
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Spring 2012

A failure index for high performance computing
applications
Clayton F. Chandler
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Applied Statistics Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Chandler, Clayton F., "" (2012). Dissertation. 373.
https://digitalcommons.latech.edu/dissertations/373

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.latech.edu%2Fdissertations%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/373?utm_source=digitalcommons.latech.edu%2Fdissertations%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu

A FAILURE INDEX FOR HIGH PERFORMANCE COMPUTING

APPLICATIONS

by

Clayton F. Chandler, B.S., M.S.

A Dissertation Presented in Partial Fulfillment

Of the Requirements for the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE

LOUISIANA TECH UNIVERSITY

March 2012

UMI Number: 3504534

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 3504534
Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

November 15, 2011

by.

Date

We hereby recommend that the dissertation prepared under our supervision

Clayton F Chandler

entitled

A FAILURE INDEX FOR HIGH PERFORMANCE COMPUTING

APPLICATIONS

be accepted in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy

Recommendation concurred in:

Head of Department
Computational Analysis and Modeling

Department

Approved:

Dean of the Coil-

Advisory Committee

Approved

Dean of the GraduateVSchool

GS Form 13a
(6/07)

ABSTRACT

This dissertation introduces a new metric in the area of High Performance

Computing (HPC) application reliability and performance modeling. Derived via the

time-dependent implementation of an existing inequality measure, the Failure index (FI)

generates a coefficient representing the level of volatility for the failures incurred by an

application running on a given HPC system in a given time interval. This coefficient

presents a normalized cross-system representation of the failure volatility of applications

running on failure-rich HPC platforms. Further, the origin and ramifications of

application failures are investigated, from which certain mathematical conclusions yield

greater insight into the behavior of these applications in failure-rich system

environments.

This work also includes background information on the problems facing HPC

applications at the highest scale, the lack of standardized application-specific metrics

within this arena, and a means of generating such metrics in a low latency manner. A

case study containing detailed analysis showcasing the benefits of the FI is also included.

in

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University the right to

reproduce, by appropriate methods, upon request, any or all portions of this Dissertation It is understood

that "proper request" consists of the agieement, on the part of the requesting party, that said repioduction

is for his personal use and that subsequent reproduction will not occur without written approval of the

author of this Dissertation Further, any portions of the Disseitation used in books, papers, and other

works must be appropriately referenced to this Dissertation

Finally, the author of this Dissertation reserves the right to publish freely, in the hteiature, at

any tune, any or all portions of this Dissertation

Author

Date

GSForm 14
(5/03)

DEDICATION

To my wife for giving me the ability to see this through to the end, and to my

parents for their never-ending support.

