parallel architecture and problem size, application completion time will not 

continuously decrease due to a constant introduction of new processors and higher core 

counts into the computing system. Such results rest at the heart of the resilience issues 
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facing large-scale HPC, as it is that victim-of-scale phenomenon that is most often 

studied. Various aspects of scalability were examined in [32, 33]. 

In application distribution, Shatz et al. [34] modeled tasks and communication 

links as a directed graph, using it to intelligently allocate jobs within heterogeneous 

distributed systems. Other groups studied application allocation through checkpointing 

mechanisms [35]. There are also existing works which propose checkpoint scheduling 

optimization [36, 37]. Geist et al. [38] and Wong et al. [39] presented Markov 

availability models and obtained an optimal checkpoint placement that maximizes 

system availability. Ling et al. [40] presented optimal checkpoint scheduling models for 

an infinite horizon time by using a calculus of variations technique. They concluded that, 

theoretically, a fixed checkpoint interval is optimal if and only if application failure 

follows a Poisson distribution. Ozaki et al. [41] extended the calculus of variations 

concept introduced in [42] to apply to a system with a finite horizon time and incomplete 

failure information. However, both works define re-computation time as a linear function 

demonstrating model applicability - a metric that in practice should depend upon failure 

behavior. 

Plank et al. [43] discussed the importance of processor count as a performance 

attribute in checkpointing applications. The now-popular concept of incremental 

checkpointing was introduced as a means of reducing checkpoint/restart mechanism 

overhead by saving the state of only those application pages that have been changed [44-

46]. Palaniswamy et al. [47] observed that, given a minimal number of increments, the 

incremental checkpointing approach has the potential to surpass traditional 

checkpointing algorithms in efficiently utilizing computational resources. The challenge 
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in achieving minimum overhead while using incremental checkpointing schemes is to 

find a maximum number of incremental checkpoints while maintaining lower system 

costs than traditional algorithms. 

In addition to the utilization of checkpointing mechanisms, some researchers also 

studied the costs and benefits associated with job migration. Halchor-Balter and Downy 

[48] used process aging to present a migration cost model. They concluded that process 

migration most benefits those processes which exhibit long execution times. Mello and 

Senger [49] proposed a model which evaluates process load and lifetime in order to 

analyze the effects of job migration within an environment composed of heterogeneous 

computers. That study assumes that the load balancing frequency of each compute node 

indicates the occupation level of that node. The proposed model then makes a decision 

regarding which application processes should be migrated. 

Other groups proposed algorithms which combine checkpoint/restart mechanisms 

and process migration. For example, Cao et al. [50] presented a process migration 

strategy based on the coordinated checkpointing of message passing interface (MPI) 

applications. 

This technique modifies process location-related information in the checkpoint 

file and reintroduces the application with respect to the modified location. Sun et al. [51] 

proposed the Fault-aware ENabled Computing Environment (FENCE) system for high 

end computing - a unified computing framework with both reactive and proactive 

mechanisms. As in this dissertation, most existing optimal scheduling frameworks [52-

54] assume that system failure follows a Poisson distribution. However, many also 
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assume a constant failure rate, which in most cases is not a good representation of actual 

system failure characteristics [55, 56]. 

In HPC failure prediction research, Xue et al. [57] surveyed five major prediction 

techniques - a statistic-based threshold method, time series analysis, rule-based 

classification, Bayesian network models and semi-Markov process models. The survey 

concluded that Bayesian network models and semi-Markov process models are the best 

approximations of system failure due to precision and recall. This conclusion led to the 

utilization of naive Bayesian classification in the construction of the FI. 

Semi-Markov processes were used in [58] to model the system reliability of 

computational grids, and then further used in forming the probability of failure for an 

individual system within in the grid. By filtering out periodic failures, the relative error 

of predicting system reliability in relation to empirical reliability is relatively small (less 

than 0.05). However, this reliability metric directly infers only the probability of failure, 

rather than actually predicting system failure. 

Lead time ( |7\ | ) is defined as the interval between the time a failure prediction 

takes place and the time that predicted failure is expected to occur. The predicted failure 

interval is similarly denoted \TP\. Salfner et al. presented a failure prediction method 

called Similar Event Prediction (SEP) [61], which exploited a semi-Markov model by 

using groups of events to form states and predicting a failure if the probability of failure 

obtained from the model exceeded a predefined threshold. The model predicted failures 

with a bounds of |7 \ | = \TP\ = 1 minute and yielded results illustrating high precision 

(0.8) and recall (0.923). Precision and recall are measures of accuracy defined in relation 

to true or false positive or negative resulting values, with values closer to 1 indicating 
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more accurate results than values closer to 0. Precision (formula 1.1) and recall (1.2) are 

mathematically defined below: 

true positive 
Precision = — — (1-1) 

true positive + false positive 

true positive 
Recall = —— . (1.2) 

true positive + false negative 

This analysis was performed on legacy telecommunication deployments varying 

greatly in design and purpose from high-end HPC systems. Further, the assumed one 

minute lead time may be too short to allow the system to take adequate responsive 

action. 

In addition to Markov models, association rule discovery [59] has also been 

applied to HPC failure prediction. The researchers form sets by grouping events that 

appear close to each other chronologically and apply an association rule discovery 

algorithm, predicting failures using a set of rules inferring either critical or fatal events. 

Sahoo et al. [60] applied this approach utilizing a variable time interval, from 100 to 800 

seconds. They claimed that the resulting model provided up to 70% accuracy in 

predicting failures. Gujrati et al. [61] similarly applied this technique using a varying 

\TP\ - from 5 minutes to 1 hour - and \Tt\ = 0. However, because |7\ | = 0, an 

implementation of this model is unobtainable. Additionally, meta-learning applied in 

[62] can help boost recall from 0.22-0.55 up to more than 0.65. 

Bayesian network models have not been explored to their full potential in HPC 

resilience study. This is due to the high computational costs of network topology 

construction and structural learning. As in this dissertation, Hamerly and Elkan [63] 

exploited a nai've Bayes scheme: a Bayesian methodology which assumes independence 
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among variables - to predict disk drive failures, achieving a 0.33 true positive rate and a 

0.0067 false positive rate. Causality of variables can also be studied with Bayesian 

analysis [64]. Sahoo [65] used Bayesian analysis to study causes and effects amongst 

system variables, such as CPU usage and occurrence of system events. 

Analyzing system failure behavior is not a trivial matter, and as such, a variety of 

statistical methods must be exploited in the development of a reliability-aware runtime 

framework for the modeling of large-scale systems, specifically in analyzing the 

behavior of large-scale HPC applications. Bayesian analysis serves as a good alternative 

to conventional statistical analysis methods in that it allows researchers to use all 

available current and prior information in creating statistical models, as opposed to 

conventional methods which restrict analysis to current data. The Bayesian approach 

models parameters as random quantities and uses existing information to construct an 

antecedent distribution model for the values. 

There is little to no existing work in the utilization of inequality indices in 

modeling HPC application behavior, let alone the development of a new index 

specifically targeted at creating such models. 

1.5 A Lack of Standardization Amongst Metrics 

When one examines existing work in the areas of performance and reliability 

analysis, behavioral modeling, quality of service estimation and failure prediction, it 

becomes immediately clear that there exists substantial need for standardization in both 

the explicit definitions and mathematical derivations utilized in such studies. Concepts 

such as an application's MTBF, checkpoint/restart latency or overhead, failure prediction 
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costs or application process migration overhead are defined in radically different ways 

depending on the individuals or organizations performing the analysis in question. 

One such example is the definition of failure itself. While on its surface a very 

simple idea requiring what should be an analogously simple definition, failure is instead 

defined in radically variant ways across the HPC resilience community. Entities focusing 

strictly on HPC systems, for example, define failure strictly as a system-centric construct 

- that is, power or network outages are labeled as failures, while the unexpected 

termination of one or more applications running on those systems are not labeled as such. 

Examples of such entities are telecommunication data centers and large storage facilities. 

However, more application-focused individuals or organizations would certainly 

consider unexpected job termination a failure. Included in this group are pure scientists, 

government laboratories, or any entity utilizing its HPC assets for capability computing. 

Even at this level - which, it should be noted, is the point of view taken in this 

dissertation - there exists much debate on the specific details included in the definition 

of application failure. Certainly it would be considered a failure if one submits a job and 

it terminates before reaching its expected outcome. However, what if only one 

application process terminates unexpectedly, while the remainder successfully finish? 

What if the application enters an infinite loop? In this case the application certainly 

hasn't terminated, yet it will never finish executing. 

There is no existing, widely adopted answer to any of these questions. The 

Resilience Consortium has begun the process of tackling issues such as standardization, 

but no industry-wide consensus has been reached and there remains much work to be 

done in defining even the simplest of terms. All entities performing high performance 
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computing are aware of the issue and acknowledge the utility of arena-wide metric 

standardization, but all bring their own biases in regard to such terms and little progress 

has been made in this area. 

This lack of standardization along with a strong need for application-specific 

reliability metrics spawned the work outlined in this dissertation. The latter issue is 

covered explicitly in the following chapter, while the entirety of this work is devoted to 

providing one solution for the former. Although one-hundred percent adoption of these 

concepts is an unrealistic goal, it is hoped that industry leaders and specifically the 

Resilience Consortium give this idea of a unified Failure Index for HPC application 

volatility a strong look and seriously consider pressing for the adoption of such a metric. 

Even ignoring its utility as a location- and scale-invariant measure of application 

volatility (those concepts will be discussed in depth in Chapters 3 through 5) the FI as 

proposed in this dissertation can be easily implemented on live HPC systems, making it a 

lightweight solution. 



CHAPTER 2 

HPC METRICS: GENERATION AND EXAMINATION 

2.1 Generating Metrics for HPC Applications 

The HPC community is presently encountering substantial proliferation in the 

number of computational units used in its computing platforms. Although this increase in 

size (and, subsequently, computing power) has both raised the bar for what high 

performance machines can do and brought mainstream attention to the field via its 

ascension beyond the petaflop barrier, it has also led to an increase in application 

downtime [66]. 

Traditionally, the HPC research community has attempted to alleviate such issues 

via the research and development of solutions geared toward increasing the reliability of 

these machines. These hardware-centric solutions carry a single objective: maximize the 

system uptime of a given HPC distribution. However, as extreme-scale HPC platforms 

enter the petaflop age via the dissemination of ten and hundred-thousand core 

architectures, application failures are encountered at rates that pragmatically prevent 

fully reliable systems [67]. Thus, there is much work to be done in providing HPC 

applications with the ability to run through failure. That is, solutions must be devised 

that endow these programs with the capability to be resilient to failures encountered by 

the systems upon which they execute. 

20 
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We define a fully resilient HPC application as one that continues an acceptable level 

of execution in the event of any variant form of non-catastrophic failure encountered by 

its host system (catastrophic failures being wholly unavoidable events such as natural 

disasters and center-wide power outages). Resilience, then, is a metric denoting how 

close a given HPC application comes to realizing full resilience. This measure will, in 

time, become as important in measuring the 'worth' of a given HPC platform as 

contemporary benchmarks such as peak FLOPS, due to the increasing power and cost 

demands of computing at an extreme scale. 

The question, then, becomes "how does one provision HPC applications with 

resilience-focused capabilities?" The answer begins with investigating how and why 

contemporary extreme-scale machines are encountering such a startling number of 

performance interruptions. This, however, is no simple task, due to the severe lack of 

existing public information originating from high-end HPC applications. Los Alamos 

National Laboratory collected and published data regarding the failure and usage of more 

than 20 of their supercomputing clusters [68] and this information has been analyzed by 

Schroeder et. al. from CMU in an attempt to study the root cause of the reported failures 

[69]. This data consists primarily of failure data and system administrator notes but does 

not include machine logs. This dataset will be examined in the following chapter. 

As outlined in the previous chapter, work undergone by others within the HPC 

research community has concluded that the inherent lack of structure exhibited by 

supercomputer system log files prevents the ability to perform efficient analysis on the 

reliability of such machines. Thus, to further resilience-centric study, there exists the 

need for a novel method of extracting performance and reliability data directly from 
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extreme-scale applications. This chapter outlines a solution that, via a combination of 

dynamic instrumentation and autonomous application correction, provides and handles 

this information in an efficient manner. 

Resilience, as a research and development field, can be defined as the radically 

application-centric study of HPC reliability. Recapping from the previous chapter, those 

within this field began preliminary investigations into the Mean Time to Interrupt 

(MTTI) exhibited by contemporary high-end HPC applications. A LANL study [70] 

extrapolated current system performance and subsequently estimated a 1.25 hour 

application MTTI for a petaflop system - a very alarming and unacceptable value 

especially given the time required to take a full-system memory snapshot (checkpoint). 

This investigation concludes by suggesting that novel applications aimed at extending 

the functional inter-failure lifespan of HPC applications be devised. 

In many of these studies, the authors encounter tremendous difficulty in 

extracting relevant and legible reliability information from extreme-scale application log 

files [71]. Most concluded that the labyrinthine nature and enormous size of these 

documents greatly hinders both the speed with which one can perform root cause 

analysis and the efficient real-time monitoring and modeling of application performance. 

Sisyphus [72], a web-based log file analysis tool developed at Sandia National 

Laboratory, aims to resolve this conflict by filtering such log files via latent-semantic 

indexing. This process utilizes a network of regular expression algorithms to parse and 

display relevant information located within the log. 
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The health data collection processes outlined in existing studies, however, are 

both reactive and substantially system-centric. Furthermore, these approaches do not 

efficiently scale when large numbers of nodes are added to an HPC system. 

As such, an efficient solution for the real-time generation of reliability metrics 

from highly-scaled HPC applications must be designed and implemented to facilitate 

further study in the resilience field. Further, these metrics should be handled 

autonomously, allowing the application to self-correct resilience issues without live 

human interaction. These goals, then, are the focus of the work described in this chapter. 

Here Gilgamesh is presented, developed by the author as a plug-in for the 

Open|SpeedShop performance analysis suite. Gilgamesh utilizes the dynamic 

instrumentation of binary source to efficiently collect program information for jobs run 

on extreme-scale HPC distributions. It then uses a scripting and database interface to 

handle the generated information and autonomously provision application reliability. 

Open|SpeedShop (OSS) is an open source performance monitoring tool funded 

by the U.S. Department of Energy Tri-Labs at Los Alamos, Sandia, and Lawrence 

Livermore National Laboratories. OSS was initially developed by Silicon Graphics, Inc. 

(SGI) and later adopted as a community effort by the Krell Institute. Per its website, OSS 

is "an open source multi platform Linux performance tool which is initially targeted to 

support performance analysis of applications running on both single node and large scale 

IA64, I A3 2, EM64T, and AMD64 platforms. It is explicitly designed with usability in 

mind and targets both application and computer scientists" [73]. 

Open|SpeedShop contains four different user interfaces: graphical, command line, 

Python scripting, and batch. The graphical user interface (GUI) provides real-time visual 
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representation of system and application performance. Likewise, the command line 

interface (CLI) enables a less costly method for quickly and easily viewing performance 

information. Lastly, the batch interface (utilized by Gilgamesh) serves as a means for 

external scripts and applications to call upon OSS to perform a specified function. Figure 

2.1 showcases the Open|SpeedShop GUI in action - in this case, displaying program 

counter sampling information. 

& 
gile Tot&t Hdp 

s $t pc Sampling (1} 

Process Contrd 

S Update 

Status Experiment has let nunated 

£ $wmt Pa«ei [ll , & Stars Pal* 

\ 

£anel Container Menu 

v* Recycle 

Preference Panel 

Show Metric pcsarop time 

Show 'Hire ad/Process 

</ Show Percentages 

Compare 

Columns Menu 

Export Report Data > 

Go to source fecshon 

Re-orientate 

Hide £hart.. 

Osage " w-3i^e^pen«7cuiTen5?oH Hide Statistics 
No size argument given Defaulting: toy>*o—~ ~~ ~ ™™™™™™™™™-™™-™ 
/w^k/jeg/openss/current/usablity/phaseJJ/rred, suceesfuliv completed 
Experiment 1 has terminated 

Cfcri+R 

Ctrl+L 

Ctrl+L 

furred f-'c2) 
fiCfred tlc,2) 
workfired work.c,2) 

Figure 2.1 Open|SpeedShop GUI 

IWoTBTx 

rooTaTxl 

OSS also supports the development of user-created plug-ins (called 'experiments' 

in the OSS lexicon) which allow one to leverage the software's mechanics to capture 

user-defined metrics from the target application. There are a number of application 

properties that OSS can extract and analyze without any modification or addition to its 
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source. Among these are the following: floating point exceptions, hardware counter data, 

input/output information, MPI tracing, program counter sampling, and user time metric 

collection [74], most of which cannot be found in system log files. The Open|SpeedShop 

portion of Gilgamesh cherry picks collectors for resilience-pertinent information and 

establishes an interface through which the external storage and correction processes can 

access this data in real-time. 

Prior research within the HPC resilience research community has concluded that 

there exists a need for the development of software which provides extreme-scale HPC 

applications with the ability to successfully continue computation in the event of non-

catastrophic performance interruptions [75, 76]. The logical first step in this software's 

development cycle, then, is the creation of a module by which resilience-pertinent 

information is extracted from an HPC application. That is, in order to successfully 

provision fully resilient high performance programs, one must first gather the 

information to determine how and why the application is failing. 

Gilgamesh leverages Open|SpeedShop to accomplish this via the dynamic 

instrumentation packages located within the OSS framework. Developed as an OSS 

plug-in, this portion of Gilgamesh utilizes the DPCL [77] and Dynlnst [78] packages that 

drive OSS's dynamic instrumentation capabilities to quickly generate resilience-pertinent 

metrics from running HPC applications. As the application executes, user-determined 

function calls trigger Dynlnst and DPCL to comb the program's source and generate a 

snapshot of its current state, dynamically instrumenting the application. These 

parameters are then collected by Gilgamesh's scripting framework and stored in an SQL 
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database, where the autonomous correction module analyzes the data and resolves 

reliability-threatening issues before they impact application execution. 

By default Gilgamesh is configured to capture specific metrics from a user 

application. This initial set of metrics constitutes a general class of parameters that are 

often useful to a wide range of applications, but, through the Gilgamesh graphical user 

interface, the user can define others. 

Gilgamesh utilizes Open|SpeedShop's batch interface to intelligently attach its 

data generation module to the job queuing and execution processes without being 

explicitly launched from within a given user space. When a user submits a job to the 

batch scheduler, Gilgamesh recognizes this and prepares to attach itself to the application 

once it is scheduled and begins to execute. The interaction between Open|SpeedShop and 

Gilgamesh is displayed in Figure 2.2. 
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Figure 2.2 Interaction between Open|SpeedShop and Gilgamesh 

As a plug-in for Open|SpeedShop, Gilgamesh's data collection module works by 

executing revised copies of the runtime.c (application-side) and collector.cxx (OSS-side) 
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source files that initialize the various dynamic instrumentation processes. These files, 

then, work together to generate Binary Large Objects (blobs), which contain the actual 

information extracted from the application. The rate at which Gilgamesh produces blobs 

may be explicitly determined by the user via the Open|SpeedShop GUI. This dissertation 

will focus more on the data generation and storage aspects of Gilgamesh, as its analysis 

and correction routines have since been replaced by the failure indexing algorithm 

introduced in Chapter 4 and used in Chapter 5. 

Gilgamesh contains a script which brokers storage of the reliability information 

captured by OSS. Launched in conjunction with the data collection processes as the 

target application leaves the queue, this script periodically enters OSS's batch interface 

and dumps the generated metrics into a SQL database which exists completely outside of 

the OSS realm. This greatly expands its flexibility - one could connect any number of 

additional applications to this database and, so long as it remains formatted in the 

Gilgamesh schema, the metric generation and storage processes will execute seamlessly. 

The rate at which this script interacts with OSS can be easily modified by editing an 

associated configuration file. 

As application reliability information is stored, Gilgamesh then evaluates the 

data, determines if there exist any potential problems, and attempts to preemptively 

correct these issues via a number of available techniques. Once the storage script has 

completed execution, it instantiates a correction script that accesses the SQL database 

and statistically analyses the data captured by Open|SpeedShop. It is important to note 

that these scripts exist completely outside of the OSS framework - any database 
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containing application reliability information can be analyzed by this correction module, 

so long as it is a SQL database with the Gilgamesh schema. 

Unlike most contemporary approaches, the health determination algorithm used 

by Gilgamesh does not utilize a threshold-crossing algorithm. Instead, Gilgamesh 

determines if the application is trending towards failure. That is, instead of comparing 

the application information in the database to a collection of associated values and 

determining if the value exceeds the listed threshold, Gilgamesh's failure anticipation 

algorithm works by comparing all values of a given metric and the associated times at 

which these values were generated by the application. It then analyses the slope of this 

comparison and signals if the given attribute is trending towards a potential failure. This 

idea of an anticipation algorithm played a big role in the eventual creation of the Failure 

Index. 

For example, if CPU usage is enabled in the Gilgamesh GUI, Gilgamesh will, 

when dynamically instrumenting the application's binary, extract per-node CPU usage 

from the application and store this information in the database. The correction script is 

then called and, instead of comparing this CPU usage value to a predetermined threshold, 

it takes this value and all previous recordings of this value for this run of the application 

and differentiates this data with respect to time. If it determines that that this parameter's 

slope is getting steeper at a sufficiently significant rate, the correction algorithm is 

triggered. Differentiating data in this manner is analogous with the concept of rate of 

occurrence of failure (ROCOF), discussed later in this dissertation. 

This approach goes beyond contemporary threshold-related schemes. Should an 

application always run at 95% CPU usage yet show no symptoms of potential failure, 
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Gilgamesh does not detect an anomaly. However, if an application typically utilizes 20% 

of the CPU, but has escalated to 30%, 50%, and 70% CPU usage over the past 5 minutes, 

then the tool identifies this as a potentially serious change of events. 

Once Gilgamesh determines that some aspect of the application is trending 

towards failure, the autonomous correction module is alerted and begins work on 

mitigating the anticipated failure before it occurs. At this point, Gilgamesh has a 

multitude of options at its disposal: Schemes such as process re-instantiation or 

migration, node rejuvenation, and checkpointing/restarting are all available as potential 

remedies for the deteriorating application. Many of the best ideas discussed in the 

previous chapter were cherry picked in Gilgamesh's implementation of fault mitigation. 

The remedy selected by Gilgamesh, of course, depends on the specific metric 

acting as catalyst for the failure. In general, node-related parameters such as CPU usage 

trigger process migration and node rejuvenation, while application-centric metrics such 

as floating point exceptions trigger process re-instantiation. Every attempt is made to 

avoid application-wide checkpoint/restart, as this form of fault-tolerance should be 

reserved for recovering from catastrophic failures. In scenarios where a proactive 

response to impending failure is possible, Gilgamesh chooses that approach. 

Current research and development on Gilgamesh focuses on instrumenting a 

number of HPC applications with a full-capacity build of this software, in an effort to 

generate a wealth of information related to the failures encountered by applications 

running at an extreme scale. This information, then, will be used to retool the software to 

perform its duties in a substantially less costly manner, while increasing its ability to 

accurately anticipate failure. Future work includes further decreasing the software's 
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overhead requirements and specifically increasing the intelligence of the autonomous 

correction component via the implementation of the FI. Real time monitoring using a 

combination of Gilgamesh and the FI is proposed as future work in Chapter 6. 

2.2 Examining HPC Application Metrics 

A common goal in studies done on resilience provision within HPC distributions 

is the development of an effective reliability, availability, and serviceability (RAS) 

logging and monitoring framework for detecting, circumventing, and quickly recovering 

from system and application failures. However, before this development can begin, it is 

both necessary and critical to characterize potential failure scenarios. This includes 

creating working definitions of these failures (as will be covered later in this document) 

and developing a sound understanding of the structural semantics and dependencies 

located within the target architecture. This section develops a means to characterize 

system- and application-level failures encountered within the HPC environment as a 

general architectural paradigm. Specifically, this section introduces the general concepts 

and procedures for describing an HPC dataset as used in the remainder of this 

dissertation. 

To develop a working dataset that was both tangible and rich in failure and 

performance information, a number of system logs from existing large- and extreme-

scale HPC deployments were obtained. The findings obtained by mining and modeling 

these records, combined with an in-depth examination and subsequent understanding of 

requisite HPC architectural components drive the bulk of this section. 

The multiple processors that serve as nodes within an HPC environment, much 

like those found in any other architectural permutation, output various information via 
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system- and application-level log files. However, as discussed in the previous section, 

there are a number of hurdles encountered when attempting to mine this information in 

an effort to better understand failure characteristics and capture system health indicators. 

As discussed in the first chapter, there is no standardized design method for 

culling performance information from these files, nor is there a standard means of 

arranging the data. In multi- and heterogeneous-core environments, in particular the 

dominant cluster computing model, there is the potential for any number of divergent 

processor technologies. Various manufacturers and clock speeds, amongst other 

discrepancies, lead to diverse, sometimes radically different log formats amongst nodes. 

This is a major obstacle in identifying overall environmental health, as, without another 

level of abstraction above the various node-specific reporting modules, performing any 

detailed comparisons between individual system components proves very cumbersome. 

Also, in most systems, only performance metrics pertaining to individual nodes 

or components within the individual machines are logged, and, as such, no multi-

component or system-wide performance indicators are currently used in formulating log 

data. These are often crucial values that must be taken into consideration when 

formulating a given system's overall health and viability. 

Briefly discussed in the first chapter, the Blue Gene/L (BG/L) log file is used as 

our test dataset in this section. BG/L, a well-known IBM-developed supercomputer, is an 

extreme-scale HPC deployment which strictly adheres to many of the core design 

principles of high performance computing and, as such, serves as a worthy target 

architecture for the study of HPC failure activity. Contained in its 710 MB, 4,747,963 

line log file was performance and error information covering a six month period, from 
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June 3rd, 2005 to January 4th, 2006. The information outlined in this section is the result 

of analysis into the behaviors and trends located within this rich performance dataset. 

According to the Top500 Supercomputer website, BG/L - located at Lawrence 

Livermore National Laboratory - was at one time the largest supercomputer in existence. 

The system is comprised of 106,496 dual-processor compute nodes, of which 67% are 

512 MB and 33% are 1 GB. It also contains 1,664 I/O nodes, 212,992 IBM PowerPC 

CPUs, and a total disk space of 1.89 PB. Within the Blue Gene/L architecture, each rack 

is divided into two parts: a top midplane and a bottom midplane. Each part contains 16 

node cards, 1 service card and 4 link cards, and there are 32 compute nodes and 4 

optional I/O nodes on each node card [79]. 