v

TABLE OF CONTENTS

ABSTRACT iii

DEDICATION v

LIST OF TABLES viii

LIST OF FIGURES xi

ACKNOWLEDGEMENTS xviii

CHAPTER 1 CONTRIBUTIONS AND AN INTRODUCTION TO HPC RESILIENCE

1.1 Contributions 1

1.2 An Overview of the Dissertation 3

1.3 The Current State of HPC Resilience 4

1.4 Preliminary Studies and Related Work 9

1.5 A Lack of Standardization amongst Metrics 17

CHAPTER 2 HPC METRICS: GENERATION AND EXAMINATION

2.1 Generating Metrics for HPC Applications 20

2.2 Examining HPC Application Metrics 30

CHAPTER 3 INEQUALITY MEASURES FOR HPC RELIABILITY DATA

3.1 Introduction and Justification 41

3.2 The Lorenz Curve 42

3.3 The Gini Index 45

vi

vii

3.4 The Atkinson Index 46

3.5 The Theil Index 47

3.6 Application to HPC Data and Results 48

3.6.1 Introduction to the Dataset 48

3.6.2 Results 53

3.6.3 Conclusions 100

CHAPTER 4 A FAILURE INDEX FOR HPC APPLICATIONS

4.1 The Failure Index 103

4.2 The GT Index 108

CHAPTER 5 USING THE FAILURE INDEX: A CASE STUDY

5.1 Introduction 110

5.2 Results 112

5.3 Conclusions 181

CHAPTER 6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions 183

6.2 Future Work 184

APPENDIX A - LIST OF ACRONYMS 185

APPENDIX B - FAILURE INDEX SOURCE CODE 188

APPENDIX C - GT INDEX SOURCE CODE 191

REFERENCES 194

LIST OF TABLES

1.1 Publicly Available HPC System Reliability Statistics 5

1.2 Best Fit Cases, ASC White 10

2.1 Number of Messages per Facility, BG/L 33

2.2 Number of Messages per Severity Level, BG/L 34

2.3 Time between FATAL Messages, BG/L 34

2.4 Time between FAILURE Messages, BG/L 35

2.5 Time between Messages, Datasets U and L 37

2.6 Time between Messages, L, After Repeated Message Removal .38

2.7 Time between Messages, U, After Repeated Message Removal 38

3.1 Inequality Coefficients, System 2, LANL Data 54

3.2 Inequality Coefficients, System 3, LANL Data 56

3.3 Inequality Coefficients, System 4, LANL Data 58

3.4 Inequality Coefficients, System 5, LANL Data 60

3.5 Inequality Coefficients, System 6, LANL Data 62

3.6 Inequality Coefficients, System 7, LANL Data 64

3.7 Inequality Coefficients, System 8, LANL Data 66

3.8 Inequality Coefficients, System 9, LANL Data 68

3.9 Inequality Coefficients, System 10, LANL Data 70

viii

ix

3.10 Inequality Coefficients, System 11, LANL Data 72

3.11 Inequality Coefficients, System 12, LANL Data 74

3.12 Inequality Coefficients, System 13, LANL Data 76

3.13 Inequality Coefficients, System 14, LANL Data 78

3.14 Inequality Coefficients, System 15, LANL Data 80

3.15 Inequality Coefficients, System 16, LANL Data 82

3.16 Inequality Coefficients, System 17, LANL Data 84

3.17 Inequality Coefficients, System 18, LANL Data 86

3.18 Inequality Coefficients, System 19, LANL Data 88

3.19 Inequality Coefficients, System 20, LANL Data 90

3.20 Inequality Coefficients, System 21, LANL Data 92

3.21 Inequality Coefficients, System 22, LANL Data 94

3.22 Inequality Coefficients, System 23, LANL Data 96

3.23 Inequality Coefficients, System 24, LANL Data 98

3.24 Average Gini and Atkinson Coefficient per Percentile, LANL Data 100

5.1 FI Coefficients and ROCOF, System 2, LANL Data 112

5.2 FI Coefficients and ROCOF, System 3, LANL Data 115

5.3 FI Coefficients and ROCOF, System 4, LANL Data 118

5.4 FI Coefficients and ROCOF, System 5, LANL Data 121

5.5 FI Coefficients and ROCOF, System 6, LANL Data 124

5.6 FI Coefficients and ROCOF, System 7, LANL Data 127

5.7 FI Coefficients and ROCOF, System 8, LANL Data 130

5.8 FI Coefficients and ROCOF, System 9, LANL Data 133

X

5.9 FI Coefficients and ROCOF, System 10, LANL Data 136

5.10 FI Coefficients and ROCOF, System 11, LANL Data 139

5.11 FI Coefficients and ROCOF, System 12,LANLData 142

5.12 FI Coefficients and ROCOF, System 13, LANL Data 145

5.13 FI Coefficients and ROCOF, System 14, LANL Data 148

5.14 FI Coefficients and ROCOF, System 15, LANL Data 151

5.15 FI Coefficients and ROCOF, System 16, LANL Data 154

5.16 FI Coefficients and ROCOF, System 17, LANL Data 157

5.17 FI Coefficients and ROCOF, System 18, LANL Data 160

5.18 FI Coefficients and ROCOF, System 19, LANL Data 163

5.19 FI Coefficients and ROCOF, System 20, LANL Data 166

5.20 FI Coefficients and ROCOF, System 21, LANL Data 169

5.21 FI Coefficients and ROCOF, System 22, LANL Data 172

5.22 FI Coefficients and ROCOF, System 23, LANL Data 175

5.23 FI Coefficients and ROCOF, System 24, LANL Data 178

5.24 Number of Systems with Increasing vs. Decreasing ROCOF, LANL Data 180

5.25 FI Coefficient Averages, Increasing vs. Decreasing ROCOF, LANL Data 180

5.26 Coefficient Averages, All Systems, LANL Data 181

LIST OF FIGURES

1.1 Information Captured by the Failure Index 2

1.2 Application Completion Time vs. Number of Nodes 7

2.1 Open|SpeedShop GUI 24

2.2 Interaction between Open|SpeedShop and Gilgamesh 26

2.3 An Example of BlueGene/L's Log Format 32

3.1 Lorenz Curve Given Total Equality 43

3.2 Lorenz Curves for Two Distributions with Varying Levels of Inequality 44

3.3 Leftmost Columns Sample, LANL Failure Dataset 49

3.4 Rightmost Columns Sample, LANL Failure Dataset 49

3.5 Impact of Each Failure, System 2, LANL Data 54

3.6 Lorenz Curve, System 2, LANL Data 55

3.7 Failure Impact Histogram, System 2, LANL Data 55

3.8 Impact of Each Failure, System 3, LANL Data 56

3.9 Lorenz Curve, System 3, LANL Data 57

3.10 Failure Impact Histogram, System 3, LANL Data 57

3.11 Impact of Each Failure, System 4, LANL Data 58

3.12 Lorenz Curve, System 4, LANL Data 59

3.13 Failure Impact Histogram, System 4, LANL Data 59

xi

xii

3.14 Impact of Each Failure, System 5, LANL Data 60

3.15 Lorenz Curve, System 5, LANL Data 61

3.16 Failure Impact Histogram, System 5, LANL Data 61

3.17 Impact of Each Failure, System 6, LANL Data 62

3.18 Lorenz Curve, System 6, LANL Data 63

3.19 Failure Impact Histogram, System 6, LANL Data 63

3.20 Impact of Each Failure, System 7, LANL Data 64

3.21 Lorenz Curve, System 7, LANL Data 65

3.22 Failure Impact Histogram, System 7, LANL Data 65

3.23 Impact of Each Failure, System 8, LANL Data 66

3.24 Lorenz Curve, System 8, LANL Data 67

3.25 Failure Impact Histogram, System 8, LANL Data 67

3.26 Impact of Each Failure, System 9, LANL Data 68

3.27 Lorenz Curve, System 9, LANL Data 69

3.28 Failure Impact Histogram, System 9, LANL Data 69

3.29 Impact of Each Failure, System 10, LANL Data 70

3.30 Lorenz Curve, System 10, LANL Data 71

3.31 Failure Impact Histogram, System 10, LANL Data 71

3.32 Impact ofEach Failure, System 11, LANL Data 72

3.33 LorenzCurve, System 11, LANL Data 73

3.34 Failure Impact Histogram, System 11, LANL Data 73

3.35 Impact ofEach Failure, System 12, LANL Data 74

3.36 LorenzCurve, System 12,LANLData 75

xiii

3.37 Failure Impact Histogram, System 12, LANL Data 75

3.38 Impact of Each Failure, System 13, LANL Data 76

3.39 Lorenz Curve, System 13, LANL Data 77

3.40 Failure Impact Histogram, System 13, LANL Data 77

3.41 Impact of Each Failure, System 14, LANL Data 78

3.42 Lorenz Curve, System 14, LANL Data 79

3.43 Failure Impact Histogram, System 14, LANL Data 79

3.44 Impact of Each Failure, System 15, LANL Data 80

3.45 Lorenz Curve, System 15, LANL Data 81

3.46 Failure Impact Histogram, System 15, LANL Data 81

3.47 Impact of Each Failure, System 16, LANL Data 82

3.48 Lorenz Curve, System 16, LANL Data 83

3.49 Failure Impact Histogram, System 16, LANL Data 83

3.50 Impact of Each Failure, System 17,LANLData 84

3.51 Lorenz Curve, System 17, LANL Data 85

3.52 Failure Impact Histogram, System 17, LANL Data 85

3.53 Impact of Each Failure, System 18, LANL Data 86

3.54 Lorenz Curve, System 18, LANL Data 87

3.55 Failure Impact Histogram, System 18, LANL Data 87

3.56 Impact of Each Failure, System 19, LANL Data 88

3.57 Lorenz Curve, System 19,LANLData 89

3.58 Failure Impact Histogram, System 19, LANL Data 89

3.59 Impact of Each Failure, System 20, LANL Data 90

xiv

3.60 Lorenz Curve, System 20, LANL Data 91

3.61 Failure Impact Histogram, System 20, LANL Data 91

3.62 Impact of Each Failure, System 21, LANL Data 92

3.63 Lorenz Curve, System 21, LANL Data 93

3.64 Failure Impact Histogram, System 21, LANL Data 93

3.65 Impact of Each Failure, System 22, LANL Data 94

3.66 Lorenz Curve, System 22, LANL Data 95

3.67 Failure Impact Histogram, System 22, LANL Data 95

3.68 Impact of Each Failure, System 23, LANL Data 96

3.69 Lorenz Curve, System 23, LANL Data 97

3.70 Failure Impact Histogram, System 23, LANL Data 97

3.71 Impact of Each Failure, System 24, LANL Data 98

3.72 Lorenz Curve, System 24, LANL Data 99

3.73 Failure Impact Histogram, System 24, LANL Data 99

4.1 "Time", "Downtime" and "Total Downtime" Columns, System 6 106

4.2 Sample Data 1, FI Coefficients vs. Atkinson Coefficients 107

4.3 Sample Data 2, FI Coefficients vs. Atkinson Coefficients 107

5.1 Total Downtime vs. System Age, System 2, LANL Data 112

5.2 FI Coefficient vs. System Age, System 2, LANL Data 113

5.3 ROCOFvs. SystemAge, System 2, LANL Data 114

5.4 Total Downtime vs. SystemAge, System 3, LANL Data 115

5.5 FI Coefficient vs. SystemAge, System 3, LANL Data 116

5.6 ROCOF vs. System Age, System 3, LANL Data 117

XV

5.7 Total Downtime vs. System Age, System 4, LANL Data 118

5.8 FI Coefficient vs. System Age, System 4, LANL Data 119

5.9 ROCOFvs. System Age, System 4, LANL Data 120

5.10 Total Downtime vs. System Age, System 5, LANL Data 121

5.11 FI Coefficient vs. System Age, System 5, LANL Data 122

5.12 ROCOFvs. System Age, System 5, LANL Data 123

5.13 Total Downtime vs. System Age, System 6, LANL Data 124

5.14 FI Coefficient vs. System Age, System 6, LANL Data 125

5.15 ROCOFvs. System Age, System 6, LANL Data 126

5.16 Total Downtime vs. System Age, System 7, LANL Data 127

5.17 FI Coefficient vs. System Age, System 7, LANL Data 128

5.18 ROCOF vs. System Age, System 7, LANL Data 129

5.19 Total Downtime vs. System Age, System 8, LANL Data 130

5.20 FI Coefficient vs. System Age, System 8, LANL Data 131

5.21 ROCOFvs. SystemAge, System 8, LANL Data 132

5.22 Total Downtime vs. System Age, System 9, LANL Data 133

5.23 FI Coefficient vs. System Age, System 9, LANL Data 134

5.24 ROCOFvs. SystemAge, System 9, LANL Data 135

5.25 Total Downtime vs. System Age, System 10, LANL Data 136

5.26 FI Coefficient vs. System Age, System 10, LANL Data 137

5.27 ROCOFvs. SystemAge, System 10, LANL Data 138

5.28 Total Downtime vs. System Age, System 11, LANL Data 139

5.29 FI Coefficient vs. System Age, System 11, LANL Data 140

xvi

5.30 ROCOFvs. System Age, System 11, LANL Data 141

5.31 Total Downtime vs. System Age, System 12, LANL Data 142

5.32 FI Coefficient vs. System Age, System 12, LANL Data 143

5.33 ROCOFvs. System Age, System 12, LANL Data 144

5.34 Total Downtime vs. System Age, System 13, LANL Data 145

5.35 FI Coefficient vs. System Age, System 13, LANL Data 146

5.36 ROCOFvs. System Age, System 13,LANLData 147

5.37 Total Downtime vs. System Age, System 14, LANL Data 148

5.38 FI Coefficient vs. System Age, System 14, LANL Data 149

5.39 ROCOFvs. System Age, System 14,LANLData 150

5.40 Total Downtime vs. System Age, System 15, LANL Data 151

5.41 FI Coefficient vs. System Age, System 15, LANL Data 152

5.42 ROCOFvs. SystemAge, System 15,LANLData 153

5.43 Total Downtime vs. System Age, System 16, LANL Data 154

5.44 FI Coefficient vs. System Age, System 16, LANL Data 155

5.45 ROCOFvs. System Age, System 16, LANL Data 156

5.46 Total Downtime vs. System Age, System 17, LANL Data 157

5.47 FI Coefficient vs. System Age, System 17, LANL Data 158

5.48 ROCOFvs. System Age, System 17, LANL Data 159

5.49 Total Downtime vs. System Age, System 18, LANL Data 160

5.50 FI Coefficient vs. System Age, System 18, LANL Data 161

5.51 ROCOFvs. SystemAge, System 18, LANL Data 162

5.52 Total Downtime vs. System Age, System 19, LANL Data 163

xvii

5.53 FI Coefficient vs. System Age, System 19, LANL Data 164

5.54 ROCOF vs. System Age, System 19, LANL Data 165

5.55 Total Downtime vs. System Age, System 20, LANL Data 166

5.56 FI Coefficient vs. System Age, System 20, LANL Data 167

5.57 ROCOF vs. System Age, System 20, LANL Data 168

5.58 Total Downtime vs. System Age, System 21, LANL Data 169

5.59 FI Coefficient vs. System Age, System 21, LANL Data 170

5.60 ROCOF vs. System Age, System 21, LANL Data 171

5.61 Total Downtime vs. System Age, System 22, LANL Data 172

5.62 FI Coefficient vs. System Age, System 22, LANL Data 173

5.63 ROCOF vs. System Age, System 22, LANL Data 174

5.64 Total Downtime vs. System Age, System 23, LANL Data 175

5.65 FI Coefficient vs. System Age, System 23, LANL Data 176

5.66 ROCOF vs. System Age, System 23, LANL Data 177

5.67 Total Downtime vs. System Age, System 24, LANL Data 178

5.68 FI Coefficient vs. System Age, System 24, LANL Data 179

5.70 ROCOF vs. System Age, System 24, LANL Data 180

ACKNOWLEDGEMENTS

I would foremost like to acknowledge Dr. Chokchai Leangsuksun for his

continued guidance in my research and professional development. He has been a great

friend as well as a great advisor. I would also like to thank Dr. Nathan DeBardeleben of

Los Alamos National Laboratory for his guidance over the years, as well as Dr. Mihaela

Paun for lending me her knowledge and assistance whenever asked. I would also like to

thank Dr. Bernd Schroeder for his great assistance in completing the final revisions of

the dissertation. A special thank you is also warranted for the other members of my

advisory committee: Dr. Weizhong Dai and Dr. Dexter Cahoy. Lastly, I would like to

thank the faculty and staff members in the Computer Science, Mathematics, and

Graduate Studies offices for their patience in handling my never-ending list of questions

and predicaments.

xvm

CHAPTER 1

CONTRIBUTIONS AND AN INTRODUCTION TO

HPC RESILIENCE

1.1 Contributions

The novel contribution of this work is the introduction of a normalized metric for

measuring the time-dependent failure volatility of a High Performance Computing

system. This metric - the Failure Index (FI) - is based on existing inequality measures

such as the Gini [86], Atkinson [91] and Theil [92] indices and is formulated,

specifically, as a time-dependent implementation of the Atkinson index.

The FI generates coefficients based on the downtime resulting from all failures

incurred by a given system in a given time interval. These coefficients represent the

differences in downtime resulting from individual system failures in the time interval

using a 0-to-l system, with FI coefficients closer to 1 representing higher levels of

volatility amongst failures in the given time interval than FI coefficients closer to 0. This

volatility is not captured by existing metrics such as Mean Time between Failure

(MTBF) and system uptime percentage. Figure 1.1 illustrates the information captured

by the FI relative to these measures.

1

2

impact impact impact impact impact
10 sec. 10 sec. 10 sec. 40 sec. 10 sec.

• X X x x x •
start | || || || | end

5 m m . 5 m i n . 5 m i n . 5 ra in .

total runtime total downtime
30 min. 80 sec.

Figure 1.1 Information Captured by the Failure Index

The HPC system represented in Figure 1.1 runs for a total of 30 minutes. Its

MTBF is 5 minutes. Likewise, the total uptime percentage of this system is 1720 / 1800

seconds = 0.955 = 95.5%, or "one nine". However, neither metric captures that the

system exhibits four failures that cause a downtime of 10 seconds each and one failure

resulting in a downtime of 40 seconds. A Failure Index coefficient would represent this

inequality. Specifically, given parameter s = 0.20 the FI coefficient for this example

system is 0.2098798, representing a modest amount of downtime volatility. If each of the

five failures resulted in a downtime of 10 seconds, the FI coefficient would be 0,

meaning that every failure's impact on the system was equal. Likewise, in the case that

four failures resulted in no downtime and a single failure caused all 80 seconds of

downtime, the resulting FI coefficient would be 1. A mathematical introduction to the

Failure Index is given in Chapter 4.

The scale and location-invariant nature of FI coefficients allows us to compare

the failure volatility of multiple systems regardless of size. This will be demonstrated in

Chapter 5 when constructing FI coefficients for 23 different machines housed at Los

Alamos National Laboratory, all of which contain different numbers of compute nodes.

3

The FI coefficient is a unitless value. As will be discussed in Chapter 2, many

existing system reliability metrics are not standardized across the entire HPC arena,

which allows for manipulation and corruption of system performance metrics. However,

the unitless nature of the FI prevents this, as, given an assumption of globally defined

failure events, FI coefficients represent similar levels of volatility across multiple

machines. This allows for a true comparison of system failure volatility using a

normalized scheme and should find a home as a quality of service measure for HPC

system performance and resilience.

1.2 An Overview of the Dissertation

Chapter 1 first summarizes the novel contributions of this work. It then provides

an overview of the dissertation and an introduction to the resilience issues facing today's

large scale HPC machines and applications. It covers a general introduction to the field

of resilience and its importance in today's HPC arena, a look specifically at the issues

facing applications computing on the world's fastest machines, and a review of existing

approaches for combating such problems. Further, the current lack of application-specific

metrics in the HPC research and development community is examined. This includes

discussion on the lack of information stemming from large-scale systems as well as the

need for standardization in HPC measures and definitions across the landscape, including

government, academic and industrial entities. This chapter also represents the motivation

for the work outlined in subsequent chapters in this dissertation.

Chapter 2 introduces a module for generating relevant resilience-specific

information from a given HPC application. This application, Gilgamesh [83], was

developed by the author as a means for combating the application information gap

4

discussed in Chapter 1. An existing HPC dataset is then examined using traditional

statistics.

Chapter 3 begins the discussion of inequality indexing by demonstrating that such

approaches are both possible and practical when applied in an HPC context. The Gini,

Atkinson, and Theil indices are mathematically introduced and Gini and Atkinson

coefficients are generated using an existing HPC performance dataset containing

reliability information from multiple machines. Results are then discussed and

conclusions pertinent to the use of such indices in examining HPC application behavior

are drawn.

Chapter 4 introduces the Failure Index (FI) from a theoretical standpoint,

including its definition and mathematical construction. This chapter contains the bulk of

the novel work undertaken in the research and as such it should be read carefully.

Lastly, Chapter 5 demonstrates the utility of the FI by conducting a case study

consisting of multiple models and analysis. In this analysis FI coefficients are generated

in conjunction with the same HPC performance dataset utilized in Chapter 3. The scale-

and location-invariant nature of the metric allows us to obtain novel results related to all

machines contained in the dataset.

Chapter 6 contains conclusions drawn from the entirety of the work as well as

proposed future studies in resilience, HPC applications and metric generation.

1.3 The Current State of HPC Resilience

High-end parallel computing is relying increasingly on large clusters with

thousands or even tens of thousands of processors. Further, many of today's large scale

systems such as the Road Runner machine at Los Alamos National Laboratory include

5

heterogeneous architectures, increasing the complexity of such machines even further.

With so many nodes and with such complicated architectures, system and application

failures are becoming increasingly commonplace on these machines.

As an example, one of today's fastest systems - the BlueGene/L (BG/L) machine

housed at Lawrence Livermore National Laboratory (LLNL), which contains 65,536

compute nodes and 131,072 cores - was failing once nearly every 48 hours during its

initial deployment in 2005 [1]. Each time one of those nodes failed, a 1024-processor

midplane had to be temporarily shut down in order to replace a dual-processor compute

card. This is clearly unacceptable from a quality of service standpoint, especially

considering that each of these machines costs millions (or in the case of the afore

mentioned Road Runner, hundreds of millions) of dollars. Table 1.1 illustrates that the

existing reliability of larger HPC clusters is currently constrained by a mean time

between failures (MTBF) in the range of 1.2 - 351 hours depending on the age of the

machine.

Table 1.1 Publicly Available HPC System Reliability Statistics

Installed

2000

2001

2002

2002

2003

2006

System

ASCI White

PSC Lemieux

NERSC Seaborg

ASCIQ

Google

Blue/Gene L

Processors

8,192

3,016

6,656

8,192

15,000

131,072

MTBF

40.0 hours

9.7 hours

351.0 hours

6.5 hours

1.2 hours

47.8 hours

Measured

2002

2004

2007

2002

2004

2006

Source

[2]

[3]

[4]

[5]

[6]

[7]

6

Existing work [2] similarly suggests a system mean-time to failure (SMTTF)

constraint of 5-6 hours, or 4 failures per day, for current HPC systems. The most

common causes of failure were processor, memory and storage errors. Extrapolating

from current system performance levels, a study by Los Alamos National Laboratory

(LANL) estimates a MTBF of 1.25 hours for a petaflop machine [3]. Commercial

installations such as Google experience an interpolated MTBF of just over one hour for

an equivalent number of nodes (see Table 1.1) as the BG/L system. However, Google's

fault-tolerant middleware hides such failures, leaving user services completely intact [4].

It must be noted that parallel applications still maintain reduced completion times

in comparison to their single threaded counterparts. However, when substantially

increasing the number of nodes located within an HPC system and assuming theoretical

linear scalability for applications, application completion times do not necessarily

decrease proportionally. In fact, based on results obtained in [6], the opposite is true -

while application completion time initially decreases as more nodes share the work, at

some critical point this value begins to rise substantially due to the increased likelihood

of reliability issues stemming from addition of computational units. Figure 1.2 illustrates

this.

~ "u!
en 1

*
o I

H
fl I
o |
jg «4
"3. f
o

O
* ° .nJ L

<D *o r
+̂ I ns 1
, | I

tjT, I

v

'

X
X

X .

\ X
"•v^

^ " - - < .

;

/ f
/ \

/ f

/ -
/ : / :

-
:

10 V-i

Number of Nodes

10

Figure 1.2 Application Completion Time vs. Number of Nodes

Recent accomplishments in providing an insight into HPC resilience showed that

some HPC system failures can be anticipated by detecting deteriorating system health

through hardware monitoring [5]. Further recent work focused on capturing the

availability of large-scale systems using combinatorial and Markov models and

subsequently comparing these results with statistics from large-scale U.S. Department of

Energy (DOE) installations [6, 7].

However, the health data collection and processing algorithms outlined in these

studies do not efficiently perform on large-scale HPC systems. Furthermore, fair and

meaningful reliability comparisons between systems are impossible due to different

hardware and software architectures, failure modes, and system health and failure

reporting mechanisms. Others have suggested [6] that reliability and availability metrics

standard for HPC were needed, as well as scalable, non-intrusive system health data

collection and processing algorithms. Both of these topics are discussed at length in the

body of this dissertation.

8

To prevent lost computation time due to failure, checkpoint/restart (C/R)

algorithms have become a requirement for most long-running HPC jobs. Current C/R

mechanisms commonly allow checkpoints to be written to a global file system. This

allows an entire MPI (Message Passing Interface) job to be restarted from its last

checkpoint in the event of failure. One example of such a solution is LAM (Local Area

Multicomputer)/MPI's [8] C/R support through Berkeley Labs C/R (BLCR) [9].

C/R, like many other existing techniques, is a reactive scheme. Such techniques

allow a computation to recover once a failure has occurred. The Los Alamos study

leveraged these techniques to estimate the checkpoint overhead requirements of a

petaflop machine. It found that based on current techniques, a 100 hour, failure-free job

will be prolonged by an additional 151 hours in petaflop systems.

Some recent studies suggest collecting data from existing machines and using

that information in a reactive manner to derive a checkpoint interval that trades off

checkpoint cost against restart cost [10]. Instead of a reactive scheme for fault tolerance,

others are promoting a proactive approach that migrates processes away from unhealthy

nodes and onto healthy ones. Such an algorithm has the advantage that checkpoint

frequencies can be reduced as sudden, unexpected faults should become less common

[11].

Further still, failure prediction has become a relevant and highly researched topic

due to the substantial growth in size and scope of HPC deployments and the

corresponding increase in system failure rate [12]. Predicting and proactively treating

failures via the use of appropriate resilience mechanisms such as the ones previously

mentioned substantially reduces the amount of wasteful re-computation time required in

9

the triage period following a failure. However, most contemporary failure prediction

techniques involve MTTF approximation and post-event analysis of system logs [13, 14].

Others suggest a need for analysis based on individual compute node reliability in

conjunction with system health [15].