During the time interval covered in the log file, there were 4,747,963 messages 

sent to the log. Each message contains the time, location, RAS or NULL, facility, severity, 

and event description information shown in Figure 2.3. Locations are denoted by codes 

which represent a particular hardware component. 

2005-08-02-17.18.18.545821 HULL RAS BGLMASTER FAILURE »nics_seEvei: exited normally with exit code 1 
2005-08-02-18.05.32.652047 HULL RAS BGLMASTER FAILURE idoproxy exited normally with exit code 0 
2005-08-02-18.05.42.661358 HULL RAS BGLMASTER FAILURE mncs_server exited normally with exit code 15 
2005-08-02-18.05.47.668332 NULL RAS BGLMASTER FAILURE ciodb exited normally with exit code 15 
2005-08-03-13.34.51.000398 HULL RAS BGLMASTER FAILURE iamcs_server exited normally with exit code 15 
2005-08-10-09.09.58.139632 NULL RAS BGLMASTER FAILURE mmes_Berver exited normally with exit coda 15 
2005-08-12-07.20.27.921676 HULL RAS BGLMASTER FAILURE ciodb exited abnormally due to signal: Aborted 

Figure 2.3 An Example of BlueGene/L's Log Format 

The facility variable, found in every log entry, indicates the hardware or service 

affected by the corresponding reported event [80]. This value can be characterized into 

one of 10 types: MMCS, APP, KERNEL, LINKCARD, DISCOVERY, MONITOR, 

HARDWARE, CMCS, BGLMASTER, and SERV_NET. MMCS represents the system's 
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midplane management and control service, while CMCS stands for core management and 

control system. KERNEL indicates events related to hardware instruction and data 

manipulation. DISCOVERY is a service that monitors hardware changes. MONITOR is 

another control system component which provides various hardware status metrics such 

as temperature. BGLMASTER is a service that controls the MMCS. Also within the log 

messages are six severity levels: INFO, WARNING, SEVERE, ERROR, FATAL, and 

FAILURE. 

As outlined in Tables 2.1 and 2.2, 91% of messages contained in the log are 

generated by the KERNEL facility, and 79% of messages are of the INFO severity level. 

Also, 2% of all messages were generated by the DISCOVERY, MONITOR, and 

HARDWARE facilities - all indicating hardware abnormality - and 4% of all log data 

was generated by APP. 

Table 2.1 Number of Messages per Facility, BG/L 

Facility 

MMCS 

APP 

KERNEL 

CMCS 

BGLMASTER 

Number of Messages 

88,930 

228,536 

4,324,967 

211 

145 

Facility 

LINKCARD 

DISCOVERY 

MONITOR 

HARDWARE 

SERVNET 

Number of Messages 

1,170 

97,172 

1,681 

5,148 

3 
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Table 2.2 Number of Messages per Severity Level, BG/L 

.Severity 
Level 

INFO 

WARNING 

Number of 
Messages 

3,735,823 

23,357 

Severity 
Level 

SEVERE 

ERROR 

Number of 
Messages 

19,213 

112,355 

Severity 
Level 

FATAL 

FAILURE 

Number of 
Messages 

855,501 

1,714 

The FAILURE severity level contained messages produced exclusively by failing 

system components. It was also observed that many event descriptions in the FATAL 

level represented failure activity, such as "panic: -stopping execution". It was 

consequently assumed that all failure events were located in the FATAL or FAILURE 

severity levels and, given that the objective of this initial study was the isolation and 

analysis of failure information from a given BG/L log file, messages other than those of 

FATAL and FAILURE severity were discarded. This resulted in a collection of 855,501 

FATAL and 1,714 FAILURE messages, which are further detailed in Tables 2.3 and 2.4 

respectively. 

Table 2.3 Time between FATAL Messages, BG/L 

Time Between FATAL Messages 

Number of Messages 

Minimum 

Maximum 

Mean 

Median 

855,501 

0 seconds 

303533 seconds 

21.683 seconds 

0 seconds 
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Table 2.4 Time between FAILURE Messages, BG/L 

Time Between FAILURE Messages 

Number of Messages 

Minimum 

Maximum 

Mean 

Median 

1,714 

0 seconds 

3382246 seconds 

8,193 seconds 

0 seconds 

The mean values found in these results suggest that FATAL and FAILURE 

messages are generated at an incredibly high frequency. Further, a median value of 

nearly 0 seconds for both the time between FATAL messages and the time between 

FAILURE messages confirms that more than half of all failure-related messages are 

generated almost simultaneously. After further analysis, it was found that there existed a 

number of FATAL-tagged messages that did not, in fact, suggest legitimate system 

failures. For example, "guaranteed data cache block touch", "store 

operation 7", or "instruction address space 0" are all tagged as FATAL, 

but do not result in the system entering a compromised state. However, many of them -

such as "Power deactivated", "kernel terminated" and "Lustre mount FAILED" -

strongly suggested traceable system failures. 

It was discovered that in many cases a single FATAL or FAILURE message may 

be repeatedly and massively reported. For example, 346 FAILURE messages, containing 

the message "Temperature over Limit on link card' were repeatedly reported from 2005-

11-07-12.28.58 to 2005-11-07-12.37.20. Put into perspective, that single message was 
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generated almost every second for close to ten minutes. Because of this phenomenon, 

two datasets, U and L, were constructed. 

The first dataset U contains all FATAL and FAILURE messages, less those that 

do not infer actual, legitimate system failures. U, then, represents an upper bound for all 

system failure behavior that has been reported in the log, as it contains all reported 

system failures. Certain message patterns, such as those containing only numeric codes, 

were filtered from the data as non-failure messages, and are not included in U. The 

second dataset L contains only those FATAL and FAILURE messages inferring system 

failures. Similarly, L represents a lower bound for reported system failure behavior, as it 

is a subset of the actual failures. Like in U, particular message patterns were used to form 

L via the extraction of messages that suggested system- or application-affecting failures. 

Repeated messages stemming from a single failure were removed from both 

datasets, as the target of this study is less the messages in the log file and more the actual 

failure behavior of the system. This process is conducted inductively with a time interval 

of 60 seconds. As an illustration, suppose that there are three identical messages from the 

same source appearing at times 1, 30, and 100 seconds after log initialization. Because 

the time between messages one and two is 29 seconds, message two is removed from 

both datasets. However, because the time between messages two and three is 70 seconds, 

message three is not removed. The time between the individual messages contained in 

both datasets is summarized in Table 2.5. 
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Table 2.5 Time between Messages, Datasets U and L 

Time Between Messages, L 

Count 

Minimum 

Maximum 

Mean 

Median 

72208 

0 

460,510 seconds 

254,101 seconds 

0 

Time Between Messages, U 

Count 

Minimum 

Maximum 

Mean 

Median 

185102 

0 

330,072 seconds 

100.0569 seconds 

0 

Although the mean time between the messages contained in both datasets appears 

longer than the mean found in the original data, the value remains extremely low. In 

researching the genesis for this abnormality, it was discovered that many of the logged 

messages stemming from a single incident and occurring during similar time windows 

were reported by a large group of nodes. For example, 2,048 compute nodes reported an 

"rts internal error" within a very small timeframe - from 2005-06-14-11.15.09 to 2005-

06-14-11.16.15 (a window of only one minute and six seconds). 

However, because this dissertation is most concerned with failure information 

suggesting application interruption (recall from the previous chapter our working 

definitions for both failure and resilience), the time between messages data was further 

processed by making an assumption that the system has a certain amount of time to 

repair and that a given application uses all nodes in the system. If the time between two 

failures is less than time to repair, the latter failure can no longer affect the application 

because the system is being repaired and is no longer in production mode. Thus, any time 

between failures less than or equal to the time to repair those failures could be removed 

from the datasets. For the purposes of this section, the results of this removal are 
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examined using four different time to repair values—1, 5, 10, and 20 minutes. The 

results are summarized in Table 2.6 and Table 2.7. 

Table 2.6 Time between Messages, L, After Repeated Message Removal 

Time to Repair (L) 

Count 

Minimum 

Maximum 

Mean 

Median 

1 min 

476 

10.08 min 

5.3 day 

10.69 hrs 

3.96 hrs 

5 min 

453 

10.52 min 

5.3 day 

11.24 hrs 

4.94 hrs 

10 min 

436 

10.6 min 

5.3 day 

11.67 hrs 

5.6 hrs 

20 min 

375 

20.25 min 

5.3 day 

13.53 hrs 

8.26 hrs 

Table 2.7 Time between Messages, U, After Repeated Message Removal 

Time to Repair (U) 

Count 

Minimum 

Maximum 

Mean 

Median 

1 min 

1023 

1 min 

3.8 day 

5.02 hrs 

1.81 hrs 

5 min 

912 

5.23 min 

3.8 day 

5.63 hrs 

2.41 hrs 

10 min 

872 

10.05 min 

3.8 day 

5.89 hrs 

2.57 hrs 

20 min 

741 

20.1 min 

3.8 day 

6.97 hrs 

3.56 hrs 

By using the datasets L and U, which represent the best and worst case system 

failure behavior respectively, the results form Table 2.6 and Table 2.7 suggest that the 

mean time to interrupt for a BG/L application plausibly falls between 5 and 14 hours, 

depending on the utilized time to repair. 
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In addition, when a single failure generates multiple messages, the first messages 

generated will typically have a larger amount of time between them while their 

duplicates will have a much smaller time between messages. This suggests that for 

duplicate messages a large time between messages should change very little after the 

TTR becomes larger than time between messages. Time between message measures for 

both U and L of more than 100 minutes are very stable for all TTR of one minute or 

more, indicating that one minute is sufficient to remove the vast majority of duplicate 

messages for a single root cause. 

In conclusion, results suggested that the BG/L system has a mean time to failure 

(MTTF) of 5.89 hours - or roughly 4 times a day - for an application with a time to 

repair often minutes. This is also assuming a full, evenly distributed system load, which 

is of course not always the case. Failures may occur as often as 10.6 minutes apart, or, 

likewise, one could go days (in the case of the 10 minute MTTR assumption - 3.8 days) 

without observing a system breakdown. 

This initial study proved that BG/L's log files provide a wealth of information, 

but much of it is of no use to those interested in provisioning resilient applications for it 

and similar technologies without first filtering the data and performing appropriate 

statistical analysis to arrive at correct and logical values. Similarly, the results gathered 

from observing BG/L are not comparable to those of other systems without first 

developing a way to normalize the data. 

The remainder of this dissertation and, in fact, the novel contribution of this 

work, will be devoted to developing such a measure. By first conceptually introducing 

inequality indices and then demonstrating their effectiveness in describing the failure 
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behavior on an HPC system reliability dataset, the following chapter demonstrates the 

utility of such a measure. 



CHAPTER 3 

INEQUALITY MEASURES FOR HPC RELIABILITY 

DATA 

3.1 Introduction and Justification 

A needed element in the study of resilient High Performance Computing (HPC) 

applications is the creation and widespread adoption of a normalized metric representing 

an application's failure behavior [81, 82]. Such a metric opens the door for enhanced 

quality of service provision and a set of standard operating expectations for large-scale 

HPC application development and execution. 

The contemporary expansion in HPC system size and complexity has generated a 

lack of quantitative expectations in application performance due to the volatile failure 

activity encountered when computing at such a high scale [83]. A standardized and 

widely adopted failure metric expedites the process of informing research, development 

and administration personnel of unexpected application behavior and acts as notification 

that application processes are failing to maintain an adequate level of performability 

[84]. 

In this chapter, inequality indices are introduced from a statistical point of view 

and applied to an existing HPC dataset. These metrics serve as the initial step in the long-

term research and development of new resilience-related values, as their scale- and 

location-invariant nature and normalized representation allow HPC researchers to 

41 
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adequately compare inequality in failure behavior across various systems and 

applications. Specifically, the Gini, Atkinson and Theil indices are introduced in this 

chapter, with the final sections detailing the application of the Gini and Atkinson indices 

to an HPC system reliability dataset. 

3.2 The Lorenz Curve 

Inequality indices are based on the Lorenz curve, introduced in 1905 by Max 

Otto Lorenz as a graphical representation of a distribution's level of equality, wherein 

observed events are compared to distributions with perfect equality [85]. The Lorenz 

curve is based on a convex function, and has been widely adopted by economists for use 

in comparing income distributions [86]. 

Figure 3.1 shows an example Lorenz curve. The plot is a 45 degree line with the 

y-axis representing the percent of event occurrence and the x-axis representing, as a 

percentage, an increase in population. Logically, then, the upper limit for both scales is 

100 - one hundred percent of a population earns, for example, one hundred percent of all 

income and, analogously, zero percent of the population earns zero percent of all income. 

When income is distributed evenly - that is, 10% of the population earns 10 

percent of the income, 50% of the population earns 50 percent of the income, and so on -

the Lorenz curve represents what is called the egalitarian line, or the line of absolute 

equality. The egalitarian line is represented by the 45-degree line in Figure 3.1. 
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Figure 3.1 Lorenz Curve Given Total Equality 

The representation of unequal distributions results in an empirical Lorenz curve 

(L) which is well defined on the interval [0,1]. Note that 1,(0) = 0, L(l) = 1. If all 

event values followed a uniform distribution, then, the empirical Lorentz curve would 

equal the egalitarian Lorenz curve as shown in Figure 3.1. However this is typically not 

the case and the empirical Lorenz curve L rests below the diagonal, as shown in (3.1). 

The Lorenz curve is defined as 

L ( » = WVT f F-\v)du, 

F _ 1(s) = inf{u: F(u) > s); 0 < s < 1 . (3.1) 
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Here, F is the distribution's cumulative distribution function. One can compare 

the difference in inequality between two distributions by comparing their Lorenz curves, 

with the curve that most deviates from the line of absolute equality representing the 

distribution containing the higher amount of inequality. This situation is represented in 

Figure 3.2, with the Lorenz curve closer to the right and bottom of the graph representing 

a distribution containing more inequality than the distribution represented by the Lorenz 

curve closest to the line of absolute equality. 

1 0 -

08 -

06 -

04 -

02 -

00 -

00 02 04 06 0.8 10 

P 

Figure 3.2 Lorenz Curves for Two Distributions with Varying Levels of Inequality 

The following three sections introduce various types of inequality indices -

means of representing the inequality in a distribution via the creation of location- and 

scale-invariant coefficients. All three are based on the Lorenz curve. 
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3.3 The Gini Index 

The Gini index is a normalized measure of the statistical inequality of a given 

dataset which generates a coefficient based on a 0-to-l system, with a value of 0 

measuring total equality and a value of 1 measuring total inequality. Using an example 

illustrating this metric's use in economics, the Gini index is often used to express the 

level of inequality in national income distributions, with as of 2009 Sweden having the 

world's lowest Gini coefficient (0.23) and South Africa having one of the highest (0.67) 

[100]. This implies that Sweden has the most equal distribution of wealth amongst the 

world's nations, and South Africa has one of the most unequal. Taking this to an 

extreme, a nation reporting a Gini coefficient of 1 in such a study would indicate that one 

individual controls all of that nation's wealth, with the remaining members of the 

population each having no income. Likewise, a Gini coefficient of 0 would indicate that 

all individuals in a given country earn the exact same income. 

Statistically, the Gini Index measures the ratio of the area between the Lorenz 

curve (L(p)) and the line of absolute equality ( / ), to the area under that line, which is 

1/2. More easily stated, the Gini Index (3.2) represents twice the area between / and 

L(p), which can be mathematically expressed as 

GF:=2 \ \I-L(p)\dt. (3.2) 

When one uses the Gini index, a Gini coefficient is generated which represents 

the level of inequality measured. As mentioned, a perfectly uniform distribution would 

generate a Gini coefficient of zero, as mathematically there would be no area between 

the line of absolute equality and the Lorenz curve. Likewise, in the event of complete 

inequality, the Gini coefficient would be 1, coinciding with straight lines at the lower and 
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right boundaries of the curve. The general definition for the Gini index (3.3) , where X1 

and X2 are independent random variables with mean jU, is 

GF = — £ ( | * ! - X2\) = — [ [ \Xl-x2\ dF{x1)dF{x2) . (3.3) 
L\i C.[i JR JR 

In addition to economics, the Gini Index has applications in biodiversity [87], 

chemistry [88], agriculture [89], and engineering [90]. In general, it can be used to 

measure any subject involving a distribution. 

3.4 The Atkinson Index 

The Atkinson index is similar to the Gini index, with the notable inclusion of a 

coefficient that allows it to examine movement within different sections of a distribution 

[91]. The Atkinson index becomes more sensitive to changes at the lower end of the 

distribution as this coefficient approaches 0. Conversely, as this coefficient approaches 1, 

the Atkinson index becomes more sensitive to changes at the upper end of the 

distribution. Like the Gini index, the Atkinson index generates a coefficient which 

measures a distribution's departure from uniformity using a 0-to-l system, again with 0 

representing total equality and 1 representing total inequality. The Atkinson index given 

multiple events yx,..., yn with mean \i (3.4) is properly defined as 

A£(y1,...,yn) = 

I 

1 / 1 
1 

1=1
 1 . (3.4) 

N 

-l\Jily>") • ° < £ < 1 

l -KD- • £ = 1 

The distinguishing feature of the Atkinson Index is its ability to measure 

movements in different segments of a given distribution. Like the Gini index, the 
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Atkinson index has seen uses largely in economics, but also in biodiversity and 

chemistry, amongst other fields. The inclusion of the parameter makes it particularly 

useful when applied to large data sets. 

3.5 The Theil Index 

The Theil index is a measure of inequality closely related to the Atkinson index -

in fact, a Theil coefficient can be transformed into an Atkinson coefficient and vice-

versa. Specifically, the Theil index is a measure of entropy, where maximum entropy 

occurs when there is perfect equality [92]. 

Like the Gini and Atkinson indices, the Theil index generates a coefficient based 

on a 0-to-l scheme. Here, however, the coefficient measures the level of entropy in the 

distribution, rather than the level of inequality. It is important to note than an increasing 

Theil index does not indicate increasing entropy. It instead indicates an increasing level 

of redundancy - the gap between maximum and actual entropy. Thus, it actually 

indicates decreasing entropy. The general Theil index given multiple events xt, ...,xn, 

where xt is the value of the ith event in the distribution, X is the mean value of all events 

in the distribution and N is the population (3.5) is defined as 

The following section introduces the HPC dataset to which the Gini and Atkinson 

indices will be applied. Following that, the resulting coefficients and Lorenz curves 

generated by that dataset will be reported. Finally, various conclusions will be drawn 

relative to these results. 
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3.6 Application to HPC Data and Results 

3.6.1 Introduction to the Dataset 

This section demonstrates the utility of inequality indexing by generating Gini 

and Atkinson coefficients for each of the 23 HPC machines housed at Los Alamos 

National Laboratory from 1996 to 2005. The dataset containing this information was 

released in 2005 as a collection of CSV files and was initially analyzed by Schroeder et 

al from Carnegie Mellon University's Parallel Data Laboratory [99]. In that initial study, 

a number of statistical conclusions are drawn in a similar fashion to our team's later 

work on the BlueGene/L machine at Lawrence Livermore National Laboratory, which 

was discussed in Chapter 2. 

Gini, Atkinson (with parameter 0.99) and Atkinson (with parameter 0.20) 

coefficients will now be generated for each system contained in the log file. Doing so 

will both demonstrate the viability of inequality index coefficients as a metric for 

comparing HPC system failure inequality as well as provide finer-grain information 

regarding the inequality stemming from each machine's failure behavior during the time 

frame covered in the log file. 

The nearly 3 MB file contains 23,739 failure events from 23 of LANL's systems, 

accrued over a nine-year period. To maintain confidentiality, each system is labeled 

using a number system from 2 to 24 (systems "2", "3", etc), with System 2 being the 

oldest system recorded in the log and System 24 being the youngest. Each failure record 

contains the time when a failure was first reported (labeled 'prob started'), the time when 

the issue causing the failure was resolved ('prob fixed'), the total system downtime (in 

minutes) resulting from the failure, the system and node affected by the failure, the type 
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of workload running on the node at the time of the failure and the root cause of the 

failure. Screenshots representing the left and right halves of the original CSV file (taken 

from the same sample) are shown in Figures 3.3 and 3.4, respectively. 
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Figure 3.3 Leftmost Columns Sample, LANL Failure Dataset 

Prob started {-nm/dd/yy hh:mmf Prob Fixed (rnm/dd/yy hh:mm) Down 

6/21/200510:54 

9/6/2005 9:13 
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Figure 3.4 Rightmost Columns Sample, LANL Failure Dataset 

Failures are detected by an automated monitoring system that pages operations 

staff whenever a node is down. The operations staff then creates a failure record in the 

database specifying the start time of the failure and the system and node affected. They 

then turn the node over to a system administrator for repair. Upon repair, the system 

administrator notifies the operations staff, who then put the node back into the job mix 

and fill in the end time of the failure record. If the system administrator was able to 

identify the root cause of the problem, he provides operations staff with the appropriate 
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information for the 'root cause' field of the failure record. Otherwise the root cause is 

specified as 'undetermined'. Note that the dataset covers each of the 23 systems only 

during their time in a production environment, and testing/debugging as well as 

maintenance time periods are not covered. 

Though it covers multiple systems, the LANL dataset is similar to the BG/L 

dataset in that various sources of failure are broken up into facilities. As in Chapter 2, 

'facilities' here refers to the various components of the system acting as possible origins 

for the failures that occur on that system. The facilities themselves are however not 

identical to those found in the BG/L dataset. Instead of the ten facilities represented 

there, in the LANL data there are only five: HARDWARE, SOFTWARE, NETWORK, 

HUMAN ERROR, and UNDETERMINED. 

Further, instead of the machine or operating system autonomously generating the 

facility of origin in the log file, here an actual human being records the suspected facility 

in the log, which is later investigated and confirmed or changed at subsequent operations 

staff meetings. The log also contains a column for noting whether the current failure 

event is due to the previously listed event, again decided by a human operator, not the 

system itself. Again, it is important to note that the dataset contains information from 

multiple machines, which is unlike the previously-used BG/L data (which contained 

information from only one system). 

Each entry in the log file contains numerous columns. Specifically, those 

columns are the name ("2", "3", etc.) and type (cluster, graphics card, etc.) of each 

system containing a logged event, the number of nodes housed in that system, the total 

number of processes running on the machine as well as the number of processes running 
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on each node in the machine at the time of the failure, the machine node reporting the 

failure, the installation date and production commission and decommission dates of that 

node, the purpose of that node, the start and end dates of the failure in question, the total 

downtime in minutes caused by the failure in question, and finally the facility of origin 

for that failure. This analysis pays specific attention to the 'system' and 'down time' 

columns of each entry -inequality coefficients are generated for system down time for 

each of the 23 machines found in the file. All of these failures are caused by one of the 

five facilities reported in the log. Recall that the scale- and location-invariant nature of 

inequality indexing allows us to compare entries reported by multiple machines with one 

another, regardless of node count or system type. This is why the LANL dataset and its 

23 machines were chosen for this case study. 

The following section reports the resulting inequality coefficients for each of the 

23 systems found in the log file. Coefficients were generated via the Gini and Atkinson 

indices, with two parameter variations utilized for the Atkinson index: e = 0.99, which 

generates an Atkinson index coefficient utilizing all events found in the file, and 8 = 

0.20, which was chosen in accordance with the findings from [103], which found that 

"redistributions at the lower end of the distribution also have a greater impact on 

mortality." 

Recall the formulation of the Gini index from (3.3). For this dataset, then, the 

Gini index coefficient is computed with respect to Z)(XJ), the amount of system 

downtime (in minutes) caused by an individual failure xt, i = 1, ...,n . Here, x1 

represents the earliest failure record located in the dataset and xn represents the latest, 

with (j. representing the average downtime caused by each failure event located in the 
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file. The cumulative distribution function F(i), representing the amount of downtime 

caused by all failures up to i (3.6), is then: 

i 

F(i)= JVxi ) . (3.6) 

The Atkinson index coefficient is also calculated with respect to the downtime 

caused by each failure record located in the log file. Using the conventions from (3.4), 

the Atkinson index coefficient is calculated with respect to yt = D(x{), with yx 

representing the down time caused by the earliest failure recorded to the log file and yn 

representing the downtime caused by the latest. N represents the total number of failures 

recorded to the dataset and p, represents the average amount of system downtime caused 

by each failure. 

Results were generated for the 20th, 40th, 60th, 80th, and 100th percentile of events 

found in the LANL data relative to each of the 23 systems. Each system's failures were 

grouped according to their time of occurrence, with the first event in each group being 

the one generated by the earliest failure, and the last event being the one generated by the 

latest. These percentiles then represent the lifetime of each system as represented in the 

dataset. The resulting coefficients will illustrate the level of inequality in the downtime 

caused by each system failure as each of these systems age. Further, Lorenz curves were 

created for each of the 23 systems. Lastly, the 23 resulting Gini coefficients were 

averaged in relation to each percentile. All of these results are reported in section 3.6.2. 

Section 3.6.3 will draw conclusions from these results. 
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3.6.2 Results 

Tables 3.1 through 3.23 display the per-percentile inequality coefficients 

generated for each of the 23 systems found in the LANL failure dataset. Figures 3.5 

through 3.73 show bar graphs showing the resulting impact D(xt) of each failure xt 

exhibited by the system, histograms showing the frequency of system failures at various 

levels of impact are also given (note that the log of these values has been taken to better 

illustrate differences in failure activity between each system) and a Lorenz curve for each 

system, representing the overall level of inequality in the downtime resulting from each 

failure incurred by that system. 

Following the generation of inequality coefficients, bar graphs, histograms and 

Lorenz curves for all 23 systems, the resulting Gini, Atkinson (s =0.20), and Atkinson 

(8=0.99) coefficients were grouped according to percentile and subsequently averaged. 

The resulting values located in Table 3.24 represent the average fluctuation in inequality 

for the down time caused by all failures across all systems as these systems age. 

Conclusions based on these results will be drawn in the following section. 
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Table 3.1 Inequality Coefficients, System 2, LANL Data 

System 

2 

2 

2 

2 

2 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

1421 

2842 

4263 

5684 

7105 

Downtime (min.) 

211,800 

518,491 

687,349 

794,993 

1,008,366 

Gini 

0.6010276 

0.6731329 

0.6908012 

0.6732575 

0.6827248 

Atk (.99) 

0.534944 

0.6346716 

0.6356018 

0.5996397 

0.6047009 

Atk (.20) 

0.1286560 

0.2116812 

0.2292204 

0.2147699 

0.2245452 
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Figure 3.5 Impact of Each Failure, System 2, LANL Data 
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Figure 3.6 Lorenz Curve, System 2, LANL Data 
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Figure 3.7 Failure Impact Histogram, System 2, LANL Data 
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Table 3.2 Inequality Coefficients, System 3, LANL Data 

System 

3 

3 

3 

3 

3 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

58 

122 

184 

236 

299 

Downtime (min.) 