The feasibility of health monitoring at various levels has recently been

demonstrated for temperature-aware monitoring via the utilization of ACPI [16] and

more generically by critical-event prediction [17]. Such approaches in systems with

thousands of processors such as BG/L range from application runtime-level techniques to

the level of operating system (OS) schedulers [18].

While process-level C/R has received much attention in the HPC arena, recent

results on OS-level C/R show that OS virtualization is a viable alternative. More

specifically, experiments were conducted with process-level BLCR [19] and Xen [20] to

assess the overhead of saving and restoring the image of an MPI application on a faulty

node. For BLCR this comprises the process of an MPI task, while for Xen the entire

guest OS is saved. Tests for NAS PB programs under Class C inputs show an overhead

of 8-10 seconds per one-minute run of BLCR and 15-23 seconds per one-minute run of

Xen on the same experimental platform [21]. Variations are mostly due to the memory

requirements of specific benchmarks. These memory requirements also dominate those

of the underlying OS, which explains why Xen remains competitive in these

experiments.

1.4 Preliminary Studies and Related Work

Detailed analysis was performed on system event records generated by the four

Advanced Scientific Computing (ASC) machines (White, Frost, Ice, and Snow) housed

10

at LLNL [2]. Using Markov modeling, time to failure (TTF) data for the 512-nodes ASC

White machine covering a four-year operational period [22] was generated. The average

per-node SMTTF was found to be approximately 3293 hours, or around four months.

This failure information was then taken and compared to a variety of statistical

distributions, using the Kolmogorov-Smirnov (K-S) test to obtain the most appropriate

fit. The K-S test yields a best fit between the empirical data and four theoretical

distributions - namely the exponential, Weibull, Gamma and Log-normal distributions.

K-S testing was performed on 512 different nodes and time period permutations

assimilated from the ASC White logs. The data suggested that the failure rate varies over

time. It was found that, as such, Weibull, Gamma, and Log-normal distributions, all of

which suggest variable response in conjunction with time change, provide a more

accurate basis for reliability modeling than an exponential distribution, which implies

constant failure behavior, as shown in Table 1.2.

Table 1.2 Best Fit Cases, ASC White

Distribution

Exponential

Weibull

Gamma

Log-normal

Number of Best Fit Cases

185

334

328

318

In a separate investigation on raw LLNL Blue Gene/L system logs, the XCR

team at Louisiana Tech University [23] found that both hardware and software failures

could not be easily obtained from the log file. The team also introduced a novel approach

11

for deriving software interrupts from raw system failures using the system time to repair

(TTR). It was suggested that this data be used for higher-level knowledge discovery such

as reliability analysis or failure prediction.

Additionally, the XCR team presented optimistic and pessimistic approaches for

estimating a system's failure behavior, representing best-case and worst-case behaviors

respectively. Results showed that the failure behavior bounds - both best-case and worst-

case - vary greatly due to a multitude of undetermined events that are flagged as fatal

system failures. Problems arose in attempting to determine if such events were truly fatal

behaviors or false positives. This problem confirmed the importance of failure

identification mechanisms such as system monitoring and logging.

We have also developed a reliability-aware resource allocation model for parallel

programs [24] and an optimal checkpoint/restart model [25]. The reliability-aware

resource allocation model aims to minimize performance loss due to failure. Results

indicate that applying a reliability-aware resource allocation technique reduces the

overall waste time of parallel jobs by as much as 30%. The improved checkpoint model

optimizes wasted time (checkpoint overhead, recovery time, and re-computational time)

by balancing both checkpoint overhead and re-computational time.

In addition, a fault tolerance framework [26] was developed that enables an HPC

system to self-heal/self-clone in order to tolerate a system failure by using

checkpoint/restart mechanisms. This framework was implemented on Linux-based HPC

systems and integrated an optimal checkpoint placement model. This model was further

extended to act as a feedback control loop - a fundamental part of the resilience

framework.

12

Additionally, the author assisted in the formation of a Resilience Consortium

consisting of top researchers in the field of HPC resilience. Stated goals include the

standardization of terms, methods, and algorithms encountered in resilience research and

the development of fault tolerant large-scale computing systems. This consortium is an

open community of HPC leaders from industry, academia, and research institutions.

Preliminary studies concluded that better data acquisition coupled with improved

reliability and prediction models as well as continued enhancement to the feedback

control loop will lead to an improved resilience model that increases application

productivity.

As in this dissertation, most contemporary studies which conduct reliability

analysis on large-scale computing systems assume that failures transpiring within various

components or nodes are independent [27-29]. However, other studies exist suggesting

some inter-constituent dependencies in failure origin, especially at the application level

[30]. Dependencies reported by these studies occur mostly in system configuration and

within the operation environment [31]. Such dependencies are not accounted for in this

work.

To improve reliability model accuracy, a relaxation in the assumption of

independent failure behavior was suggested, as the model should represent the failure

probability of each node as well as of the cross-application runtime environment.

Another important discovery derived from reliability analysis of HPC systems is that for

a given parallel architecture and problem size, application completion time will not

continuously decrease due to a constant introduction of new processors and higher core

counts into the computing system. Such results rest at the heart of the resilience issues

13

facing large-scale HPC, as it is that victim-of-scale phenomenon that is most often

studied. Various aspects of scalability were examined in [32, 33].

In application distribution, Shatz et al. [34] modeled tasks and communication

links as a directed graph, using it to intelligently allocate jobs within heterogeneous

distributed systems. Other groups studied application allocation through checkpointing

mechanisms [35]. There are also existing works which propose checkpoint scheduling

optimization [36, 37]. Geist et al. [38] and Wong et al. [39] presented Markov

availability models and obtained an optimal checkpoint placement that maximizes

system availability. Ling et al. [40] presented optimal checkpoint scheduling models for

an infinite horizon time by using a calculus of variations technique. They concluded that,

theoretically, a fixed checkpoint interval is optimal if and only if application failure

follows a Poisson distribution. Ozaki et al. [41] extended the calculus of variations

concept introduced in [42] to apply to a system with a finite horizon time and incomplete

failure information. However, both works define re-computation time as a linear function

demonstrating model applicability - a metric that in practice should depend upon failure

behavior.

Plank et al. [43] discussed the importance of processor count as a performance

attribute in checkpointing applications. The now-popular concept of incremental

checkpointing was introduced as a means of reducing checkpoint/restart mechanism

overhead by saving the state of only those application pages that have been changed [44-

46]. Palaniswamy et al. [47] observed that, given a minimal number of increments, the

incremental checkpointing approach has the potential to surpass traditional

checkpointing algorithms in efficiently utilizing computational resources. The challenge

14

in achieving minimum overhead while using incremental checkpointing schemes is to

find a maximum number of incremental checkpoints while maintaining lower system

costs than traditional algorithms.

In addition to the utilization of checkpointing mechanisms, some researchers also

studied the costs and benefits associated with job migration. Halchor-Balter and Downy

[48] used process aging to present a migration cost model. They concluded that process

migration most benefits those processes which exhibit long execution times. Mello and

Senger [49] proposed a model which evaluates process load and lifetime in order to

analyze the effects of job migration within an environment composed of heterogeneous

computers. That study assumes that the load balancing frequency of each compute node

indicates the occupation level of that node. The proposed model then makes a decision

regarding which application processes should be migrated.

Other groups proposed algorithms which combine checkpoint/restart mechanisms

and process migration. For example, Cao et al. [50] presented a process migration

strategy based on the coordinated checkpointing of message passing interface (MPI)

applications.

This technique modifies process location-related information in the checkpoint

file and reintroduces the application with respect to the modified location. Sun et al. [51]

proposed the Fault-aware ENabled Computing Environment (FENCE) system for high

end computing - a unified computing framework with both reactive and proactive

mechanisms. As in this dissertation, most existing optimal scheduling frameworks [52-

54] assume that system failure follows a Poisson distribution. However, many also

15

assume a constant failure rate, which in most cases is not a good representation of actual

system failure characteristics [55, 56].

In HPC failure prediction research, Xue et al. [57] surveyed five major prediction

techniques - a statistic-based threshold method, time series analysis, rule-based

classification, Bayesian network models and semi-Markov process models. The survey

concluded that Bayesian network models and semi-Markov process models are the best

approximations of system failure due to precision and recall. This conclusion led to the

utilization of naive Bayesian classification in the construction of the FI.

Semi-Markov processes were used in [58] to model the system reliability of

computational grids, and then further used in forming the probability of failure for an

individual system within in the grid. By filtering out periodic failures, the relative error

of predicting system reliability in relation to empirical reliability is relatively small (less

than 0.05). However, this reliability metric directly infers only the probability of failure,

rather than actually predicting system failure.

Lead time (|7\ |) is defined as the interval between the time a failure prediction

takes place and the time that predicted failure is expected to occur. The predicted failure

interval is similarly denoted \TP\. Salfner et al. presented a failure prediction method

called Similar Event Prediction (SEP) [61], which exploited a semi-Markov model by

using groups of events to form states and predicting a failure if the probability of failure

obtained from the model exceeded a predefined threshold. The model predicted failures

with a bounds of |7 \ | = \TP\ = 1 minute and yielded results illustrating high precision

(0.8) and recall (0.923). Precision and recall are measures of accuracy defined in relation

to true or false positive or negative resulting values, with values closer to 1 indicating

16

more accurate results than values closer to 0. Precision (formula 1.1) and recall (1.2) are

mathematically defined below:

true positive
Precision = — — (1-1)

true positive + false positive

true positive
Recall = —— . (1.2)

true positive + false negative

This analysis was performed on legacy telecommunication deployments varying

greatly in design and purpose from high-end HPC systems. Further, the assumed one

minute lead time may be too short to allow the system to take adequate responsive

action.

In addition to Markov models, association rule discovery [59] has also been

applied to HPC failure prediction. The researchers form sets by grouping events that

appear close to each other chronologically and apply an association rule discovery

algorithm, predicting failures using a set of rules inferring either critical or fatal events.

Sahoo et al. [60] applied this approach utilizing a variable time interval, from 100 to 800

seconds. They claimed that the resulting model provided up to 70% accuracy in

predicting failures. Gujrati et al. [61] similarly applied this technique using a varying

\TP\ - from 5 minutes to 1 hour - and \Tt\ = 0. However, because |7\ | = 0, an

implementation of this model is unobtainable. Additionally, meta-learning applied in

[62] can help boost recall from 0.22-0.55 up to more than 0.65.

Bayesian network models have not been explored to their full potential in HPC

resilience study. This is due to the high computational costs of network topology

construction and structural learning. As in this dissertation, Hamerly and Elkan [63]

exploited a nai've Bayes scheme: a Bayesian methodology which assumes independence

17

among variables - to predict disk drive failures, achieving a 0.33 true positive rate and a

0.0067 false positive rate. Causality of variables can also be studied with Bayesian

analysis [64]. Sahoo [65] used Bayesian analysis to study causes and effects amongst

system variables, such as CPU usage and occurrence of system events.

Analyzing system failure behavior is not a trivial matter, and as such, a variety of

statistical methods must be exploited in the development of a reliability-aware runtime

framework for the modeling of large-scale systems, specifically in analyzing the

behavior of large-scale HPC applications. Bayesian analysis serves as a good alternative

to conventional statistical analysis methods in that it allows researchers to use all

available current and prior information in creating statistical models, as opposed to

conventional methods which restrict analysis to current data. The Bayesian approach

models parameters as random quantities and uses existing information to construct an

antecedent distribution model for the values.

There is little to no existing work in the utilization of inequality indices in

modeling HPC application behavior, let alone the development of a new index

specifically targeted at creating such models.

1.5 A Lack of Standardization Amongst Metrics

When one examines existing work in the areas of performance and reliability

analysis, behavioral modeling, quality of service estimation and failure prediction, it

becomes immediately clear that there exists substantial need for standardization in both

the explicit definitions and mathematical derivations utilized in such studies. Concepts

such as an application's MTBF, checkpoint/restart latency or overhead, failure prediction

18

costs or application process migration overhead are defined in radically different ways

depending on the individuals or organizations performing the analysis in question.

One such example is the definition of failure itself. While on its surface a very

simple idea requiring what should be an analogously simple definition, failure is instead

defined in radically variant ways across the HPC resilience community. Entities focusing

strictly on HPC systems, for example, define failure strictly as a system-centric construct

- that is, power or network outages are labeled as failures, while the unexpected

termination of one or more applications running on those systems are not labeled as such.

Examples of such entities are telecommunication data centers and large storage facilities.

However, more application-focused individuals or organizations would certainly

consider unexpected job termination a failure. Included in this group are pure scientists,

government laboratories, or any entity utilizing its HPC assets for capability computing.

Even at this level - which, it should be noted, is the point of view taken in this

dissertation - there exists much debate on the specific details included in the definition

of application failure. Certainly it would be considered a failure if one submits a job and

it terminates before reaching its expected outcome. However, what if only one

application process terminates unexpectedly, while the remainder successfully finish?

What if the application enters an infinite loop? In this case the application certainly

hasn't terminated, yet it will never finish executing.

There is no existing, widely adopted answer to any of these questions. The

Resilience Consortium has begun the process of tackling issues such as standardization,

but no industry-wide consensus has been reached and there remains much work to be

done in defining even the simplest of terms. All entities performing high performance

19

computing are aware of the issue and acknowledge the utility of arena-wide metric

standardization, but all bring their own biases in regard to such terms and little progress

has been made in this area.

This lack of standardization along with a strong need for application-specific

reliability metrics spawned the work outlined in this dissertation. The latter issue is

covered explicitly in the following chapter, while the entirety of this work is devoted to

providing one solution for the former. Although one-hundred percent adoption of these

concepts is an unrealistic goal, it is hoped that industry leaders and specifically the

Resilience Consortium give this idea of a unified Failure Index for HPC application

volatility a strong look and seriously consider pressing for the adoption of such a metric.

Even ignoring its utility as a location- and scale-invariant measure of application

volatility (those concepts will be discussed in depth in Chapters 3 through 5) the FI as

proposed in this dissertation can be easily implemented on live HPC systems, making it a

lightweight solution.

CHAPTER 2

HPC METRICS: GENERATION AND EXAMINATION

2.1 Generating Metrics for HPC Applications

The HPC community is presently encountering substantial proliferation in the

number of computational units used in its computing platforms. Although this increase in

size (and, subsequently, computing power) has both raised the bar for what high

performance machines can do and brought mainstream attention to the field via its

ascension beyond the petaflop barrier, it has also led to an increase in application

downtime [66].

Traditionally, the HPC research community has attempted to alleviate such issues

via the research and development of solutions geared toward increasing the reliability of

these machines. These hardware-centric solutions carry a single objective: maximize the

system uptime of a given HPC distribution. However, as extreme-scale HPC platforms

enter the petaflop age via the dissemination of ten and hundred-thousand core

architectures, application failures are encountered at rates that pragmatically prevent

fully reliable systems [67]. Thus, there is much work to be done in providing HPC

applications with the ability to run through failure. That is, solutions must be devised

that endow these programs with the capability to be resilient to failures encountered by

the systems upon which they execute.