5,736 

13,383 

19,382 

33,489 

40,386 

Gini 

0.6523049 

0.6474038 

0.6375234 

0.7124483 

0.6840931 

Atk (.99) 

0.5747176 

0.5700684 

0.5412378 

0.6315552 

0.5940145 

Atk (.20) 

0.1595362 

0.1510210 

0.1517705 

0.2135558 

0.1941182 
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Figure 3.8 Impact of Each Failure, System 3, LANL Data 
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Figure 3.9 Lorenz Curve, System 3, LANL Data 
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Figure 3.10 Failure Impact Histogram, System 3, LANL Data 
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Table 3.3 Inequality Coefficients, System 4, LANL Data 

System 

4 

4 

4 

4 

4 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

63 

118 

190 

230 

299 

Downtime (min.) 

5,759 

11,171 

18,896 

27,713 

40,101 

Gini 

0.5286301 

0.5802441 

0.5478803 

0.605446 

0.6151453 

Atk (.99) 

0.4269491 

0.4862753 

0.4409907 

0.5069202 

0.5224879 

Atk (.20) 

0.09448456 

0.1187666 

0.1046655 

0.1428101 

0.1475057 
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Figure 3.11 Impact of Each Failure, System 4, LANL Data 
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Figure 3.12 Lorenz Curve, System 4, LANL Data 
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Figure 3.13 Failure Impact Histogram, System 4, LANL Data 
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Table 3.4 Inequality Coefficients, System 5, LANL Data 

System 

5 

5 

5 

5 

5 

Percentile 

20m 

40th 

60th 

80m 

100th 

Failures 

59 

124 

181 

246 

305 

Downtime (min.) 

10,683 

20,104 

26,212 

36,974 

44,641 

Gini 

0.6821483 

0.6740514 

0.6593811 

0.6702198 

0.6501178 

Atk (.99) 

0.5886865 

0.5828212 

0.5582976 

0.5747256 

0.550562 

Atk (.20) 

0.2028295 

0.1817055 

0.1723399 

0.1787636 

0.1651481 
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Figure 3.14 Impact of Each Failure, System 5, LANL Data 
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Figure 3.15 Lorenz Curve, System 5, LANL Data 
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Figure 3.16 Failure Impact Histogram, System 5, LANL Data 
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Table 3.5 Inequality Coefficients, System 6, LANL Data 

System 

6 

6 

6 

6 

6 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

17 

27 

35 

45 

64 

Downtime (min.) 

2,607 

3,806 

4,302 

4,633 

7,178 

Gini 

0.6746124 

0.676484 

0.6902305 

0.676087 

0.6535421 

Atk (.99) 

0.6037954 

0.5857101 

0.6058226 

0.5748184 

0.5566991 

Atk (.20) 

0.1850318 

0.1882174 

0.1843178 

0.1837073 

0.1592298 
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Figure 3.17 Impact of Each Failure, System 6, LANL Data 
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Figure 3.18 Lorenz Curve, System 6, LANL Data 

o 

>, o 
a (D 
3 
cr i D 
U 

MH o 1 1 

I I I I I I I 

0.5 1.0 1.5 2.0 2.5 3 0 3.5 

log(D(a)) 

Figure 3.19 Failure Impact Histogram, System 6, LANL Data 
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Table 3.6 Inequality Coefficients, System 7, LANL Data 

System 

7 

7 

7 

7 

7 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

25 

54 

77 

104 

129 

Downtime (min.) 

2,902 

7,430 

12,075 

18,002 

34,323 

Gini 

0.2843005 

0.4077613 

0.4426404 

0.4624144 

0.6428636 

Atk (.99) 

0.1302336 

0.2752189 

0.3044237 

0.3183379 

0.5383517 

Atk (.20) 

0.03110032 

0.05774089 

0.0680330 

0.0761484 

0.1940597 
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Figure 3.20 Impact of Each Failure, System 7, LANL Data 
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Figure 3.21 Lorenz Curve, System 7, LANL Data 
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Figure 3.22 Failure Impact Histogram, System 7, LANL Data 
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Table 3.7 Inequality Coefficients, System 8, LANL Data 

System 

8 

8 

8 

8 

8 

Percentile 

20th 

40th 

60m 

80th 

100th 

Failures 

89 

190 

285 

386 

475 

Downtime (min.) 

208,409 

328,866 

499,239 

836,041 

977,672 

Gini 

0.8794655 

0.8680784 

0.8493329 

0.8240501 

0.8083147 

Atk (.99) 

0.9185997 

0.9003143 

0.8862067 

0.8720414 

0.8593525 

Atk (.20) 

0.3480385 

0.3357564 

0.3141345 

0.2832965 

0.2694886 
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Figure 3.23 Impact of Each Failure, System 8, LANL Data 
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Figure 3.24 Lorenz Curve, System 8, LANL Data 
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Figure 3.25 Failure Impact Histogram, System 8, LANL Data 
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Table 3.8 Inequality Coefficients, System 9, LANL Data 

System 

9 

9 

9 

9 

9 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

56 

112 

168 

224 

280 

Downtime (min.) 

249,154 

266,823 

274,393 

281,007 

290,964 

Gini 

0.9172414 

0.9346124 

0.9462083 

0.9510054 

0.9506572 

Atk (.99) 

0.9878632 

0.9999993 

1 

1 

1 

Atk (.20) 

0.4167057 

0.4590362 

0.490213 

0.5069014 

0.5108189 
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Figure 3.26 Impact of Each Failure, System 9, LANL Data 
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Figure 3.27 Lorenz Curve, System 9, LANL Data 
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Figure 3.28 Failure Impact Histogram, System 9, LANL Data 



70 

Table 3.9 Inequality Coefficients, System 10, LANL Data 

System 

10 

10 

10 

10 

10 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

47 

94 

141 

190 

237 

Downtime (min.) 

269,867 

285,196 

300,167 

389,218 

392,114 

Gini 

0.868898 

0.9093874 

0.9231305 

0.9141034 

0.926879 

Atk (.99) 

0.9822825 

0.999917 

0.9999997 

0.9999993 

0.9999999 

Atk (.20) 

0.3491037 

0.4094456 

0.4360462 

0.4118522 

0.4352492 
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Figure 3.29 Impact of Each Failure, System 10, LANL Data 
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Figure 3.30 Lorenz Curve, System 10, LANL Data 
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Figure 3.31 Failure Impact Histogram, System 10, LANL Data 
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Table 3.10 Inequality Coefficients, System 11, LANL Data 

System Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

53 

109 

159 

218 

268 

Downtime (min.) 

356,159 

374,986 

406,813 

412998 

418,993 

Gini 

0.901521 

0.9318934 

0.9343652 

0.9450112 

0.9494329 

Atk (.99) 

0.9824175 

0.999996 

1 

1 

1 

Atk (.20) 

0.3898342 

0.4497052 

0.459456 

0.4855938 

0.4992231 
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Figure 3.32 Impact of Each Failure, System 11, LANL Data 
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Figure 3.33 Lorenz Curve, System 11, LANL Data 

o 

o 

s ° 
8-

o 

O 

3 

I I 

~l 

5 

log(D(a)) 

Figure 3.34 Failure Impact Histogram, System 11, LANL Data 
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Table 3.11 Inequality Coefficients, System 12, LANL Data 

System 

12 

12 

12 

12 

12 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

51 

107 

153 

204 

259 

Downtime (min.) 

242,749 

254,317 

283,519 

292,791 

299,825 

Gini 

0.9010614 

0.9353616 

0.9339544 

0.938812 

0.9407131 

Atk (.99) 

0.9691547 
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1 

1 

Atk (.20) 

0.4003552 

0.4663913 

0.4650438 

0.4790362 

0.488347 
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Figure 3.35 Impact of Each Failure, System 12, LANL Data 
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Figure 3.36 Lorenz Curve, System 12, LANL Data 
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Figure 3.37 Failure Impact Histogram, System 12, LANL Data 
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Table 3.12 Inequality Coefficients, System 13, LANL Data 

System 

13 

13 

13 

13 

13 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

39 

81 

115 

159 

201 

Downtime (min.) 

359,810 

379,558 

394,761 

403,719 

441,075 

Gini 

0.8414183 

0.8931308 

0.9074928 

0.9239984 

0.9494189 

Atk (.99) 

0.9467759 

0.973137 

0.9999994 

1 

1 

Atk (.20) 

0.3249069 

0.3926667 

0.4176841 

0.4471762 

0.4596139 
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Figure 3.38 Impact of Each Failure, System 13, LANL Data 
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Figure 3.39 Lorenz Curve, System 13, LANL Data 
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Figure 3.40 Failure Impact Histogram, System 13, LANL Data 
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Table 3.13 Inequality Coefficients, System 14, LANL Data 

System 

14 

14 

14 

14 

14 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

24 

56 

80 

102 

125 

Downtime (min.) 

29,061 

697,322 

704,071 

728,867 

738,907 

Gini 

0.829304 

0.9253138 

0.942445 

0.9469915 

0.9514942 

Atk (.99) 

0.9784576 

0.9942794 

0.9948515 

0.997793 

0.9993597 

Atk (.20) 

0.3094202 

0.4290339 

0.4664413 

0.4771013 

0.4909886 
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Figure 3.41 Impact of Each Failure, System 14, LANL Data 
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Figure 3.42 Lorenz Curve, System 14, LANL Data 
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Figure 3.43 Failure Impact Histogram, System 14, LANL Data 



80 

Table 3.14 Inequality Coefficients, System 15, LANL Data 

System 

15 

15 

15 

15 

15 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

11 

28 

36 

44 

54 

Downtime (min.) 

391 

4,579 

5,118 

6,046 

7,470 

Gini 

0.5607998 

0.7633997 

0.7457014 

0.724897 

0.7406217 

Atk (.99) 

0.4344859 

0.7228064 

0.6893286 

0.6711294 

0.6840907 

Atk (.20) 

0.1257257 

0.2411162 

0.2306536 

0.2138146 

0.2201631 
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Figure 3.44 Impact of Each Failure, System 15, LANL Data 
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Figure 3.45 Lorenz Curve, System 15, LANL Data 
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Figure 3.46 Failure Impact Histogram, System 15, LANL Data 



82 

Table 3.15 Inequality Coefficients, System 16, LANL Data 

System 

16 

16 

16 

16 

16 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

540 

1,080 

1,614 

2,147 

2,680 

Downtime (min.) 

61,494 

149,227 

664,537 

1,219,242 

1,445,023 

Gini 

0.700608 

0.7370584 

0.9022084 

0.9317911 

0.9215625 

Atk (.99) 

0.6923546 

0.7315113 

0.8946175 

0.924417 

0.911852 

Atk (.20) 

0.2129928 

0.2465563 

0.5427902 

0.5807508 

0.5371212 
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Figure 3.47 Impact of Each Failure, System 16, LANL Data 
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Figure 3.48 Lorenz Curve, System 16, LANL Data 
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Figure 3.49 Failure Impact Histogram, System 16, LANL Data 
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Table 3.16 Inequality Coefficients, System 17, LANL Data 

System 

17 

17 

17 

17 

17 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

22 

49 

77 

104 

126 

Downtime (min.) 

3,260 

5,434 

10,232 

12,881 

15,651 

Gini 

0.6989682 

0.7013287 

0.7175553 

0.72673 

0.7847755 

Atk (.99) 

0.6530687 

0.6423195 

0.6857478 

0.68572 

0.7355964 

Atk (.20) 

0.1836791 

0.1851869 

0.1917146 

0.2003400 

0.2148792 
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Figure 3.50 Impact of Each Failure, System 17, LANL Data 
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Figure 3.51 Lorenz Curve, System 17, LANL Data 
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Figure 3.52 Failure Impact Histogram, System 17, LANL Data 
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Table 3.17 Inequality Coefficients, System 18, LANL Data 

System 

18 

18 

18 

18 

18 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

797 

1,614 

2,378 

3,224 

3,997 

Downtime (min.) 

196,049 

362,808 

466,939 

577,409 

716,641 

Gini 

0.7050154 

0.712082 

0.7095604 

0.709114 

0.7092562 

Atk (.99) 

0.6213237 

0.6282973 

0.6257881 

0.6251526 

0.6276465 

Atk (.20) 

0.2172665 

0.2339089 

0.2253477 

0.2219993 

0.2229577 
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Figure 3.53 Impact of Each Failure, System 18, LANL Data 
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Figure 3.54 Lorenz Curve, System 18, LANL Data 
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Figure 3.55 Failure Impact Histogram, System 18, LANL Data 
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Table 3.18 Inequality Coefficients, System 19, LANL Data 

System 

19 

19 

19 

19 

19 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

661 

1,298 

1,992 

2,656 

3,284 

Downtime (min.) 

179,209 

278,133 

377,358 

493,133 

681,077 

Gini 

0.7520437 

0.7269844 

0.7296928 

0.7152188 

0.7409367 

Atk (.99) 

0.6696452 

0.6355074 

0.640358 

0.6226461 

0.6561462 

Atk (.20) 

0.2678224 

0.2520972 

0.2476286 

0.2286325 

0.2670949 
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Figure 3.56 Impact of Each Failure, System 19, LANL Data 
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Figure 3.57 Lorenz Curve, System 19, LANL Data 
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Figure 3.58 Failure Impact Histogram, System 19, LANL Data 
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Table 3.19 Inequality Coefficients, System 20, LANL Data 

System 

20 

20 

20 

20 

20 

Percentile 

20tn 

40th 

60tn 

80th 

100th 

Failures 

494 

1,021 

1,478 

1,995 

2,478 

Downtime (min.) 