20

21

We define a fully resilient HPC application as one that continues an acceptable level

of execution in the event of any variant form of non-catastrophic failure encountered by

its host system (catastrophic failures being wholly unavoidable events such as natural

disasters and center-wide power outages). Resilience, then, is a metric denoting how

close a given HPC application comes to realizing full resilience. This measure will, in

time, become as important in measuring the 'worth' of a given HPC platform as

contemporary benchmarks such as peak FLOPS, due to the increasing power and cost

demands of computing at an extreme scale.

The question, then, becomes "how does one provision HPC applications with

resilience-focused capabilities?" The answer begins with investigating how and why

contemporary extreme-scale machines are encountering such a startling number of

performance interruptions. This, however, is no simple task, due to the severe lack of

existing public information originating from high-end HPC applications. Los Alamos

National Laboratory collected and published data regarding the failure and usage of more

than 20 of their supercomputing clusters [68] and this information has been analyzed by

Schroeder et. al. from CMU in an attempt to study the root cause of the reported failures

[69]. This data consists primarily of failure data and system administrator notes but does

not include machine logs. This dataset will be examined in the following chapter.

As outlined in the previous chapter, work undergone by others within the HPC

research community has concluded that the inherent lack of structure exhibited by

supercomputer system log files prevents the ability to perform efficient analysis on the

reliability of such machines. Thus, to further resilience-centric study, there exists the

need for a novel method of extracting performance and reliability data directly from

22

extreme-scale applications. This chapter outlines a solution that, via a combination of

dynamic instrumentation and autonomous application correction, provides and handles

this information in an efficient manner.

Resilience, as a research and development field, can be defined as the radically

application-centric study of HPC reliability. Recapping from the previous chapter, those

within this field began preliminary investigations into the Mean Time to Interrupt

(MTTI) exhibited by contemporary high-end HPC applications. A LANL study [70]

extrapolated current system performance and subsequently estimated a 1.25 hour

application MTTI for a petaflop system - a very alarming and unacceptable value

especially given the time required to take a full-system memory snapshot (checkpoint).

This investigation concludes by suggesting that novel applications aimed at extending

the functional inter-failure lifespan of HPC applications be devised.

In many of these studies, the authors encounter tremendous difficulty in

extracting relevant and legible reliability information from extreme-scale application log

files [71]. Most concluded that the labyrinthine nature and enormous size of these

documents greatly hinders both the speed with which one can perform root cause

analysis and the efficient real-time monitoring and modeling of application performance.

Sisyphus [72], a web-based log file analysis tool developed at Sandia National

Laboratory, aims to resolve this conflict by filtering such log files via latent-semantic

indexing. This process utilizes a network of regular expression algorithms to parse and

display relevant information located within the log.

23

The health data collection processes outlined in existing studies, however, are

both reactive and substantially system-centric. Furthermore, these approaches do not

efficiently scale when large numbers of nodes are added to an HPC system.

As such, an efficient solution for the real-time generation of reliability metrics

from highly-scaled HPC applications must be designed and implemented to facilitate

further study in the resilience field. Further, these metrics should be handled

autonomously, allowing the application to self-correct resilience issues without live

human interaction. These goals, then, are the focus of the work described in this chapter.

Here Gilgamesh is presented, developed by the author as a plug-in for the

Open|SpeedShop performance analysis suite. Gilgamesh utilizes the dynamic

instrumentation of binary source to efficiently collect program information for jobs run

on extreme-scale HPC distributions. It then uses a scripting and database interface to

handle the generated information and autonomously provision application reliability.

Open|SpeedShop (OSS) is an open source performance monitoring tool funded

by the U.S. Department of Energy Tri-Labs at Los Alamos, Sandia, and Lawrence

Livermore National Laboratories. OSS was initially developed by Silicon Graphics, Inc.

(SGI) and later adopted as a community effort by the Krell Institute. Per its website, OSS

is "an open source multi platform Linux performance tool which is initially targeted to

support performance analysis of applications running on both single node and large scale

IA64, I A3 2, EM64T, and AMD64 platforms. It is explicitly designed with usability in

mind and targets both application and computer scientists" [73].

Open|SpeedShop contains four different user interfaces: graphical, command line,

Python scripting, and batch. The graphical user interface (GUI) provides real-time visual

24

representation of system and application performance. Likewise, the command line

interface (CLI) enables a less costly method for quickly and easily viewing performance

information. Lastly, the batch interface (utilized by Gilgamesh) serves as a means for

external scripts and applications to call upon OSS to perform a specified function. Figure

2.1 showcases the Open|SpeedShop GUI in action - in this case, displaying program

counter sampling information.

&
gile Tot&t Hdp

s $t pc Sampling (1}

Process Contrd

S Update

Status Experiment has let nunated

£ $wmt Pa«ei [ll , & Stars Pal*

\

£anel Container Menu

v* Recycle

Preference Panel

Show Metric pcsarop time

Show 'Hire ad/Process

</ Show Percentages

Compare

Columns Menu

Export Report Data >

Go to source fecshon

Re-orientate

Hide £hart..

Osage " w-3i^e^pen«7cuiTen5?oH Hide Statistics
No size argument given Defaulting: toy>*o—~ ~~ ~ ™™™™™™™™™-™™-™
/w^k/jeg/openss/current/usablity/phaseJJ/rred, suceesfuliv completed
Experiment 1 has terminated

Cfcri+R

Ctrl+L

Ctrl+L

furred f-'c2)
fiCfred tlc,2)
workfired work.c,2)

Figure 2.1 Open|SpeedShop GUI

IWoTBTx

rooTaTxl

OSS also supports the development of user-created plug-ins (called 'experiments'

in the OSS lexicon) which allow one to leverage the software's mechanics to capture

user-defined metrics from the target application. There are a number of application

properties that OSS can extract and analyze without any modification or addition to its

25

source. Among these are the following: floating point exceptions, hardware counter data,

input/output information, MPI tracing, program counter sampling, and user time metric

collection [74], most of which cannot be found in system log files. The Open|SpeedShop

portion of Gilgamesh cherry picks collectors for resilience-pertinent information and

establishes an interface through which the external storage and correction processes can

access this data in real-time.

Prior research within the HPC resilience research community has concluded that

there exists a need for the development of software which provides extreme-scale HPC

applications with the ability to successfully continue computation in the event of non-

catastrophic performance interruptions [75, 76]. The logical first step in this software's

development cycle, then, is the creation of a module by which resilience-pertinent

information is extracted from an HPC application. That is, in order to successfully

provision fully resilient high performance programs, one must first gather the

information to determine how and why the application is failing.

Gilgamesh leverages Open|SpeedShop to accomplish this via the dynamic

instrumentation packages located within the OSS framework. Developed as an OSS

plug-in, this portion of Gilgamesh utilizes the DPCL [77] and Dynlnst [78] packages that

drive OSS's dynamic instrumentation capabilities to quickly generate resilience-pertinent

metrics from running HPC applications. As the application executes, user-determined

function calls trigger Dynlnst and DPCL to comb the program's source and generate a

snapshot of its current state, dynamically instrumenting the application. These

parameters are then collected by Gilgamesh's scripting framework and stored in an SQL

26

database, where the autonomous correction module analyzes the data and resolves

reliability-threatening issues before they impact application execution.

By default Gilgamesh is configured to capture specific metrics from a user

application. This initial set of metrics constitutes a general class of parameters that are

often useful to a wide range of applications, but, through the Gilgamesh graphical user

interface, the user can define others.

Gilgamesh utilizes Open|SpeedShop's batch interface to intelligently attach its

data generation module to the job queuing and execution processes without being

explicitly launched from within a given user space. When a user submits a job to the

batch scheduler, Gilgamesh recognizes this and prepares to attach itself to the application

once it is scheduled and begins to execute. The interaction between Open|SpeedShop and

Gilgamesh is displayed in Figure 2.2.

.gfl i l i j i ! !: ::i$§ m I ipegisfw*|i

Figure 2.2 Interaction between Open|SpeedShop and Gilgamesh

As a plug-in for Open|SpeedShop, Gilgamesh's data collection module works by

executing revised copies of the runtime.c (application-side) and collector.cxx (OSS-side)

27

source files that initialize the various dynamic instrumentation processes. These files,

then, work together to generate Binary Large Objects (blobs), which contain the actual

information extracted from the application. The rate at which Gilgamesh produces blobs

may be explicitly determined by the user via the Open|SpeedShop GUI. This dissertation

will focus more on the data generation and storage aspects of Gilgamesh, as its analysis

and correction routines have since been replaced by the failure indexing algorithm

introduced in Chapter 4 and used in Chapter 5.

Gilgamesh contains a script which brokers storage of the reliability information

captured by OSS. Launched in conjunction with the data collection processes as the

target application leaves the queue, this script periodically enters OSS's batch interface

and dumps the generated metrics into a SQL database which exists completely outside of

the OSS realm. This greatly expands its flexibility - one could connect any number of

additional applications to this database and, so long as it remains formatted in the

Gilgamesh schema, the metric generation and storage processes will execute seamlessly.

The rate at which this script interacts with OSS can be easily modified by editing an

associated configuration file.

As application reliability information is stored, Gilgamesh then evaluates the

data, determines if there exist any potential problems, and attempts to preemptively

correct these issues via a number of available techniques. Once the storage script has

completed execution, it instantiates a correction script that accesses the SQL database

and statistically analyses the data captured by Open|SpeedShop. It is important to note

that these scripts exist completely outside of the OSS framework - any database

28

containing application reliability information can be analyzed by this correction module,

so long as it is a SQL database with the Gilgamesh schema.

Unlike most contemporary approaches, the health determination algorithm used

by Gilgamesh does not utilize a threshold-crossing algorithm. Instead, Gilgamesh

determines if the application is trending towards failure. That is, instead of comparing

the application information in the database to a collection of associated values and

determining if the value exceeds the listed threshold, Gilgamesh's failure anticipation

algorithm works by comparing all values of a given metric and the associated times at

which these values were generated by the application. It then analyses the slope of this

comparison and signals if the given attribute is trending towards a potential failure. This

idea of an anticipation algorithm played a big role in the eventual creation of the Failure

Index.

For example, if CPU usage is enabled in the Gilgamesh GUI, Gilgamesh will,

when dynamically instrumenting the application's binary, extract per-node CPU usage

from the application and store this information in the database. The correction script is

then called and, instead of comparing this CPU usage value to a predetermined threshold,

it takes this value and all previous recordings of this value for this run of the application

and differentiates this data with respect to time. If it determines that that this parameter's

slope is getting steeper at a sufficiently significant rate, the correction algorithm is

triggered. Differentiating data in this manner is analogous with the concept of rate of

occurrence of failure (ROCOF), discussed later in this dissertation.

This approach goes beyond contemporary threshold-related schemes. Should an

application always run at 95% CPU usage yet show no symptoms of potential failure,

29

Gilgamesh does not detect an anomaly. However, if an application typically utilizes 20%

of the CPU, but has escalated to 30%, 50%, and 70% CPU usage over the past 5 minutes,

then the tool identifies this as a potentially serious change of events.

Once Gilgamesh determines that some aspect of the application is trending

towards failure, the autonomous correction module is alerted and begins work on

mitigating the anticipated failure before it occurs. At this point, Gilgamesh has a

multitude of options at its disposal: Schemes such as process re-instantiation or

migration, node rejuvenation, and checkpointing/restarting are all available as potential

remedies for the deteriorating application. Many of the best ideas discussed in the

previous chapter were cherry picked in Gilgamesh's implementation of fault mitigation.

The remedy selected by Gilgamesh, of course, depends on the specific metric

acting as catalyst for the failure. In general, node-related parameters such as CPU usage

trigger process migration and node rejuvenation, while application-centric metrics such

as floating point exceptions trigger process re-instantiation. Every attempt is made to

avoid application-wide checkpoint/restart, as this form of fault-tolerance should be

reserved for recovering from catastrophic failures. In scenarios where a proactive

response to impending failure is possible, Gilgamesh chooses that approach.

Current research and development on Gilgamesh focuses on instrumenting a

number of HPC applications with a full-capacity build of this software, in an effort to

generate a wealth of information related to the failures encountered by applications

running at an extreme scale. This information, then, will be used to retool the software to

perform its duties in a substantially less costly manner, while increasing its ability to

accurately anticipate failure. Future work includes further decreasing the software's

30

overhead requirements and specifically increasing the intelligence of the autonomous

correction component via the implementation of the FI. Real time monitoring using a

combination of Gilgamesh and the FI is proposed as future work in Chapter 6.

2.2 Examining HPC Application Metrics

A common goal in studies done on resilience provision within HPC distributions

is the development of an effective reliability, availability, and serviceability (RAS)

logging and monitoring framework for detecting, circumventing, and quickly recovering

from system and application failures. However, before this development can begin, it is

both necessary and critical to characterize potential failure scenarios. This includes

creating working definitions of these failures (as will be covered later in this document)

and developing a sound understanding of the structural semantics and dependencies

located within the target architecture. This section develops a means to characterize

system- and application-level failures encountered within the HPC environment as a

general architectural paradigm. Specifically, this section introduces the general concepts

and procedures for describing an HPC dataset as used in the remainder of this

dissertation.

To develop a working dataset that was both tangible and rich in failure and

performance information, a number of system logs from existing large- and extreme-

scale HPC deployments were obtained. The findings obtained by mining and modeling

these records, combined with an in-depth examination and subsequent understanding of

requisite HPC architectural components drive the bulk of this section.

The multiple processors that serve as nodes within an HPC environment, much

like those found in any other architectural permutation, output various information via

31

system- and application-level log files. However, as discussed in the previous section,

there are a number of hurdles encountered when attempting to mine this information in

an effort to better understand failure characteristics and capture system health indicators.

As discussed in the first chapter, there is no standardized design method for

culling performance information from these files, nor is there a standard means of

arranging the data. In multi- and heterogeneous-core environments, in particular the

dominant cluster computing model, there is the potential for any number of divergent

processor technologies. Various manufacturers and clock speeds, amongst other

discrepancies, lead to diverse, sometimes radically different log formats amongst nodes.

This is a major obstacle in identifying overall environmental health, as, without another

level of abstraction above the various node-specific reporting modules, performing any

detailed comparisons between individual system components proves very cumbersome.

Also, in most systems, only performance metrics pertaining to individual nodes

or components within the individual machines are logged, and, as such, no multi-

component or system-wide performance indicators are currently used in formulating log

data. These are often crucial values that must be taken into consideration when

formulating a given system's overall health and viability.

Briefly discussed in the first chapter, the Blue Gene/L (BG/L) log file is used as

our test dataset in this section. BG/L, a well-known IBM-developed supercomputer, is an

extreme-scale HPC deployment which strictly adheres to many of the core design

principles of high performance computing and, as such, serves as a worthy target

architecture for the study of HPC failure activity. Contained in its 710 MB, 4,747,963

line log file was performance and error information covering a six month period, from

32

June 3rd, 2005 to January 4th, 2006. The information outlined in this section is the result

of analysis into the behaviors and trends located within this rich performance dataset.