147,549 

249,951 

386,880 

464,709 

520,493 

Gini 

0.7598128 

0.730096 

0.7377354 

0.7131277 

0.7138073 

Atk (.99) 

0.6832824 

0.6446679 

0.6552135 

0.6286357 

0.6316302 

Atk (.20) 

0.2785598 

0.2780654 

0.2886511 

0.2632639 

0.2574603 
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Figure 3.59 Impact of Each Failure, System 20, LANL Data 
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Figure 3.60 Lorenz Curve, System 20, LANL Data 
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Figure 3.61 Failure Impact Histogram, System 20, LANL Data 
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Table 3.20 Inequality Coefficients, System 21, LANL Data 

System 

21 

21 

21 

21 

21 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

28 

44 

73 

96 

110 

Downtime (min.) 

4,122 

6,724 

9,985 

14,147 

15,807 

Gini 

0.5584494 

0.5513155 

0.526417 

0.5109527 

0.4956176 

Atk (.99) 

0.4520249 

0.4406514 

0.4201482 

0.3972765 

0.3767154 

Atk (.20) 

0.1100806 

0.1041251 

0.09500196 

0.0897491 

0.0845924 
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Figure 3.62 Impact of Each Failure, System 21, LANL Data 
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Figure 3.63 Lorenz Curve, System 21, LANL Data 
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Figure 3.64 Failure Impact Histogram, System 21, LANL Data 
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Table 3.21 Inequality Coefficients, System 22, LANL Data 

System 

22 

22 

22 

22 

22 

Percentile 

20th 

40th 

60m 

80th 

100th 

Failures 

52 

98 

162 

208 

246 

Downtime (min.) 

10,816 

17,558 

66,477 

78,659 

84,556 

Gini 

0.4742298 

0.413181 

0.7286914 

0.6937795 

0.6699327 

Atk (.99) 

0.3459984 

0.2724191 

0.6479295 

0.600729 

0.5698679 

Atk (.20) 

0.0911673 

0.06959792 

0.2960288 

0.2632218 

0.2503528 
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Figure 3.65 Impact of Each Failure, System 22, LANL Data 
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Figure 3.66 Lorenz Curve, System 22, LANL Data 
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Figure 3.67 Failure Impact Histogram, System 22, LANL Data 
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Table 3.22 Inequality Coefficients, System 23, LANL Data 

System 

23 

23 

23 

23 

23 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

114 

218 

343 

452 

564 

Downtime (min.) 

16,049 

32,484 

50,474 

70,531 

85,743 

Gini 

0.5291957 

0.589893 

0.5910107 

0.57899 

0.591682 

Atk (.99) 

0.4541011 

0.523773 

0.5233588 

0.5117965 

0.5148623 

Atk (.20) 

0.09828172 

0.1262523 

0.1288740 

0.1215052 

0.1284186 
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Figure 3.68 Impact of Each Failure, System 23, LANL Data 
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Figure 3.69 Lorenz Curve, System 23, LANL Data 
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Figure 3.70 Failure Impact Histogram, System 23, LANL Data 
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Table 3.23 Inequality Coefficients, System 24, LANL Data 

System 

24 

24 

24 

24 

24 

Percentile 

20th 

40th 

60th 

80th 

100th 

Failures 

32 

59 

93 

126 

155 

Downtime (min.) 

6,658 

10,882 

45,331 

52,208 

58,177 

Gini 

0.4370119 

0.484666 

0.8146349 

0.786939 

0.7704078 

Atk (.99) 

0.2876526 

0.3301613 

0.7538131 

0.714698 

0.6930412 

Atk (.20) 

0.06265949 

0.07753442 

0.3706069 

0.3425476 

0.3240548 
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Figure 3.71 Impact of Each Failure, System 24, LANL Data 
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Figure 3.72 Lorenz Curve, System 24, LANL Data 
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Figure 3.73 Failure Impact Histogram, System 24, LANL Data 
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Table 3.24 Average Gini and Atkinson Coefficient per Percentile, LANL Data 

Percentile 

20th 

40th 

60th 

80th 

100th 

Avg Gini Coefficient 

0.68426383 

0.715950435 

0.748810878 

0.753712383 

0.762782465 

Avg Atk. (e = 0.20) 

0.21688 

0.246331 

0.285942 

0.28811 

0.29328 

Avg Atk. (e = 0.99) 

0.648644 

0.677153 

0.717554 

0.715567 

0.722912 

The following section concludes this chapter by drawing conclusions from these 

results and subsequently suggesting the introduction of the time-dependent failure index 

for HPC system volatility. 

3.6.3 Conclusions 

The average inequality coefficient per percentile results found in Table 3.24 show 

that as these systems age, they exhibit an increase in the level of inequality in the 

downtime caused by each incurred failure. That is, as HPC systems age, their failure 

activity becomes more volatile. 

Significance testing verified the legitimacy of this result. When testing the null 

hypothesis HQ that the resulting Gini coefficient averages represented the same value 

versus the alternate hypothesis Ha that the values significantly differed, a resulting p-

value of 0.01455 confirmed the alternate hypothesis at the 95% confidence level. A 

multiple R-squared value of 0.8967 further proved that the resulting Gini coefficient 

averages successfully model the behavior of the systems in the given percentiles. 
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When testing the null hypothesis H0 that the resulting Atkinson coefficient 

averages at parameter 0.20 represented the same value versus the alternate hypothesis Ha 

that the values significantly differed, a resulting p-value of 0.02465 confirmed the 

alternate hypothesis at the 95% confidence level. A multiple R-squared value of 0.8546 

further proved that the resulting Atkinson coefficient averages at parameter 0.20 

successfully model the behavior of the systems in the given percentiles. 

When testing the null hypothesis H0 that the resulting Atkinson coefficient 

averages at parameter 0.99 represented the same value versus the alternate hypothesis Ha 

that the values significantly differed, a resulting p-value of 0.02904 confirmed the 

alternate hypothesis at the 95% confidence level. A multiple R-squared value of 0.8384 

further proved that the resulting Atkinson coefficient averages at parameter 0.99 

successfully model the behavior of the systems in the given percentiles. 

This result suggests that system age significantly affects the volatility of the 

failure behavior exhibited by a given HPC system with regards to failures with both large 

and small impacts on downtime. The Atkinson coefficients confirm this result. There is 

clearly more inequality reported by the Atkinson (s = 0.99) result than the Atkinson (s = 

0.20) result 

Clearly, larger failures have a more significant effect on the level of equality 

contained in the dataset than smaller failures. For example, System 13 exhibits a single 

failure with an impact of 195195 minutes, or 5.648 days. This dwarfs the impact of all 

other failures encountered by the system and results in a 100th percentile Gini coefficient 

of 0.8384 and a 99th percentile Atkinson (e = 0.99) coefficient that was rounded to 1 via 

the software. However, the Atkinson (e = 0.20) coefficient, which lowered this and all 
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other values, was only 0.4596139. The resulting inequality coefficients for all systems 

were most affected by the largest failures, such as this one. 

To better represent the behavior of these and other systems, we suggest the 

derivation of a time-dependent inequality measure. The resulting equation - the Failure 

index (FI) - will generate coefficients that can then be used as a measure of HPC system 

volatility in time. It may be used in conjunction with existing metrics such as Mean Time 

Between Failure (MTBF) and the 'nines' measure of system reliability to better illustrate 

the failure activity of a given HPC system. The FI has roots in the Atkinson index and 

via the time-dependent generation of a scale- and location-invariant inequality coefficient 

it allows for a normalized representation of HPC system failure volatility in time. 

Whereas the Gini and Atkinson index coefficients in this chapter were calculated 

with respect to the impact of each failure located in the record, an FI coefficient is 

generated with respect to the cumulative downtime caused by all failures in a given time 

interval. As explained in the next chapter's introduction, the Failure Index is less affected 

by single large failures such as the one encountered by System 13. 

The following chapter gives a mathematical introduction of the FI. Chapter 5 

contains a case study in which FI coefficients are generated for the same LANL dataset 

used to formulate the results in this chapter. Those coefficients are then analyzed and 

compared with the information in this chapter to yield conclusions relative to the failure 

volatility of aging HPC systems. Those conclusions along with suggested future work are 

given in Chapter 6. 



CHAPTER 4 

A FAILURE INDEX FOR HPC APPLICATIONS 

4.1 The Failure Index 

The provision of resilient exascale HPC applications is a complicated and 

multifaceted effort requiring input from and coordination between computer scientists, 

mathematicians, application developers and pure scientists from various government 

laboratories, corporations and academic institutions. Presently there exist calls for such 

collaboration [95] and further there exists the suggestion of increased cross-entity 

standardization in the vocabulary, algorithms, and log file formats utilized in the larger 

HPC research and development community. To facilitate such standardization, the 

community must both re-examine existing metrics and their meaning in tomorrow's 

failure-rich computing environments and also develop new statistics appropriate to the 

study of HPC application resilience [96, 97]. 

This chapter formally introduces such a value - the Failure Index (or FI) - for 

HPC system volatility. The FI is introduced here from a mathematical standpoint. 

Importantly, in this chapter the FI is introduced at a high level and in relation to a 

continuous function wherein time acts as the independent variable. Our real-world FI 

coefficient generation and analysis in Chapter 5 will take place on discrete, rather than 

continuous data, requiring numerical integration techniques. Specifically, FI coefficients 

will be generated for the LANL system reliability dataset previously visited in Chapter 3. 

103 
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A metric such as the FI was first suggested in our work detailing the generation 

of pertinent resilience-related application information found in Chapter 2. As shown in 

Chapter 3, the Gini and Atkinson inequality indices provide the suggested normalized 

view into an aspect of HPC application behavior. Specifically, such inequality indices 

generate coefficients relative to the level of inequality found in the individual failures 

incurred by an HPC system. Further, the scale- and location-invariant nature of these 

values allows for the comparison of multiple HPC systems regardless of size. 

Chapter 3 introduced those concepts and demonstrated their ability to capture this 

information. An analogous index is now present that, while similar in structure to the 

above, serves to capture the level of volatility in total system downtime relative to the 

age of a given HPC system. 

It is important to note the difference between the information captures by 

inequality metrics such as the Gini and Atkinson indices and the information captured by 

the Failure Index. Existing inequality indices are calculated with respect to discrete 

weighted events. The Failure Index is calculated with respect to cumulative time-

dependent data. That is, where the Gini or Atkinson indices capture the level of 

inequality in multiple individual failure events, the Failure Index captures the overall 

level of volatility exhibited by the system in time. 

The information captured by the FI was approximated in Chapter 3 via the 

calculation of Gini and Atkinson coefficients relative to various percentiles of a system's 

total lifespan. Using the FI, such percentiles are not needed, as its time-dependent nature 

allows the FI to examine the volatility in cumulative system downtime with respect to 

the age of the system. The Failure Index is mathematically defined as 
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I 

F/e( F(7)) = 1 - ^ 1 _ 11 J F(ty~edt J (4.1) 

Here, F(t) represents the cumulative distribution function of system downtime 

resulting from failure, and F(T) represents the cumulative system downtime at a given 

time T. As the Failure Index is constructed as a time-dependent implementation of the 

Atkinson index, it also contains the parameter s, 0 < a < 1, that allows the Failure 

Index to place emphasis on various segments of a distribution, with parameters closer to 

(but not equal to) 1 generating FI coefficients giving greater weight to the larger 

elements of the distribution than parameters closer to 0. An FI coefficient, then, captures 

the level of volatility in total system downtime at time T using the given parameter, with 

higher levels of volatility yielding FI coefficients closer to 1 and lower levels of 

volatility yielding FI coefficients closer to 0. Equation (4.1) presents the novel 

mathematical contribution of this dissertation, and all resulting analysis in Chapter 5 is 

performed using this model. 

Using the terminology from the LANL dataset used in Chapters 3 and 5, existing 

inequality indices such as the Gini or Atkinson index generate coefficients which 

measure the level of inequality contained in the "downtime " column. The Failure Index, 

however, generates coefficients which measure the level of volatility in the "total 

downtime" column with respect to the "time" column. Figure 4.1 shows these three 

columns from System 6's reliability dataset, here represented in minutes. 
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Figure 4.1 "Time", "Downtime" and "Total Downtime" Columns, LANL Data 

In Chapter 5, Failure Index coefficients will be generated for all 23 systems 

contained in the LANL dataset. Like existing inequality indices such as the Gini and 

Atkinson index, the Failure Index produces scale- and location-invariant coefficients, 

allowing for the comparison of various machines regardless of size. 

FI coefficients are less sensitive to the volatility caused by a single abnormally 

strong or weak failure and more sensitive to stretches of volatile or non-volatile failure 

behavior in time. To illustrate this, consider the datasets given in Figure 4.2 and 4.3. 
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Figure 4.2 Sample Data 1, FI Coefficients vs. Atkinson Coefficients 

The above dataset generates an Atkinson index coefficient (e = 0.99) of 

0.7030416 for "down time". Clearly, a high level of inequality in "down time" exists 

due to a single failure causing a down time of 400 minutes. Likewise, the Failure Index 

coefficient (e = 0.99) for the above dataset is 0.8281679, which represents a substantial 

amount of failure volatility in the given time frame. 

The system depicted in Figure 4.2 runs for a total of 12000 minutes, or 200 hours. 