According to the Top500 Supercomputer website, BG/L - located at Lawrence

Livermore National Laboratory - was at one time the largest supercomputer in existence.

The system is comprised of 106,496 dual-processor compute nodes, of which 67% are

512 MB and 33% are 1 GB. It also contains 1,664 I/O nodes, 212,992 IBM PowerPC

CPUs, and a total disk space of 1.89 PB. Within the Blue Gene/L architecture, each rack

is divided into two parts: a top midplane and a bottom midplane. Each part contains 16

node cards, 1 service card and 4 link cards, and there are 32 compute nodes and 4

optional I/O nodes on each node card [79].

During the time interval covered in the log file, there were 4,747,963 messages

sent to the log. Each message contains the time, location, RAS or NULL, facility, severity,

and event description information shown in Figure 2.3. Locations are denoted by codes

which represent a particular hardware component.

2005-08-02-17.18.18.545821 HULL RAS BGLMASTER FAILURE »nics_seEvei: exited normally with exit code 1
2005-08-02-18.05.32.652047 HULL RAS BGLMASTER FAILURE idoproxy exited normally with exit code 0
2005-08-02-18.05.42.661358 HULL RAS BGLMASTER FAILURE mncs_server exited normally with exit code 15
2005-08-02-18.05.47.668332 NULL RAS BGLMASTER FAILURE ciodb exited normally with exit code 15
2005-08-03-13.34.51.000398 HULL RAS BGLMASTER FAILURE iamcs_server exited normally with exit code 15
2005-08-10-09.09.58.139632 NULL RAS BGLMASTER FAILURE mmes_Berver exited normally with exit coda 15
2005-08-12-07.20.27.921676 HULL RAS BGLMASTER FAILURE ciodb exited abnormally due to signal: Aborted

Figure 2.3 An Example of BlueGene/L's Log Format

The facility variable, found in every log entry, indicates the hardware or service

affected by the corresponding reported event [80]. This value can be characterized into

one of 10 types: MMCS, APP, KERNEL, LINKCARD, DISCOVERY, MONITOR,

HARDWARE, CMCS, BGLMASTER, and SERV_NET. MMCS represents the system's

33

midplane management and control service, while CMCS stands for core management and

control system. KERNEL indicates events related to hardware instruction and data

manipulation. DISCOVERY is a service that monitors hardware changes. MONITOR is

another control system component which provides various hardware status metrics such

as temperature. BGLMASTER is a service that controls the MMCS. Also within the log

messages are six severity levels: INFO, WARNING, SEVERE, ERROR, FATAL, and

FAILURE.

As outlined in Tables 2.1 and 2.2, 91% of messages contained in the log are

generated by the KERNEL facility, and 79% of messages are of the INFO severity level.

Also, 2% of all messages were generated by the DISCOVERY, MONITOR, and

HARDWARE facilities - all indicating hardware abnormality - and 4% of all log data

was generated by APP.

Table 2.1 Number of Messages per Facility, BG/L

Facility

MMCS

APP

KERNEL

CMCS

BGLMASTER

Number of Messages

88,930

228,536

4,324,967

211

145

Facility

LINKCARD

DISCOVERY

MONITOR

HARDWARE

SERVNET

Number of Messages

1,170

97,172

1,681

5,148

3

34

Table 2.2 Number of Messages per Severity Level, BG/L

.Severity
Level

INFO

WARNING

Number of
Messages

3,735,823

23,357

Severity
Level

SEVERE

ERROR

Number of
Messages

19,213

112,355

Severity
Level

FATAL

FAILURE

Number of
Messages

855,501

1,714

The FAILURE severity level contained messages produced exclusively by failing

system components. It was also observed that many event descriptions in the FATAL

level represented failure activity, such as "panic: -stopping execution". It was

consequently assumed that all failure events were located in the FATAL or FAILURE

severity levels and, given that the objective of this initial study was the isolation and

analysis of failure information from a given BG/L log file, messages other than those of

FATAL and FAILURE severity were discarded. This resulted in a collection of 855,501

FATAL and 1,714 FAILURE messages, which are further detailed in Tables 2.3 and 2.4

respectively.

Table 2.3 Time between FATAL Messages, BG/L

Time Between FATAL Messages

Number of Messages

Minimum

Maximum

Mean

Median

855,501

0 seconds

303533 seconds

21.683 seconds

0 seconds

35

Table 2.4 Time between FAILURE Messages, BG/L

Time Between FAILURE Messages

Number of Messages

Minimum

Maximum

Mean

Median

1,714

0 seconds

3382246 seconds

8,193 seconds

0 seconds

The mean values found in these results suggest that FATAL and FAILURE

messages are generated at an incredibly high frequency. Further, a median value of

nearly 0 seconds for both the time between FATAL messages and the time between

FAILURE messages confirms that more than half of all failure-related messages are

generated almost simultaneously. After further analysis, it was found that there existed a

number of FATAL-tagged messages that did not, in fact, suggest legitimate system

failures. For example, "guaranteed data cache block touch", "store

operation 7", or "instruction address space 0" are all tagged as FATAL,

but do not result in the system entering a compromised state. However, many of them -

such as "Power deactivated", "kernel terminated" and "Lustre mount FAILED" -

strongly suggested traceable system failures.

It was discovered that in many cases a single FATAL or FAILURE message may

be repeatedly and massively reported. For example, 346 FAILURE messages, containing

the message "Temperature over Limit on link card' were repeatedly reported from 2005-

11-07-12.28.58 to 2005-11-07-12.37.20. Put into perspective, that single message was

36

generated almost every second for close to ten minutes. Because of this phenomenon,

two datasets, U and L, were constructed.

The first dataset U contains all FATAL and FAILURE messages, less those that

do not infer actual, legitimate system failures. U, then, represents an upper bound for all

system failure behavior that has been reported in the log, as it contains all reported

system failures. Certain message patterns, such as those containing only numeric codes,

were filtered from the data as non-failure messages, and are not included in U. The

second dataset L contains only those FATAL and FAILURE messages inferring system

failures. Similarly, L represents a lower bound for reported system failure behavior, as it

is a subset of the actual failures. Like in U, particular message patterns were used to form

L via the extraction of messages that suggested system- or application-affecting failures.

Repeated messages stemming from a single failure were removed from both

datasets, as the target of this study is less the messages in the log file and more the actual

failure behavior of the system. This process is conducted inductively with a time interval

of 60 seconds. As an illustration, suppose that there are three identical messages from the

same source appearing at times 1, 30, and 100 seconds after log initialization. Because

the time between messages one and two is 29 seconds, message two is removed from

both datasets. However, because the time between messages two and three is 70 seconds,

message three is not removed. The time between the individual messages contained in

both datasets is summarized in Table 2.5.

37

Table 2.5 Time between Messages, Datasets U and L

Time Between Messages, L

Count

Minimum

Maximum

Mean

Median

72208

0

460,510 seconds

254,101 seconds

0

Time Between Messages, U

Count

Minimum

Maximum

Mean

Median

185102

0

330,072 seconds

100.0569 seconds

0

Although the mean time between the messages contained in both datasets appears

longer than the mean found in the original data, the value remains extremely low. In

researching the genesis for this abnormality, it was discovered that many of the logged

messages stemming from a single incident and occurring during similar time windows

were reported by a large group of nodes. For example, 2,048 compute nodes reported an

"rts internal error" within a very small timeframe - from 2005-06-14-11.15.09 to 2005-

06-14-11.16.15 (a window of only one minute and six seconds).

However, because this dissertation is most concerned with failure information

suggesting application interruption (recall from the previous chapter our working

definitions for both failure and resilience), the time between messages data was further

processed by making an assumption that the system has a certain amount of time to

repair and that a given application uses all nodes in the system. If the time between two

failures is less than time to repair, the latter failure can no longer affect the application

because the system is being repaired and is no longer in production mode. Thus, any time

between failures less than or equal to the time to repair those failures could be removed

from the datasets. For the purposes of this section, the results of this removal are

38

examined using four different time to repair values—1, 5, 10, and 20 minutes. The

results are summarized in Table 2.6 and Table 2.7.

Table 2.6 Time between Messages, L, After Repeated Message Removal

Time to Repair (L)

Count

Minimum

Maximum

Mean

Median

1 min

476

10.08 min

5.3 day

10.69 hrs

3.96 hrs

5 min

453

10.52 min

5.3 day

11.24 hrs

4.94 hrs

10 min

436

10.6 min

5.3 day

11.67 hrs

5.6 hrs

20 min

375

20.25 min

5.3 day

13.53 hrs

8.26 hrs

Table 2.7 Time between Messages, U, After Repeated Message Removal

Time to Repair (U)

Count

Minimum

Maximum

Mean

Median

1 min

1023

1 min

3.8 day

5.02 hrs

1.81 hrs

5 min

912

5.23 min

3.8 day

5.63 hrs

2.41 hrs

10 min

872

10.05 min

3.8 day

5.89 hrs

2.57 hrs

20 min

741

20.1 min

3.8 day

6.97 hrs

3.56 hrs

By using the datasets L and U, which represent the best and worst case system

failure behavior respectively, the results form Table 2.6 and Table 2.7 suggest that the

mean time to interrupt for a BG/L application plausibly falls between 5 and 14 hours,

depending on the utilized time to repair.

39

In addition, when a single failure generates multiple messages, the first messages

generated will typically have a larger amount of time between them while their

duplicates will have a much smaller time between messages. This suggests that for

duplicate messages a large time between messages should change very little after the

TTR becomes larger than time between messages. Time between message measures for

both U and L of more than 100 minutes are very stable for all TTR of one minute or

more, indicating that one minute is sufficient to remove the vast majority of duplicate

messages for a single root cause.

In conclusion, results suggested that the BG/L system has a mean time to failure

(MTTF) of 5.89 hours - or roughly 4 times a day - for an application with a time to

repair often minutes. This is also assuming a full, evenly distributed system load, which

is of course not always the case. Failures may occur as often as 10.6 minutes apart, or,

likewise, one could go days (in the case of the 10 minute MTTR assumption - 3.8 days)

without observing a system breakdown.

This initial study proved that BG/L's log files provide a wealth of information,

but much of it is of no use to those interested in provisioning resilient applications for it

and similar technologies without first filtering the data and performing appropriate

statistical analysis to arrive at correct and logical values. Similarly, the results gathered

from observing BG/L are not comparable to those of other systems without first

developing a way to normalize the data.

The remainder of this dissertation and, in fact, the novel contribution of this

work, will be devoted to developing such a measure. By first conceptually introducing

inequality indices and then demonstrating their effectiveness in describing the failure

40

behavior on an HPC system reliability dataset, the following chapter demonstrates the

utility of such a measure.

CHAPTER 3

INEQUALITY MEASURES FOR HPC RELIABILITY

DATA

3.1 Introduction and Justification

A needed element in the study of resilient High Performance Computing (HPC)

applications is the creation and widespread adoption of a normalized metric representing

an application's failure behavior [81, 82]. Such a metric opens the door for enhanced

quality of service provision and a set of standard operating expectations for large-scale

HPC application development and execution.

The contemporary expansion in HPC system size and complexity has generated a

lack of quantitative expectations in application performance due to the volatile failure

activity encountered when computing at such a high scale [83]. A standardized and

widely adopted failure metric expedites the process of informing research, development

and administration personnel of unexpected application behavior and acts as notification

that application processes are failing to maintain an adequate level of performability

[84].

In this chapter, inequality indices are introduced from a statistical point of view

and applied to an existing HPC dataset. These metrics serve as the initial step in the long-

term research and development of new resilience-related values, as their scale- and

location-invariant nature and normalized representation allow HPC researchers to

41

42

adequately compare inequality in failure behavior across various systems and

applications. Specifically, the Gini, Atkinson and Theil indices are introduced in this

chapter, with the final sections detailing the application of the Gini and Atkinson indices

to an HPC system reliability dataset.

3.2 The Lorenz Curve

Inequality indices are based on the Lorenz curve, introduced in 1905 by Max

Otto Lorenz as a graphical representation of a distribution's level of equality, wherein

observed events are compared to distributions with perfect equality [85]. The Lorenz

curve is based on a convex function, and has been widely adopted by economists for use

in comparing income distributions [86].

Figure 3.1 shows an example Lorenz curve. The plot is a 45 degree line with the

y-axis representing the percent of event occurrence and the x-axis representing, as a

percentage, an increase in population. Logically, then, the upper limit for both scales is

100 - one hundred percent of a population earns, for example, one hundred percent of all

income and, analogously, zero percent of the population earns zero percent of all income.

When income is distributed evenly - that is, 10% of the population earns 10

percent of the income, 50% of the population earns 50 percent of the income, and so on -

the Lorenz curve represents what is called the egalitarian line, or the line of absolute

equality. The egalitarian line is represented by the 45-degree line in Figure 3.1.

43

10

08 -

06 -

04 -

02

00

Figure 3.1 Lorenz Curve Given Total Equality

The representation of unequal distributions results in an empirical Lorenz curve

(L) which is well defined on the interval [0,1]. Note that 1,(0) = 0, L(l) = 1. If all

event values followed a uniform distribution, then, the empirical Lorentz curve would

equal the egalitarian Lorenz curve as shown in Figure 3.1. However this is typically not

the case and the empirical Lorenz curve L rests below the diagonal, as shown in (3.1).

The Lorenz curve is defined as

L (» = WVT f F-\v)du,

F _ 1(s) = inf{u: F(u) > s); 0 < s < 1 . (3.1)

44

Here, F is the distribution's cumulative distribution function. One can compare

the difference in inequality between two distributions by comparing their Lorenz curves,

with the curve that most deviates from the line of absolute equality representing the

distribution containing the higher amount of inequality. This situation is represented in

Figure 3.2, with the Lorenz curve closer to the right and bottom of the graph representing

a distribution containing more inequality than the distribution represented by the Lorenz

curve closest to the line of absolute equality.

1 0 -

08 -

06 -

04 -

02 -

00 -

00 02 04 06 0.8 10

P

Figure 3.2 Lorenz Curves for Two Distributions with Varying Levels of Inequality

The following three sections introduce various types of inequality indices -

means of representing the inequality in a distribution via the creation of location- and

scale-invariant coefficients. All three are based on the Lorenz curve.

45

3.3 The Gini Index

The Gini index is a normalized measure of the statistical inequality of a given

dataset which generates a coefficient based on a 0-to-l system, with a value of 0

measuring total equality and a value of 1 measuring total inequality. Using an example

illustrating this metric's use in economics, the Gini index is often used to express the

level of inequality in national income distributions, with as of 2009 Sweden having the

world's lowest Gini coefficient (0.23) and South Africa having one of the highest (0.67)

[100]. This implies that Sweden has the most equal distribution of wealth amongst the

world's nations, and South Africa has one of the most unequal. Taking this to an

extreme, a nation reporting a Gini coefficient of 1 in such a study would indicate that one

individual controls all of that nation's wealth, with the remaining members of the

population each having no income. Likewise, a Gini coefficient of 0 would indicate that

all individuals in a given country earn the exact same income.