But what if the system ran for another 300 hours before encountering another 10 minute 

failure? That situation is represented in Figure 4.3. 
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Figure 4.3 Sample Data 2, FI Coefficients vs. Atkinson Coefficients 
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The Atkinson index coefficient (s = 0.99) reduces slightly to a value of 

0.6905922, as more equality is introduced to the dataset when a tenth failure with an 

impact of 10 minutes is accounted for. However, the Failure Index coefficient (e = 0.99) 

substantially drops, to a value of 0.3925665. This is because the overall failure volatility 

of the system has substantially lowered due to the 300-hour non-failure period 

encountered by the system. Failure Index coefficients take such times into consideration. 

Standard inequality coefficients such as those generated by the Gini and Atkinson 

indices do not. 

The source code used to generate these coefficients via the R statistical software 

package is located in Appendix B. 

4.2 The GT Index 

In addition to FI coefficients, the analysis in Chapter 5 will also generate 

coefficients using the GT Index, first proposed by Kaminskiy et al in 2008 [98]. The GT 

is another modified version of the Atkinson index for use particularly in the evaluation of 

systems with repairable parts (for which an HPC application or system certainly qualifies 

- HPC system nodes can be replaced and HPC application processes can be rebooted). 

The GT index models the distribution in question as a Poisson process (PP) and 

measures that distribution's trend toward and away from a heterogeneous Poisson 

process (HPP) in time. 

In using the GT index the 0-to-l system utilized by the Failure Index is discarded 

in favor of a scheme containing values ranging from -1 to 1. An improving system, noted 

by values less than 0, denotes a system with a decreasing rate of occurrence of failure 

(ROCOF). Likewise, those values more than zero denote a. failing system (one with 
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increasing ROCOF). Values closer to 1 or -1 improve or fail more rapidly than values 

closer to 0. GT coefficients will allow us to examine changes in failure rate with respect 

to time, which when combined with FI coefficients will better describe the failure 

behavior of a given system. The GT index is defined as 

2 CN(t)dt 
GT(N(T)) = 1 - „ ° A r^N • (4.2) 

Here, N (T) represents the number of failure events occurring in the given time 

interval [0,7]. This is an important difference between the GT and Failure indices. The 

GT is constructed in accordance to the number of events in a given time interval, 

whereas the FI is constructed with respect to the cumulative impact of those failures. The 

GT is associated with failure rates, and the FI is associated with failure volatility. The 

GT says nothing about the impact of a given failure. 

Recall that the GT index models the underlying distribution as a Poisson process. 

Here, an improving Poisson process is defined as one with decreasing ROCOF, while a 

deteriorating process has increasing ROCOF. A heterogeneous Poisson process has a 

constant ROCOF. Improving Poisson processes yield GT coefficients closer to -1, while 

deteriorating Poisson processes yield GT coefficients closer to 1. 

In Chapter 5, GT coefficients will be calculated for all time intervals for which FI 

coefficients are generated. The source code for generating GT coefficients via the R 

statistical software package can be found in Appendix C. 



CHAPTER 5 

USING THE FAILURE INDEX: A CASE STUDY 

5.1 Introduction 

In this chapter we generate Failure Index coefficients for each of the 23 Los 

Alamos National Laboratory systems. A detailed description of this dataset can be found 

in the introduction to Chapter 3. 

In this analysis, FI coefficients are generated with parameters e = 0, e = 0.20 and 

e = 0.99. Further, a GT coefficient is generated for each system using Equation (4.2). The 

GT coefficient represents the system's rate of occurrence of failure (ROCOF) with 

respect to time. Increases in ROCOF generate positive GT coefficients. Likewise, 

decreases in ROCOF generate negative GT coefficients. Coefficients closer to 1 or -1 

contain higher increases or decreases in ROCOF than coefficients closer to 0. 

In addition, this analysis plots the total downtime exhibited by the system versus 

the age of the system. Much like a Lorenz curve, a perfectly non-volatile system would 

generate a 45-degree line on such a graph. Failure Index coefficients capture fluctuations 

toward and away from this line. 

Further, FI (e = 0) and GT coefficients are plotted in relation to the age of the 

system. This shows fluctuations in failure volatility and failure rate in time. 
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Long stretches of time without failure activity lower FI coefficients. Rapid and 

highly unequal failure activity increases FI coefficients. Section 4.1 reviews the 

information collected by the Failure Index relative to the information captured by 

inequality indices such as the Gini and Atkinson. 

The following section displays all results from this case study. Tables 5.1 through 

5.23 show the FI coefficients generated for each system using parameters 0, 0.20 and 

0.99, in addition to the GT coefficients generated by each system. Figures 5.1 through 

5.69 plot the total downtime exhibited by each system with respect to time, the FI 

coefficient efficient with respect to time and the GT coefficient with respect to time for 

each of the 23 systems. Tables 5.24 through 5.26 illustrate the number of LANL systems 

with increasing and decreasing ROCOF, the FI coefficient averages for those systems 

and the FI coefficient averages for all 23 systems. Section 5.3 will draw conclusions 

from these results. 



5.2 Results 

Table 5.1 FI Coefficients and ROCOF, System 2, LANL Data 

System 

2 

FI (s = 0) 

0.3488647 

FI (s = 0.20) 

0.3739617 

FI (e = 0.99) 

0.560606 

GT ( N(T) ) 

-0.2452266 

i 1 r 

500 1000 1500 2000 

System Age (days) 

2500 3000 

Figure 5.1 Total Downtime vs. System Age, System 2, LANL Data 
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Figure 5.2 FI Coefficient vs. System Age, System 2, LANL Data 
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Figure 5.3 ROCOF vs. System Age, System 2, LANL Data 



Table 5.2 FI Coefficients and ROCOF, System 3, LANL Data 

System 

3 

FI (s = 0) 

0.4762693 

FI (s = 0.20) 

0.4928603 

FI (e = 0.99) 

0.6238533 

GT(N(T)) 

-0.1400224 
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Figure 5.4 Total Downtime vs. System Age, System 3, LANL Data 
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Figure 5.5 FI Coefficient vs. System Age, System 3, LANL Data 
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Figure 5.6 ROCOF vs. System Age, System 3, LANL Data 



Table 5.3 FI Coefficients and ROCOF, System 4, LANL Data 

System 

4 

FI (s = 0) 

0.5312802 

FI (s = 0.20) 

0.5510522 

FI (s = 0.99) 

0.6861621 

GT(N(T)) 

-0.1069729 
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Figure 5.7 Total Downtime vs. System Age, System 4, LANL Data 
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Figure 5.8 FI Coefficient vs. System Age, System 4, LANL Data 
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Figure 5.9 ROCOF vs. System Age, System 4, LANL Data 



Table 5.4 FI Coefficients and ROCOF, System 5, LANL Data 

System 

5 

FI (s = 0) 

0.4517466 

FI (s = 0.20) 

0.4683794 

FI (s = 0.99) 

0.6250355 

GT(N(T)) 

-0.05701952 
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Figure 5.10 Total Downtime vs. System Age, System 5, LANL Data 
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Figure 5.11 FI Coefficient vs. System Age, System 5, LANL Data 
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Figure 5.12 ROCOF vs. System Age, System 5, LANL Data 



Table 5.5 FI Coefficients and ROCOF, System 6, LANL Data 

System 

6 

FI (s = 0) 

0.4661334 

FI (s = 0.20) 

0.4750499 

FI (e = 0.99) 

0.5761766 

GT(N(T)) 

-0.009286395 
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Figure 5.13 Total Downtime vs. System Age, System 6, LANL Data 
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Figure 5.14 FI Coefficient vs. System Age, System 6, LANL Data 
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Figure 5.15 ROCOF vs. System Age, System 6, LANL Data 



Table 5.6 FI Coefficients and ROCOF, System 7, LANL Data 

System 

7 

FI (s = 0) 

0.5590928 

FI (s = 0.20) 

0.5754688 

FI (s = 0.99) 

0.6686179 

GT(N(T)) 

-0.2554706 

System Age (days) 

Figure 5.16 Total Downtime vs. System Age, System 7, LANL Data 
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Figure 5.17 FI Coefficient vs. System Age, System 7, LANL Data 
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Figure 5.18 ROCOF vs. System Age, System 7, LANL Data 



Table 5.7 FI Coefficients and ROCOF, System 8, LANL Data 

System 

8 

FI (s = 0) 

0.5743319 

FI (e = 0.20) 

0.5965732 

FI (s = 0.99) 

0.7276079 

GT ( N(T) ) 

0.1277645 
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Figure 5.19 Total Downtime vs. System Age, System 8, LANL Data 
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Figure 5.20 FI Coefficient vs. System Age, System 8, LANL Data 
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Figure 5.21 ROCOF vs. System Age, System 8, LANL Data 



Table 5.8 FI Coefficients and ROCOF, System 9, LANL Data 

System 

9 

FI (8 = 0) 

0.3801783 

FI (8 = 0.20) 

0.4195316 

FI (s = 0.99) 

0.7901992 

GT ( N(T) ) 

0.4110598 
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Figure 5.22 Total Downtime vs. System Age, System 9, LANL Data 
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Figure 5.23 FI Coefficient vs. System Age, System 9, LANL Data 
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Figure 5.24 ROCOF vs. System Age, System 9, LANL Data 



Table 5.9 FI Coefficients and ROCOF, System 10, LANL Data 

System 

10 

FI (s = 0) 

0.4393362 

FI (s = 0.20) 

0.4668898 

FI (s = 0.99) 

0.6757968 

GT ( N(T)) 

0.3073982 
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Figure 5.25 Total Downtime vs. System Age, System 10, LANL Data 
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Figure 5.26 FI Coefficient vs. System Age, System 10, LANL Data 
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Figure 5.27 ROCOF vs. System Age, System 10, LANL Data 
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Table 5.10 FI Coefficients and ROCOF, System 11, LANL Data 

System 

11 

FI (s = 0) 

0.3228945 

FI (s = 0.20) 

0.3503598 

FI (s = 0.99) 

0.6125574 

GT(N(T)) 

0.3016312 
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System Age (days) 

Figure 5.28 Total Downtime vs. System Age, System 11, LANL Data 
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Figure 5.29 FI Coefficient vs. System Age, System 11, LANL Data 
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Figure 5.30 ROCOF vs. System Age, System 11, LANL Data 



Table 5.11 FI Coefficients and ROCOF, System 12, LANL Data 

System 

12 

FI (s = 0) 

0.3989725 

FI (8 = 0.20) 

0.4317884 

FI (8 = 0.99) 

0.666791 

GT (N(T)) 

0.3937295 
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Figure 5.31 Total Downtime vs. System Age, System 12, LANL Data 
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Figure 5.32 FI Coefficient vs. System Age, System 12, LANL Data 
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Figure 5.33 ROCOF vs. System Age, System 12, LANL Data 



Table 5.12 FI Coefficients and ROCOF, System 13, LANL Data 

System 

13 

FI (e = 0) 

0.3546629 

FI (e = 0.20) 

0.3805183 

FI (s = 0.99) 

0.6209388 

GT (N(T) ) 

0.298536 
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Figure 5.34 Total Downtime vs. System Age, System 13, LANL Data 
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Figure 5.35 FI Coefficient vs. System Age, System 13, LANL Data 
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Figure 5.36 ROCOF vs. System Age, System 13, LANL Data 



Table 5.13 FI Coefficients and ROCOF, System 14, LANL Data 

System 

14 

FI (8 = 0) 

0.3113004 

FI (s = 0.20) 

0.3501405 

FI (s = 0.99) 

0.7133446 

GT(N(T)) 

0.1522754 
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Figure 5.37 Total Downtime vs. System Age, System 14, LANL Data 
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Figure 5.38 FI Coefficient vs. System Age, System 14, LANL Data 
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Table 5.14 FI Coefficients and ROCOF, System 15, LANL Data 

System 

15 

FI (s = 0) 

0.3203539 

FI (s = 0.20) 

0.3445422 

FI (s = 0.99) 

0.6678887 

GT (N(T)) 

-0.3574969 
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Figure 5.40 Total Downtime vs. System Age, System 15, LANL Data 
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Figure 5.41 FI Coefficient vs. System Age, System 15, LANL Data 
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Figure 5.42 ROCOF vs. System Age, System 15, LANL Data 



Table 5.15 FI Coefficients and ROCOF, System 16, LANL Data 

System 

16 

FI (s = 0) 

0.506235 

FI (s = 0.20) 

0.5470675 

FI (e = 0.99) 

0.7952932 

GT(N(T)) 

-0.1423502 
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Figure 5.43 Total Downtime vs. System Age, System 16, LANL Data 
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Figure 5.44 FI Coefficient vs. System Age, System 16, LANL Data 
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Figure 5.45 ROCOF vs. System Age, System 16, LANL Data 



Table 5.16 FI Coefficients and ROCOF, System 17, LANL Data 

System 

17 

FI (s = 0) 

0.4431006 

FI (s = 0.20) 

0.4693957 

FI (s = 0.99) 

0.6992799 

GT (N(T)) 

-0.1168528 
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Figure 5.46 Total Downtime vs. System Age, System 17, LANL Data 
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Figure 5.47 FI Coefficient vs. System Age, System 17, LANL Data 
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Figure 5.48 ROCOF vs. System Age, System 17, LANL Data 



Table 5.17 FI Coefficients and ROCOF, System 18, LANL Data 

System 

18 

FI (s = 0) 

0.4424562 

FI (s = 0.20) 