Statistically, the Gini Index measures the ratio of the area between the Lorenz

curve (L(p)) and the line of absolute equality (/), to the area under that line, which is

1/2. More easily stated, the Gini Index (3.2) represents twice the area between / and

L(p), which can be mathematically expressed as

GF:=2 \ \I-L(p)\dt. (3.2)

When one uses the Gini index, a Gini coefficient is generated which represents

the level of inequality measured. As mentioned, a perfectly uniform distribution would

generate a Gini coefficient of zero, as mathematically there would be no area between

the line of absolute equality and the Lorenz curve. Likewise, in the event of complete

inequality, the Gini coefficient would be 1, coinciding with straight lines at the lower and

46

right boundaries of the curve. The general definition for the Gini index (3.3) , where X1

and X2 are independent random variables with mean jU, is

GF = — £ (| * ! - X2\) = — [[\Xl-x2\ dF{x1)dF{x2) . (3.3)
L\i C.[i JR JR

In addition to economics, the Gini Index has applications in biodiversity [87],

chemistry [88], agriculture [89], and engineering [90]. In general, it can be used to

measure any subject involving a distribution.

3.4 The Atkinson Index

The Atkinson index is similar to the Gini index, with the notable inclusion of a

coefficient that allows it to examine movement within different sections of a distribution

[91]. The Atkinson index becomes more sensitive to changes at the lower end of the

distribution as this coefficient approaches 0. Conversely, as this coefficient approaches 1,

the Atkinson index becomes more sensitive to changes at the upper end of the

distribution. Like the Gini index, the Atkinson index generates a coefficient which

measures a distribution's departure from uniformity using a 0-to-l system, again with 0

representing total equality and 1 representing total inequality. The Atkinson index given

multiple events yx,..., yn with mean \i (3.4) is properly defined as

A£(y1,...,yn) =

I

1 / 1
1

1=1
 1 . (3.4)

N

-l\Jily>") • ° < £ < 1

l -KD- • £ = 1

The distinguishing feature of the Atkinson Index is its ability to measure

movements in different segments of a given distribution. Like the Gini index, the

47

Atkinson index has seen uses largely in economics, but also in biodiversity and

chemistry, amongst other fields. The inclusion of the parameter makes it particularly

useful when applied to large data sets.

3.5 The Theil Index

The Theil index is a measure of inequality closely related to the Atkinson index -

in fact, a Theil coefficient can be transformed into an Atkinson coefficient and vice-

versa. Specifically, the Theil index is a measure of entropy, where maximum entropy

occurs when there is perfect equality [92].

Like the Gini and Atkinson indices, the Theil index generates a coefficient based

on a 0-to-l scheme. Here, however, the coefficient measures the level of entropy in the

distribution, rather than the level of inequality. It is important to note than an increasing

Theil index does not indicate increasing entropy. It instead indicates an increasing level

of redundancy - the gap between maximum and actual entropy. Thus, it actually

indicates decreasing entropy. The general Theil index given multiple events xt, ...,xn,

where xt is the value of the ith event in the distribution, X is the mean value of all events

in the distribution and N is the population (3.5) is defined as

The following section introduces the HPC dataset to which the Gini and Atkinson

indices will be applied. Following that, the resulting coefficients and Lorenz curves

generated by that dataset will be reported. Finally, various conclusions will be drawn

relative to these results.

48

3.6 Application to HPC Data and Results

3.6.1 Introduction to the Dataset

This section demonstrates the utility of inequality indexing by generating Gini

and Atkinson coefficients for each of the 23 HPC machines housed at Los Alamos

National Laboratory from 1996 to 2005. The dataset containing this information was

released in 2005 as a collection of CSV files and was initially analyzed by Schroeder et

al from Carnegie Mellon University's Parallel Data Laboratory [99]. In that initial study,

a number of statistical conclusions are drawn in a similar fashion to our team's later

work on the BlueGene/L machine at Lawrence Livermore National Laboratory, which

was discussed in Chapter 2.

Gini, Atkinson (with parameter 0.99) and Atkinson (with parameter 0.20)

coefficients will now be generated for each system contained in the log file. Doing so

will both demonstrate the viability of inequality index coefficients as a metric for

comparing HPC system failure inequality as well as provide finer-grain information

regarding the inequality stemming from each machine's failure behavior during the time

frame covered in the log file.

The nearly 3 MB file contains 23,739 failure events from 23 of LANL's systems,

accrued over a nine-year period. To maintain confidentiality, each system is labeled

using a number system from 2 to 24 (systems "2", "3", etc), with System 2 being the

oldest system recorded in the log and System 24 being the youngest. Each failure record

contains the time when a failure was first reported (labeled 'prob started'), the time when

the issue causing the failure was resolved ('prob fixed'), the total system downtime (in

minutes) resulting from the failure, the system and node affected by the failure, the type

49

of workload running on the node at the time of the failure and the root cause of the

failure. Screenshots representing the left and right halves of the original CSV file (taken

from the same sample) are shown in Figures 3.3 and 3.4, respectively.

System machine type

2 cluster

2 cluster

2 cluster

2 cluster

2 cluster

2 cluster

2 cluster

2 cluster

2 cluster

2 cluster

2 cluster

2 cluster

2 cluster

2 cluster

nodes

49

49

49

49

49

49

49

49

49

49

49

49

49

49

procstot procsmnode noden

6152

6152

6152

6152

6152

6152

6152

6152

6152

6152

6152

5152

6152

6152

SO

SO

SO

80

80

80

SO

128

128

128

128

125

128

128

um nod

0

0

0

0

0

0

0

1

1

1

1

1

1

1

enurn

0

0

0

0

0

0

0

1

1

1

1

1

1

1

l ode install

5-Apr

5-Apr

5-Apr

5-Apr

5-Apr

5-Apr

5-Apr

Nov-96

Mov-96

Nov-96

Nov-96

Nov-96

Nov-96

Nov-96

node prod node decom frutype

5-Jun current part

5-Jun current part

5-Jun current part

5-Jun current part

5-Jun current part

5-Jun current part

5-Jun current part

Jan-97 5-Nov part

Jan-97 5-Nov part

Jan-97 5-Nov part

Jan-97 5-Nov part

Jan-97 5-Nov part

Jan-97 5-Nov part

Jan-97 5-Nov part

mem

SO

80

SO

80

80

80

80

32

32

32

32

32

32

32

cputype

1

1

1

1

1

1

1

1

1

1

1

1

1

1

memtype

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 3.3 Leftmost Columns Sample, LANL Failure Dataset

Prob started {-nm/dd/yy hh:mmf Prob Fixed (rnm/dd/yy hh:mm) Down

6/21/200510:54

9/6/2005 9:13

9/6/200510:32

9/«/200514:50

9/8/2005 16:52

9/9/2005 9:44

9/9/200511:44

2/23/199713:00

2/24/1997 7:10

3/3/139710:00

3/5/199717:30

3/6/199717:30

3/11/199723:20

3/17/199723:05

6/21/2005 11:00

9/6/20059:19

9/6/2005 10:46

9/6/200515:08

9/8/200516:57

9/9/2C05 5:51

9/9/2005 11:55

2/23/1997 14:00

2/24/19977-20

3/3/199710:25

3/5/199717 40

3/6/1997 17:40

3/12/19970:01

3/17/1997 23:54

Time Facshtie

6

6

14

IS

5

7

11

60

10

25

10

10

41

49

Hardware Human Error Network undetermined Software

Graphics Acce! Hdwr

other software

Undetermined

Othe

Undetermined

Undetermined

Other

DST

DST

Maintenance

DST

DST

Unresolvable

Other

Software

Software

Same Event

No

No

No

No

No

No

No

No

No

No

No

No

No

No

Figure 3.4 Rightmost Columns Sample, LANL Failure Dataset

Failures are detected by an automated monitoring system that pages operations

staff whenever a node is down. The operations staff then creates a failure record in the

database specifying the start time of the failure and the system and node affected. They

then turn the node over to a system administrator for repair. Upon repair, the system

administrator notifies the operations staff, who then put the node back into the job mix

and fill in the end time of the failure record. If the system administrator was able to

identify the root cause of the problem, he provides operations staff with the appropriate

50

information for the 'root cause' field of the failure record. Otherwise the root cause is

specified as 'undetermined'. Note that the dataset covers each of the 23 systems only

during their time in a production environment, and testing/debugging as well as

maintenance time periods are not covered.

Though it covers multiple systems, the LANL dataset is similar to the BG/L

dataset in that various sources of failure are broken up into facilities. As in Chapter 2,

'facilities' here refers to the various components of the system acting as possible origins

for the failures that occur on that system. The facilities themselves are however not

identical to those found in the BG/L dataset. Instead of the ten facilities represented

there, in the LANL data there are only five: HARDWARE, SOFTWARE, NETWORK,

HUMAN ERROR, and UNDETERMINED.

Further, instead of the machine or operating system autonomously generating the

facility of origin in the log file, here an actual human being records the suspected facility

in the log, which is later investigated and confirmed or changed at subsequent operations

staff meetings. The log also contains a column for noting whether the current failure

event is due to the previously listed event, again decided by a human operator, not the

system itself. Again, it is important to note that the dataset contains information from

multiple machines, which is unlike the previously-used BG/L data (which contained

information from only one system).

Each entry in the log file contains numerous columns. Specifically, those

columns are the name ("2", "3", etc.) and type (cluster, graphics card, etc.) of each

system containing a logged event, the number of nodes housed in that system, the total

number of processes running on the machine as well as the number of processes running

51

on each node in the machine at the time of the failure, the machine node reporting the

failure, the installation date and production commission and decommission dates of that

node, the purpose of that node, the start and end dates of the failure in question, the total

downtime in minutes caused by the failure in question, and finally the facility of origin

for that failure. This analysis pays specific attention to the 'system' and 'down time'

columns of each entry -inequality coefficients are generated for system down time for

each of the 23 machines found in the file. All of these failures are caused by one of the

five facilities reported in the log. Recall that the scale- and location-invariant nature of

inequality indexing allows us to compare entries reported by multiple machines with one

another, regardless of node count or system type. This is why the LANL dataset and its

23 machines were chosen for this case study.

The following section reports the resulting inequality coefficients for each of the

23 systems found in the log file. Coefficients were generated via the Gini and Atkinson

indices, with two parameter variations utilized for the Atkinson index: e = 0.99, which

generates an Atkinson index coefficient utilizing all events found in the file, and 8 =

0.20, which was chosen in accordance with the findings from [103], which found that

"redistributions at the lower end of the distribution also have a greater impact on

mortality."

Recall the formulation of the Gini index from (3.3). For this dataset, then, the

Gini index coefficient is computed with respect to Z)(XJ), the amount of system

downtime (in minutes) caused by an individual failure xt, i = 1, ...,n . Here, x1

represents the earliest failure record located in the dataset and xn represents the latest,

with (j. representing the average downtime caused by each failure event located in the

52

file. The cumulative distribution function F(i), representing the amount of downtime

caused by all failures up to i (3.6), is then:

i

F(i)= JVxi) . (3.6)

The Atkinson index coefficient is also calculated with respect to the downtime

caused by each failure record located in the log file. Using the conventions from (3.4),

the Atkinson index coefficient is calculated with respect to yt = D(x{), with yx

representing the down time caused by the earliest failure recorded to the log file and yn

representing the downtime caused by the latest. N represents the total number of failures

recorded to the dataset and p, represents the average amount of system downtime caused

by each failure.

Results were generated for the 20th, 40th, 60th, 80th, and 100th percentile of events

found in the LANL data relative to each of the 23 systems. Each system's failures were

grouped according to their time of occurrence, with the first event in each group being

the one generated by the earliest failure, and the last event being the one generated by the

latest. These percentiles then represent the lifetime of each system as represented in the

dataset. The resulting coefficients will illustrate the level of inequality in the downtime

caused by each system failure as each of these systems age. Further, Lorenz curves were

created for each of the 23 systems. Lastly, the 23 resulting Gini coefficients were

averaged in relation to each percentile. All of these results are reported in section 3.6.2.

Section 3.6.3 will draw conclusions from these results.

53

3.6.2 Results

Tables 3.1 through 3.23 display the per-percentile inequality coefficients

generated for each of the 23 systems found in the LANL failure dataset. Figures 3.5

through 3.73 show bar graphs showing the resulting impact D(xt) of each failure xt

exhibited by the system, histograms showing the frequency of system failures at various

levels of impact are also given (note that the log of these values has been taken to better

illustrate differences in failure activity between each system) and a Lorenz curve for each

system, representing the overall level of inequality in the downtime resulting from each

failure incurred by that system.

Following the generation of inequality coefficients, bar graphs, histograms and

Lorenz curves for all 23 systems, the resulting Gini, Atkinson (s =0.20), and Atkinson

(8=0.99) coefficients were grouped according to percentile and subsequently averaged.

The resulting values located in Table 3.24 represent the average fluctuation in inequality

for the down time caused by all failures across all systems as these systems age.

Conclusions based on these results will be drawn in the following section.

54

Table 3.1 Inequality Coefficients, System 2, LANL Data

System

2

2

2

2

2

Percentile

20th

40th

60th

80th

100th

Failures

1421

2842

4263

5684

7105

Downtime (min.)

211,800

518,491

687,349

794,993

1,008,366

Gini

0.6010276

0.6731329

0.6908012

0.6732575

0.6827248

Atk (.99)

0.534944

0.6346716

0.6356018

0.5996397

0.6047009

Atk (.20)

0.1286560

0.2116812

0.2292204

0.2147699

0.2245452

3

o
ml

o
o
o
O

C3
O
O
O
CO

o
CD
o
o

o
O

CD —I 1*11 [— J i l — . L J . 1 i-i 1 - J J a i I l^kl i.liiil.Li.iLlk-niidLt.. Li
Failure XI. ...,Xn

Figure 3.5 Impact of Each Failure, System 2, LANL Data

55

Figure 3.6 Lorenz Curve, System 2, LANL Data

o
<z>
o
C M

o
o

o
(D

o o
in

4 5

i

2

log(D(a))

Figure 3.7 Failure Impact Histogram, System 2, LANL Data

56

Table 3.2 Inequality Coefficients, System 3, LANL Data

System

3

3

3

3

3

Percentile

20th

40th

60th

80th

100th

Failures

58

122

184

236

299

Downtime (min.)