0.4581639 

FI (s = 0.99) 

0.5760466 

GT(N(T)) 

-0.01011574 

System Age (days) 

Figure 5.49 Total Downtime vs. System Age, System 18, LANL Data 
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Figure 5.50 FI Coefficient vs. System Age, System 18, LANL Data 
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Figure 5.51 ROCOF vs. System Age, System 18, LANL Data 



Table 5.18 FI Coefficients and ROCOF, System 19, LANL Data 

System 

19 

FI (s = 0) 

0.4978905 

FI (s = 0.20) 

0.5130915 

FI (e = 0.99) 

0.6412173 

GT (N(T)) 

-0.02191605 

System Age (days) 

Figure 5.52 Total Downtime vs. System Age, System 19, LANL Data 
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Figure 5.53 FI Coefficient vs. System Age, System 19, LANL Data 
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Figure 5.54 ROCOF vs. System Age, System 19, LANL Data 
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Table 5.19 FI Coefficients and ROCOF, System 20, LANL Data 

System 

20 

FI (s = 0) 

0.2358755 

FI (8 = 0.20) 

0.2441450 

FI (s = 0.99) 

0.3392873 

GT (N(T)) 

-0.3663878 
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1200 1400 

System Age (days) 

Figure 5.55 Total Downtime vs. System Age, System 20, LANL Data 
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Figure 5.56 FI Coefficient vs. System Age, System 20, LANL Data 
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Figure 5.57 ROCOF vs. System Age, System 20, LANL Data 
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Table 5.20 FI Coefficients and ROCOF, System 21, LANL Data 

System 

21 

FI (s = 0) 

0.3521442 

FI (s = 0.20) 

0.3752301 

FI (s = 0.99) 

0.821141 

GT(N(T)) 

-0.2562533 

0 20 40 60 80 100 

System Age (days) 

Figure 5.58 Total Downtime vs. System Age, System 21, LANL Data 
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Figure 5.59 FI Coefficient vs. System Age, System 21, LANL Data 



171 

m 
o 
O 
H 
O 

o 

o 

o 
o 

O 

System Age (days) 

Figure 5.60 ROCOF vs. System Age, System 21, LANL Data 
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Table 5.21 FI Coefficients and ROCOF, System 22, LANL Data 

System 

22 

FI (e = 0) 

0.4140757 

FI (8 = 0.20) 

0.443951 

FI (s = 0.99) 

0.6050619 

GT ( N(T) ) 

-0.1168699 

0 500 1000 1500 2000 2500 

System Age (days) 

Figure 5.61 Total Downtime vs. System Age, System 22, LANL Data 
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Figure 5.62 FI Coefficient vs. System Age, System 22, LANL Data 
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Figure 5.63 ROCOF vs. System Age, System 22, LANL Data 
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Table 5.22 FI Coefficients and ROCOF, System 23, LANL Data 

System 

23 

FI (s = 0) 

0.4729281 

FI (s = 0.20) 

0.4977982 

FI (s = 0.99) 

0.6634825 

GT(N(T)) 

-0.003102837 
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Figure 5.64 Total Downtime vs. System Age, System 23, LANL Data 
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Figure 5.65 FI Coefficient vs. System Age, System 23, LANL Data 
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Figure 5.66 ROCOF vs. System Age, System 23, LANL Data 
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Table 5.23 FI Coefficients and ROCOF, System 24, LANL Data 

System 

24 

FI (8 = 0) 

0.3328124 

FI (e = 0.20) 

0.3583177 

FI (e = 0.99) 

0.514077 

GT ( N(T) ) 

-0.3460315 

System Age (days) 

Figure 5.67 Total Downtime vs. System Age, System 24, LANL Data 
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Figure 5.68 FI Coefficient vs. System Age, System 24, LANL Data 
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Figure 5.69 ROCOF vs. System Age, System 24, LANL Data 

Table 5.24 Number of Systems with Increasing vs. Decreasing ROCOF, LANL Data 

Increasing ROCOF 

16 

Decreasing ROCOF 

7 

Table 5.25 FI Coefficient Averages, Increasing vs. Decreasing ROCOF, LANL Data 

Systems With: 

Increasing ROCOF 

Decreasing ROCOF 

FI (s = 0) 

0.405614 

0.430932 

FI (e = 0.20) 

0.42934 

0.455128 

FI (e = 0.99) 

0.632599 

0.659323 
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Table 5.26 Coefficient Averages, All Systems, LANL Data 

Index 

Avg. 

FI (s = 0) 

0.418823 

FI (e = 0.20) 

0.442795 

FI (e = 0.99) 

0.646542 

GT(N(T)) 

0.052074 

5.3 Conclusions 

Sixteen of the 23 systems exhibit increasing ROCOF. Seven of the systems have 

decreasing ROCOF. However, increasing or decreasing ROCOF has little impact on the 

failure volatility of a given system, as systems with increasing ROCOF generated an FI 

(e = 0.99) coefficient of 0.632599 and systems with decreasing ROCOF generated an FI 

(e = 0.99) coefficient of 0.659323, values which are not significantly different. 

On average, the systems generated an FI (s = 0) coefficient of 0.418823, an FI (e 

= 0.20) coefficient of 0.442795 and an FI (e = 0.99) coefficient of 0.646542. Similar to 

the relationship reported in the inequality index results from Chapter 3, this suggests that 

the higher failure volatility exists amongst the larger failures incurred by a system, and 

less failure volatility exists amongst the smaller failures. 

Large periods of non-failure behavior significantly impact the failure volatility 

(and as such the resulting FI coefficient) of a given system. System 21, for example, 

contains a significant period of no failure activity toward the end of its lifetime, resulting 

in an FI (e = 0.99) coefficient of 0.821141. This was the highest FI coefficient reported 

by any system. Likewise, System 20, which contains the most regular time intervals 

between each failure, reported an FI (e = 0.99) coefficient of 0.3392873, the lowest of 

any system. 
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In conclusion, the amount of time between successive failures significantly 

contributes to the overall failure volatility exhibited by an HPC system. Such time 

periods are not accounted for using traditional inequality indices such as the Gini or 

Atkinson index. The FI, however, does capture these time periods, and results show that 

systems with more regular time intervals between system failures exhibit lower levels of 

volatility than those with prolonged periods of highly unequal time between successive 

failures. FI coefficients are less affected by single large failures than Gini or Atkinson 

coefficients, though the level of inequality in the impact of each failure exhibited by the 

system does still play a role in the volatility reported by a Failure Index coefficient. 

The relationship between system volatility as captured by FI coefficients and 

system failure rate as captured by GT coefficients can be seen in the plots of FI and GT 

coefficients in relation to time. A system's ROCOF levels as the system ages, while 

system volatility continues to fluctuate in the latter days of a system's lifespan. 

The following chapter closes the dissertation by drawing results from the entirety 

of the work and proposing future uses of the Failure Index. The source code used to 

generate the FI and GT coefficients reported in this chapter are given in Appendix B and 

Appendix C, respectively. A list of the acronyms used in this dissertation is given in 

Appendix A. 



CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this dissertation we introduced and demonstrated a Failure Index for High 

Performance Computing applications. The FI is a time-dependent implementation of the 

Atkinson Index and captures the failure volatility exhibited by an HPC system in a given 

period. It is less affected by single large failures and more affected by fluctuations in 

failure strength over time and irregular time intervals between successive failures. 

Existing inequality indices such as the Gini and Atkinson index do not take time into 

consideration. System failure rates level as HPC system's age, while system volatility 

does not. 

Background information was given in the first two chapters in order to 

demonstrate the need for such a metric, including a general introduction to HPC 

resilience, a look at previous work in statistically analyzing large HPC datasets, and a 

means to generate application-specific data from a large-scale HPC application. 

Inequality indices were then introduced from a statistical standpoint and their 

applicability was demonstrated via application to a dataset containing failure information 

from 23 machines housed at Los Alamos National Laboratory from 1996 to 2005. 
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The FI was then mathematically introduced in Chapter 4, along with an overview 

of the GT Index, which captures a system's rate of occurrence of failure (ROCOF). In 

Chapter 5, the FI and GT Indices were applied to the LANL dataset, with results showing 

time plays an important role in the failure volatility exhibited by a given system. Results 

also show that a system's ROCOF and its level of failure volatility are not statistically 

related. 

6.2 Future Work 

Suggested future work in this area consists largely of implementing the Failure 

Index in real time on an existing suitably-scaled HPC system. Specifically, it is 

suggested that an FI module be created for the SLURM platform, which in its current 

form is much like the proposed Resilience Framework mentioned in the first chapter of 

this dissertation. 

This effort would require a large dedication to both application programming and 

tuning as well as interface development. However, the utility of a real time FI is clear -

one would be able to react to changes in application failure volatility in accordance with 

real time fluctuations of a system's FI coefficient, which when combined with existing 

metrics such as MTBF and the 'nines' system reliability allows for greater flexibility in 

how to proactively prepare for the failure behavior exhibited by a given system. 

Future work also includes combining the FI with the real-time application metric 

generation software Gilgamesh, developed by the author and discussed in Chapter 2. 

This would allow for the generation of live per-application FI coefficients immediately 

after the extraction of relevant failure-related data from that application. This would 

allow for the real time monitoring of an application's failure volatility. 



APPENDIX A 

LIST OF ACRONYMS 
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ASCI - Advanced Scientific Computing Initiative 

BG/L - Blue/Gene L 

BLCR - Berkeley Laboratory Checkpoint/Restart 

Blobs - Binary Large OBjectS 

C/R - Checkpoint/Restart 

CIF - Cumulative Intensity Function 

CLI - Command Line Interface 

CMU - Carnegie Melon University 

CPU - Central Processing Unit 

CTD - Collection of Training Data 

DOE - Department of Energy 

FC() - Failure Classification Function 

FENCE - Fault-Aware ENabled Computing Environment 

FI - Failure Index 

FLOPS - Floating Point Operations Per Second 

FPM - Failure Probability Model 

GUI - Graphical User Interface 

HPC - High Performance Computing 

K-S - Kolmogorov-Smirnov 

LAM - Local Area Multicomputer MPI 

LANL - Los Alamos National Laboratory 

LLNL - Lawrence Livermore National Laboratory 

MPI - Message Passing Interface 



MTBF - Mean Time Between Failure 

MTTF - Mean Time To Failure 

MTTR - Mean Time To Repair 

OSS - Open|SpeedShop 

ROCOF - Rate of Occurrence of Failure 

RRE - Resilience-Related Event 

SEP - Similar Event Prediction 

SGI - Silicon Graphics, Inc. 

TTF - Time To Failure 

TTR - Time To Repair 
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FAILURE INDEX SOURCE CODE 
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#FISCRIPT.R -- Computes a time-dependent Failure Index coefficient for 

the given dataset 

#AUTHOR: Clayton Chandler, Louisiana Tech University 

#load the necessary libraries 

library(caTools) 

#NOTE: dataset must be ran before running script. 

#NOTE: parameter must be set before running script. 

#set the necessary values, assuming data has already been loaded 

idx = 2:length(data$time) 

T <- as.double(data$time[idx][(length(data$time)-1)]) 

FT <- as.double(data$totaldowntime[idx][(length(data$downtime)-1)]) 

#get the mean values for both time and downtime 

EFT <- as.double(mean(data$totaldowntime)) 

ET <- as.double(mean(data$time)) 

tfind the integral using the trapezoid rule and the given parameter 

INTEGRAL <- as.double( (data$time[idx] - data$time[idx-1]) %*% 

( (data$totaldowntime[idx]A(1-parameter)) + (data$totaldowntime[ldx-

1]A(1-parameter))) / 2) 

#Multiply the integral by (1 / T) 

INSIDEPRODUCT <- as.double(INTEGRAL * (1/T)) 

tObtam the Inside Product to the (1 / 1-parameter) power 

POWER <- as.double(INSIDEPRODUCT A as.double(1/(1-parameter)) ) 
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#Multiply the result by 1/E(T) 

OUTSIDEPRODUCT <- as.double(POWER * as.double(1/FT) ) 

#Take one minus this to get final result 

FI <- as.double(1 - OUTSIDEPRODUCT) 

tReturn the resulting FI coefficient 

return (as.double(FI)) 



APPENDIX C 

GT INDEX SOURCE CODE 
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#GTSCRIPT.R — Computes a GT Index coefficient for the given dataset 

#AUTHOR: Clayton Chandler, Louisiana Tech University 

#load the necessary libraries 

library(caTools) 

#NOTE: dataset must be ran before running script. 

#NOTE: parameter must be set before running script. 

#set the necessary values, assuming data has already been loaded 

idx = 2:length(data$quantile) 

T <- as.double(data$quantile[idx][(length(data$quantile)-1)]) 

N <- as.double(data$numberofevents[idx][(length(data$numberofevents)-

1)]) 

#find the integral using the trapezoid rule and the given parameter 

GTINTEGRAL <- as.doublet (data$quantile[idx] - data$quantile[idx-1]) 

%*% (data$numberofevents[idx] + data$numberofevents[idx-1]) / 2) 

#Obtain the numerator 

GTNUMERATOR <- as.double(GTINTEGRAL * 2) 

#Obtain the denomenator 

GTDENOMENATOR <- as.double(T * N) 

#Get the fraction 

GTFRACTION <- as.double(GTNUMERATOR / GTDENOMENATOR) 
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#Get the coefficient 

GT <- as.double(1 - GTFRACTION) 

#Return the resulting GT coefficient 

return (as.double(GT)) 
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