5,736

13,383

19,382

33,489

40,386

Gini

0.6523049

0.6474038

0.6375234

0.7124483

0.6840931

Atk (.99)

0.5747176

0.5700684

0.5412378

0.6315552

0.5940145

Atk (.20)

0.1595362

0.1510210

0.1517705

0.2135558

0.1941182

3 a

«3

o3
P4

o
o
o

o
o

o
o

o
o
o

JdLJULiJ iLdLl dUiL^a^yduluJ^ Jll jiLdM
Failure XI,..., Xn

Figure 3.8 Impact of Each Failure, System 3, LANL Data

57

i - l

Figure 3.9 Lorenz Curve, System 3, LANL Data

o
CM

o

o
0 0

OJ 0

Mn

o

o
CM

1 2

logCD(H))

Figure 3.10 Failure Impact Histogram, System 3, LANL Data

58

Table 3.3 Inequality Coefficients, System 4, LANL Data

System

4

4

4

4

4

Percentile

20th

40th

60th

80th

100th

Failures

63

118

190

230

299

Downtime (min.)

5,759

11,171

18,896

27,713

40,101

Gini

0.5286301

0.5802441

0.5478803

0.605446

0.6151453

Atk (.99)

0.4269491

0.4862753

0.4409907

0.5069202

0.5224879

Atk (.20)

0.09448456

0.1187666

0.1046655

0.1428101

0.1475057

s^-^
US

-t-i

:=s
G

• rH

a ^~r^
o

a.
M

OJ
u
3

<3
P4

o
o
m
OJ

o
o
CD
CM

o
O
i n 1—'

O
o
o

o
o
m

Failure XI, ...,Xn

Figure 3.11 Impact of Each Failure, System 4, LANL Data

59

<&
J

Figure 3.12 Lorenz Curve, System 4, LANL Data

o
o —,

o
00

ID

8-
'D
U

* o
•=3-

o

I 1 1 1 1 1 1 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

log(D(xi))

Figure 3.13 Failure Impact Histogram, System 4, LANL Data

60

Table 3.4 Inequality Coefficients, System 5, LANL Data

System

5

5

5

5

5

Percentile

20m

40th

60th

80m

100th

Failures

59

124

181

246

305

Downtime (min.)

10,683

20,104

26,212

36,974

44,641

Gini

0.6821483

0.6740514

0.6593811

0.6702198

0.6501178

Atk (.99)

0.5886865

0.5828212

0.5582976

0.5747256

0.550562

Atk (.20)

0.2028295

0.1817055

0.1723399

0.1787636

0.1651481

ID
4-a

3
a • 1-H

R
o
S3

Q<

M
<D
u
3
53

V-i

o
o
o
ro

o
o
t n
(Tsl

o
o
o
CM

O
O
LTl

*~"'

O
o o
1 — 1

o
o
m

Failure XI, ...,Xn

Figure 3.14 Impact of Each Failure, System 5, LANL Data

61

•3

Figure 3.15 Lorenz Curve, System 5, LANL Data

o
CM —I

O
O

O
DO

o
a

iD

P4

o

o
CO

i i i i i r~
0.5 10 15 2.0 2.5 3 0 3.5

log(D(xO)

Figure 3.16 Failure Impact Histogram, System 5, LANL Data

62

Table 3.5 Inequality Coefficients, System 6, LANL Data

System

6

6

6

6

6

Percentile

20th

40th

60th

80th

100th

Failures

17

27

35

45

64

Downtime (min.)

2,607

3,806

4,302

4,633

7,178

Gini

0.6746124

0.676484

0.6902305

0.676087

0.6535421

Atk (.99)

0.6037954

0.5857101

0.6058226

0.5748184

0.5566991

Atk (.20)

0.1850318

0.1882174

0.1843178

0.1837073

0.1592298

3

P-i

o
o

O
O

o
o
00

o

o
o

o
CM

ajitflJlML, -fl-rvjj f l u i i d mrflffh-,n o. ill tTVfl i d

Failure XI, , Xn

Figure 3.17 Impact of Each Failure, System 6, LANL Data

63

•B
i-i

00 02 04 06 08 10

Figure 3.18 Lorenz Curve, System 6, LANL Data

o

>, o
a (D
3
cr i D
U

MH o 1 1

I I I I I I I

0.5 1.0 1.5 2.0 2.5 3 0 3.5

log(D(a))

Figure 3.19 Failure Impact Histogram, System 6, LANL Data

64

Table 3.6 Inequality Coefficients, System 7, LANL Data

System

7

7

7

7

7

Percentile

20th

40th

60th

80th

100th

Failures

25

54

77

104

129

Downtime (min.)

2,902

7,430

12,075

18,002

34,323

Gini

0.2843005

0.4077613

0.4426404

0.4624144

0.6428636

Atk (.99)

0.1302336

0.2752189

0.3044237

0.3183379

0.5383517

Atk (.20)

0.03110032

0.05774089

0.0680330

0.0761484

0.1940597

3
fl

&

3
la

O
O
o
00

o
o

CD
CD
CD

CD

CD

JbuhdlH^mrrtL ^ H i y h J a r t i i f l L F M l h ^ k ^ y U i i y L ^

Failure XI, ...,Xn

Figure 3.20 Impact of Each Failure, System 7, LANL Data

65

i-l

Figure 3.21 Lorenz Curve, System 7, LANL Data

o

O

0J

PH

o
CM

O

1.0 1.5 2.0 2.5 3.0 3.5 4.0

logCDOri))

Figure 3.22 Failure Impact Histogram, System 7, LANL Data

66

Table 3.7 Inequality Coefficients, System 8, LANL Data

System

8

8

8

8

8

Percentile

20th

40th

60m

80th

100th

Failures

89

190

285

386

475

Downtime (min.)

208,409

328,866

499,239

836,041

977,672

Gini

0.8794655

0.8680784

0.8493329

0.8240501

0.8083147

Atk (.99)

0.9185997

0.9003143

0.8862067

0.8720414

0.8593525

Atk (.20)

0.3480385

0.3357564

0.3141345

0.2832965

0.2694886

3 a

(J
OtS

3

O
CD
O
C3

O
o
o
o
en

o
o
o
o
CM

O
O
O

o

O —I

Failure XL , Xn

Figure 3.23 Impact of Each Failure, System 8, LANL Data

67

Figure 3.24 Lorenz Curve, System 8, LANL Data

o
00

o
to

o

in

PH
o
•ST

O
CM

0 1 4

bg(D(xi))

Figure 3.25 Failure Impact Histogram, System 8, LANL Data

68

Table 3.8 Inequality Coefficients, System 9, LANL Data

System

9

9

9

9

9

Percentile

20th

40th

60th

80th

100th

Failures

56

112

168

224

280

Downtime (min.)

249,154

266,823

274,393

281,007

290,964

Gini

0.9172414

0.9346124

0.9462083

0.9510054

0.9506572

Atk (.99)

0.9878632

0.9999993

1

1

1

Atk (.20)

0.4167057

0.4590362

0.490213

0.5069014

0.5108189

3
a

o
OS

1
U

ft

o
o
o
o

o
o
o
o
00

o
o
o
o

o
o
o
o

o

CM

O —I _ol * U - . 1 J - J ^ . • • n - L l - — L

Failure XI, ...,Xn

Figure 3.26 Impact of Each Failure, System 9, LANL Data

69

Figure 3.27 Lorenz Curve, System 9, LANL Data

o
00

o

>.

PH

o

4

k>g(D(xi))

Figure 3.28 Failure Impact Histogram, System 9, LANL Data

70

Table 3.9 Inequality Coefficients, System 10, LANL Data

System

10

10

10

10

10

Percentile

20th

40th

60th

80th

100th

Failures

47

94

141

190

237

Downtime (min.)

269,867

285,196

300,167

389,218

392,114

Gini

0.868898

0.9093874

0.9231305

0.9141034

0.926879

Atk (.99)

0.9822825

0.999917

0.9999997

0.9999993

0.9999999

Atk (.20)

0.3491037

0.4094456

0.4360462

0.4118522

0.4352492

2 c

CJ

J3

fa

o
o
o
o
o

CD
O
CD
O
CO

O
CD
CD
CD

CD
CD
CD
CD

CD
CD
CD
CD

CD El J - I •^ *a^fl-. L- L
Failure XI, ...,Xh

Figure 3.29 Impact of Each Failure, System 10, LANL Data

71

Figure 3.30 Lorenz Curve, System 10, LANL Data

O
4"!

O

o CD

a <^

ID

(U PH

o

0 1

I

3

i i

log(D(xf))

Figure 3.31 Failure Impact Histogram, System 10, LANL Data

72

Table 3.10 Inequality Coefficients, System 11, LANL Data

System Percentile

20th

40th

60th

80th

100th

Failures

53

109

159

218

268

Downtime (min.)

356,159

374,986

406,813

412998

418,993

Gini

0.901521

0.9318934

0.9343652

0.9450112

0.9494329

Atk (.99)

0.9824175

0.999996

1

1

1

Atk (.20)

0.3898342

0.4497052

0.459456

0.4855938

0.4992231

3 a

o

3

o
o
o
o
o
OJ

o
o
o
o

o
o
o
o
o

o
o
o
o
m

o J^JL*. iL. i

Failure XI, ...,Xn

Figure 3.32 Impact of Each Failure, System 11, LANL Data

73

Figure 3.33 Lorenz Curve, System 11, LANL Data

o

o

s °
8-

o

O

3

I I

~l

5

log(D(a))

Figure 3.34 Failure Impact Histogram, System 11, LANL Data

74

Table 3.11 Inequality Coefficients, System 12, LANL Data

System

12

12

12

12

12

Percentile

20th

40th

60th

80th

100th

Failures

51

107

153

204

259

Downtime (min.)

242,749

254,317

283,519

292,791

299,825

Gini

0.9010614

0.9353616

0.9339544

0.938812

0.9407131

Atk (.99)

0.9691547

1

1

1

1

Atk (.20)

0.4003552

0.4663913

0.4650438

0.4790362

0.488347

o
o
o
o

Ul

<u + J

3
£3

s
4-a

<s t
<D

3

•K1
\M

O
O
O
O
o
1 — *

o
o
o
o 00

o
o
o
o
^

o
o
o
o
sr

o
o
o
o CM

LLt I li i •„ .J L J. ^..

Failure XI,..., Xn

Figure 3.35 Impact of Each Failure, System 12, LANL Data

75

Figure 3.36 Lorenz Curve, System 12, LANL Data

o

o

o

£ ° -I

0 1

I

4

I I

5

log(D(xi))

Figure 3.37 Failure Impact Histogram, System 12, LANL Data

76

Table 3.12 Inequality Coefficients, System 13, LANL Data

System

13

13

13

13

13

Percentile

20th

40th

60th

80th

100th

Failures

39

81

115

159

201

Downtime (min.)

359,810

379,558

394,761

403,719

441,075

Gini

0.8414183

0.8931308

0.9074928

0.9239984

0.9494189

Atk (.99)

0.9467759

0.973137

0.9999994

1

1

Atk (.20)

0.3249069

0.3926667

0.4176841

0.4471762

0.4596139

3

o

3

o
o
o
o

o
o
o

o o -o
in

rfllUIHI • —II »fa- t B- - - " - • - - " B-

Failure XI, . , Xn

Figure 3.38 Impact of Each Failure, System 13, LANL Data

77

Figure 3.39 Lorenz Curve, System 13, LANL Data

o
C*1

CM

C M

o
iD

^

O —I

r

0 1

log(D(a))

Figure 3.40 Failure Impact Histogram, System 13, LANL Data

78

Table 3.13 Inequality Coefficients, System 14, LANL Data

System

14

14

14

14

14

Percentile

20th

40th

60th

80th

100th

Failures

24

56

80

102

125

Downtime (min.)

29,061

697,322

704,071

728,867

738,907

Gini

0.829304

0.9253138

0.942445

0.9469915

0.9514942

Atk (.99)

0.9784576

0.9942794

0.9948515

0.997793

0.9993597

Atk (.20)

0.3094202

0.4290339

0.4664413

0.4771013

0.4909886

us

3

o o
in

o
o
o

CM

o
o
o
o
m

o
o
o
o
CD

o
o
o
o
m

ELn. • J fl

Failure XI, ...,Xn

Figure 3.41 Impact of Each Failure, System 14, LANL Data

79

,-1

Figure 3.42 Lorenz Curve, System 14, LANL Data

o

o

ID

§• o
K CM

PH

2 5

l0g(D(Kl))

Figure 3.43 Failure Impact Histogram, System 14, LANL Data

80

Table 3.14 Inequality Coefficients, System 15, LANL Data

System

15

15

15

15

15

Percentile

20th

40th

60th

80th

100th

Failures

11

28

36

44

54

Downtime (min.)

391

4,579

5,118

6,046

7,470

Gini

0.5607998

0.7633997

0.7457014

0.724897

0.7406217

Atk (.99)

0.4344859

0.7228064

0.6893286

0.6711294

0.6840907

Atk (.20)

0.1257257

0.2411162

0.2306536

0.2138146

0.2201631

3

1
t- i

n

o
o
o

o
o

o
CD
CD

CD
CD

Jffcko -nFN ,Gi IQQ0E3 - • • l 3nd

Failure XI, , Xn

Figure 3.44 Impact of Each Failure, System 15, LANL Data

81

A
tA

00 02 04 06 0! 1 0

Figure 3.45 Lorenz Curve, System 15, LANL Data

O

i n

o
(D

aj CD

HH

log(D(a))

I 1 1 1 i 1 1

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Figure 3.46 Failure Impact Histogram, System 15, LANL Data

82

Table 3.15 Inequality Coefficients, System 16, LANL Data

System

16

16

16

16

16

Percentile

20th

40th

60th

80th

100th

Failures

540

1,080

1,614

2,147

2,680

Downtime (min.)

61,494

149,227

664,537

1,219,242

1,445,023

Gini

0.700608

0.7370584

0.9022084

0.9317911

0.9215625

Atk (.99)

0.6923546

0.7315113

0.8946175

0.924417

0.911852

Atk (.20)

0.2129928

0.2465563

0.5427902

0.5807508

0.5371212

ID
-»-» 3
S

va,
4-a

o U3

a.
M
ID
U
3

ft
PL)

o
o
o
CD
O
ro

o
o
o
CD
m
CM

CD
CD
CD
CD
CD
CM

O
O
CD
CD

l— i

o
CD
CD
CD
O
7—1

CD
CD
CD
CD

^

J L ^iiUl

Failure XI, , Xn

Figure 3.47 Impact of Each Failure, System 16, LANL Data

83

Figure 3.48 Lorenz Curve, System 16, LANL Data

o
o
DO

o

PH

o
O

O
O

O
O
CM

1_

logCD(»))

Figure 3.49 Failure Impact Histogram, System 16, LANL Data

84

Table 3.16 Inequality Coefficients, System 17, LANL Data

System

17

17

17

17

17

Percentile

20th

40th

60th

80th

100th

Failures

22

49

77

104

126

Downtime (min.)

3,260

5,434

10,232

12,881

15,651

Gini

0.6989682

0.7013287

0.7175553

0.72673

0.7847755

Atk (.99)

0.6530687

0.6423195

0.6857478

0.68572

0.7355964

Atk (.20)

0.1836791

0.1851869

0.1917146

0.2003400

0.2148792

3
c

1
u

o
o

o
o
O

O
O
DO

O
O -

O

o -

o
o -

J Jl U
Failure XI, ...,Xn

Figure 3.50 Impact of Each Failure, System 17, LANL Data

85

•3
.-J

Figure 3.51 Lorenz Curve, System 17, LANL Data

(^1

i n
CM

CD

o

a

PL,

m -

I 1 1 1 1 1 1 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

log(DOn))

Figure 3.52 Failure Impact Histogram, System 17, LANL Data

86

Table 3.17 Inequality Coefficients, System 18, LANL Data

System

18

18

18

18

18

Percentile

20th

40th

60th

80th

100th

Failures

797

1,614

2,378

3,224

3,997

Downtime (min.)

196,049

362,808

466,939

577,409

716,641

Gini

0.7050154

0.712082

0.7095604

0.709114

0.7092562

Atk (.99)

0.6213237

0.6282973

0.6257881

0.6251526

0.6276465

Atk (.20)

0.2172665

0.2339089

0.2253477

0.2219993

0.2229577

3

u

3

o
o
o
m

o
o
o
o

o
o
o
m

o
o
o
o

o
o
o
m

o —' Li u iiiLil i i i JilJiU JLLL uU y Ji lUMuilk
Failure XI, . , Xn

Figure 3.53 Impact of Each Failure, System 18, LANL Data

87

1-1

Figure 3.54 Lorenz Curve, System 18, LANL Data

o
G
ID

P4

CD
CD

CD
CD
CD

CD
CD

r

0

~i

4

log(D(xi))

Figure 3.55 Failure Impact Histogram, System 18, LANL Data

88

Table 3.18 Inequality Coefficients, System 19, LANL Data

System

19

19

19

19

19

Percentile

20th

40th

60th

80th

100th

Failures

661

1,298

1,992

2,656

3,284

Downtime (min.)

179,209

278,133

377,358

493,133

681,077

Gini

0.7520437

0.7269844

0.7296928

0.7152188

0.7409367

Atk (.99)

0.6696452

0.6355074

0.640358

0.6226461

0.6561462

Atk (.20)

0.2678224

0.2520972

0.2476286

0.2286325

0.2670949

o
o
o
o

o
_^ o
w O
(U O
3

1
U,
3

"a

C^I

o
o
o
o
CM

O
o
o
o

O -> llLiii i Jiu I . I J L , iULbJ LuiLiJi ,UI UililLM. ILLi Lull
Failure XI, ...,Xn

Figure 3.56 Impact of Each Failure, System 19, LANL Data

89

.-1

Figure 3.57 Lorenz Curve, System 19, LANL Data

>.

§•
P4

CD

o

CD
CD
CM

O
O
O

CD
CD
00

CD
CD
to

CD
CD

CD
CD
CSI

0 1

I

4

log(D(xi))

Figure 3.58 Failure Impact Histogram, System 19, LANL Data

90

Table 3.19 Inequality Coefficients, System 20, LANL Data

System

20

20

20

20

20

Percentile

20tn

40th

60tn

80th

100th

Failures

494

1,021

1,478

1,995

2,478

Downtime (min.)

147,549

249,951

386,880

464,709

520,493

Gini

0.7598128

0.730096

0.7377354

0.7131277

0.7138073

Atk (.99)

0.6832824

0.6446679

0.6552135

0.6286357

0.6316302

Atk (.20)

0.2785598

0.2780654

0.2886511

0.2632639

0.2574603

3
a

o

u

"a

o
o
o

o
o
o
O

o
o
o
o
(Tsl

CD
o
o
o

o —'
- -*- M-J.I •• IL I I .LHILU,L .U J.l L „JL. ILLJ

Failure XI, ...,Xn

Figure 3.59 Impact of Each Failure, System 20, LANL Data

91

Figure 3.60 Lorenz Curve, System 20, LANL Data

o
o
o

o
o
CXI

o
o

'Li

o o

1 1-

~1

5

logCDCa))

Figure 3.61 Failure Impact Histogram, System 20, LANL Data

92

Table 3.20 Inequality Coefficients, System 21, LANL Data

System

21

21

21

21

21

Percentile

20th

40th

60th

80th

100th

Failures

28

44

73

96

110

Downtime (min.)

4,122

6,724

9,985

14,147

15,807

Gini

0.5584494

0.5513155

0.526417

0.5109527

0.4956176

Atk (.99)

0.4520249

0.4406514

0.4201482

0.3972765

0.3767154

Atk (.20)

0.1100806

0.1041251

0.09500196

0.0897491

0.0845924

3

03

t
<r->

l a
P4

O
O
o

o
o
0 0

CD
CD

CD
O

O
CD
CO

I u M
Failure XI, .,Xn

Figure 3.62 Impact of Each Failure, System 21, LANL Data

93

•s

00 02 04 06 Of 1 0

Figure 3.63 Lorenz Curve, System 21, LANL Data

o
-3-

o

(U

CSI P4

O —I J

I 1 1 1 1 1 1

0.5 1.0 1.5 2.0 2.5 3.0 3.5

log(D(a))

Figure 3.64 Failure Impact Histogram, System 21, LANL Data

94

Table 3.21 Inequality Coefficients, System 22, LANL Data

System

22

22

22

22

22

Percentile

20th

40th

60m

80th

100th

Failures

52

98

162

208

246

Downtime (min.)

10,816

17,558

66,477

78,659

84,556

Gini

0.4742298

0.413181

0.7286914

0.6937795

0.6699327

Atk (.99)

0.3459984

0.2724191

0.6479295

0.600729

0.5698679

Atk (.20)

0.0911673

0.06959792

0.2960288

0.2632218

0.2503528

3
c

o

3
H
^

CD
O
O

m
CM

CD
CD

o
CD
CM

CD
o
CD

CD
CD
CD
CD

CD
CD
CD

m

r^M~ji nim ntli—nJ-flJi»..n-»—•--•&—m-~-*•**——- HlJLiJl JHtln.iii*iAji JLInliWUlltJIkUfjtuiwLL,

Failure XI, ...,Xn

Figure 3.65 Impact of Each Failure, System 22, LANL Data

95

Figure 3.66 Lorenz Curve, System 22, LANL Data

o

o
o

>•>

£
u o

o

o
CM

1
I 1 1 1 1 1 1 1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

log(D(H))

Figure 3.67 Failure Impact Histogram, System 22, LANL Data

96

Table 3.22 Inequality Coefficients, System 23, LANL Data

System

23

23

23

23

23

Percentile

20th

40th

60th

80th

100th

Failures

114

218

343

452

564

Downtime (min.)

16,049

32,484

50,474

70,531

85,743

Gini

0.5291957

0.589893

0.5910107

0.57899

0.591682

Atk (.99)

0.4541011

0.523773

0.5233588

0.5117965

0.5148623

Atk (.20)

0.09828172

0.1262523

0.1288740

0.1215052

0.1284186

3
c

1
U

P4

CD
O
i n
ITS!

o
o
o

o
o

o
CD
CD

CD
CD

Failure XI, ...,Xh

Figure 3.68 Impact of Each Failure, System 23, LANL Data

97

Figure 3.69 Lorenz Curve, System 23, LANL Data

o
CM

O
O -

O
CO

o
ID

a* to
ID

P4

o

o
CM

05 1.0 1.5 2.0 2.5 3.0 3.5

log(DCa))

Figure 3.70 Failure Impact Histogram, System 23, LANL Data

98

Table 3.23 Inequality Coefficients, System 24, LANL Data

System

24

24

24

24

24

Percentile

20th

40th

60th

80th

100th

Failures

32

59

93

126

155

Downtime (min.)

6,658

10,882

45,331

52,208

58,177

Gini

0.4370119

0.484666

0.8146349

0.786939

0.7704078

Atk (.99)

0.2876526

0.3301613

0.7538131

0.714698

0.6930412

Atk (.20)

0.06265949

0.07753442

0.3706069

0.3425476

0.3240548

(u
-t->
3
G

a — +-*
ttS

a
M

H)
u.
3

'53
m

o
o CD
m
CM

CD
CD
CD
CD
OJ

CD
CD
CD
U"t
1—'

CD
CD
CD
CD

CD
CD
CD
m

o —i MrftJiflj*"n n r t f inpj^"^—fl—— * - nn nil Ifl-r •ft-"*-"-«-iflii n nil n i i r i l i f i in i

Failure XI, ...,Xn

Figure 3.71 Impact of Each Failure, System 24, LANL Data

99

Figure 3.72 Lorenz Curve, System 24, LANL Data

o

O O

g ^
u

o
CM

1.0 1.5 2.0 2.5 3.0 3 5 4.0 4.5

log(D(xi))

Figure 3.73 Failure Impact Histogram, System 24, LANL Data

100

Table 3.24 Average Gini and Atkinson Coefficient per Percentile, LANL Data

Percentile

20th

40th

60th

80th

100th

Avg Gini Coefficient

0.68426383

0.715950435

0.748810878

0.753712383

0.762782465

Avg Atk. (e = 0.20)

0.21688

0.246331

0.285942

0.28811

0.29328

Avg Atk. (e = 0.99)

0.648644

0.677153

0.717554

0.715567

0.722912

The following section concludes this chapter by drawing conclusions from these

results and subsequently suggesting the introduction of the time-dependent failure index

for HPC system volatility.

3.6.3 Conclusions

The average inequality coefficient per percentile results found in Table 3.24 show

that as these systems age, they exhibit an increase in the level of inequality in the

downtime caused by each incurred failure. That is, as HPC systems age, their failure

activity becomes more volatile.

Significance testing verified the legitimacy of this result. When testing the null

hypothesis HQ that the resulting Gini coefficient averages represented the same value

versus the alternate hypothesis Ha that the values significantly differed, a resulting p-

value of 0.01455 confirmed the alternate hypothesis at the 95% confidence level. A

multiple R-squared value of 0.8967 further proved that the resulting Gini coefficient

averages successfully model the behavior of the systems in the given percentiles.

101

When testing the null hypothesis H0 that the resulting Atkinson coefficient

averages at parameter 0.20 represented the same value versus the alternate hypothesis Ha

that the values significantly differed, a resulting p-value of 0.02465 confirmed the

alternate hypothesis at the 95% confidence level. A multiple R-squared value of 0.8546

further proved that the resulting Atkinson coefficient averages at parameter 0.20

successfully model the behavior of the systems in the given percentiles.

When testing the null hypothesis H0 that the resulting Atkinson coefficient

averages at parameter 0.99 represented the same value versus the alternate hypothesis Ha

that the values significantly differed, a resulting p-value of 0.02904 confirmed the

alternate hypothesis at the 95% confidence level. A multiple R-squared value of 0.8384

further proved that the resulting Atkinson coefficient averages at parameter 0.99

successfully model the behavior of the systems in the given percentiles.

This result suggests that system age significantly affects the volatility of the

failure behavior exhibited by a given HPC system with regards to failures with both large

and small impacts on downtime. The Atkinson coefficients confirm this result. There is

clearly more inequality reported by the Atkinson (s = 0.99) result than the Atkinson (s =

0.20) result

Clearly, larger failures have a more significant effect on the level of equality

contained in the dataset than smaller failures. For example, System 13 exhibits a single

failure with an impact of 195195 minutes, or 5.648 days. This dwarfs the impact of all

other failures encountered by the system and results in a 100th percentile Gini coefficient

of 0.8384 and a 99th percentile Atkinson (e = 0.99) coefficient that was rounded to 1 via

the software. However, the Atkinson (e = 0.20) coefficient, which lowered this and all

102

other values, was only 0.4596139. The resulting inequality coefficients for all systems

were most affected by the largest failures, such as this one.

To better represent the behavior of these and other systems, we suggest the

derivation of a time-dependent inequality measure. The resulting equation - the Failure

index (FI) - will generate coefficients that can then be used as a measure of HPC system

volatility in time. It may be used in conjunction with existing metrics such as Mean Time

Between Failure (MTBF) and the 'nines' measure of system reliability to better illustrate

the failure activity of a given HPC system. The FI has roots in the Atkinson index and

via the time-dependent generation of a scale- and location-invariant inequality coefficient

it allows for a normalized representation of HPC system failure volatility in time.

Whereas the Gini and Atkinson index coefficients in this chapter were calculated

with respect to the impact of each failure located in the record, an FI coefficient is

generated with respect to the cumulative downtime caused by all failures in a given time

interval. As explained in the next chapter's introduction, the Failure Index is less affected

by single large failures such as the one encountered by System 13.

The following chapter gives a mathematical introduction of the FI. Chapter 5

contains a case study in which FI coefficients are generated for the same LANL dataset

used to formulate the results in this chapter. Those coefficients are then analyzed and

compared with the information in this chapter to yield conclusions relative to the failure

volatility of aging HPC systems. Those conclusions along with suggested future work are

given in Chapter 6.

CHAPTER 4

A FAILURE INDEX FOR HPC APPLICATIONS

4.1 The Failure Index

The provision of resilient exascale HPC applications is a complicated and

multifaceted effort requiring input from and coordination between computer scientists,

mathematicians, application developers and pure scientists from various government

laboratories, corporations and academic institutions. Presently there exist calls for such

collaboration [95] and further there exists the suggestion of increased cross-entity

standardization in the vocabulary, algorithms, and log file formats utilized in the larger

HPC research and development community. To facilitate such standardization, the

community must both re-examine existing metrics and their meaning in tomorrow's

failure-rich computing environments and also develop new statistics appropriate to the

study of HPC application resilience [96, 97].

This chapter formally introduces such a value - the Failure Index (or FI) - for

HPC system volatility. The FI is introduced here from a mathematical standpoint.

Importantly, in this chapter the FI is introduced at a high level and in relation to a

continuous function wherein time acts as the independent variable. Our real-world FI

coefficient generation and analysis in Chapter 5 will take place on discrete, rather than

continuous data, requiring numerical integration techniques. Specifically, FI coefficients

will be generated for the LANL system reliability dataset previously visited in Chapter 3.

103

104

A metric such as the FI was first suggested in our work detailing the generation

of pertinent resilience-related application information found in Chapter 2. As shown in

Chapter 3, the Gini and Atkinson inequality indices provide the suggested normalized

view into an aspect of HPC application behavior. Specifically, such inequality indices

generate coefficients relative to the level of inequality found in the individual failures

incurred by an HPC system. Further, the scale- and location-invariant nature of these

values allows for the comparison of multiple HPC systems regardless of size.

Chapter 3 introduced those concepts and demonstrated their ability to capture this

information. An analogous index is now present that, while similar in structure to the

above, serves to capture the level of volatility in total system downtime relative to the

age of a given HPC system.

It is important to note the difference between the information captures by

inequality metrics such as the Gini and Atkinson indices and the information captured by

the Failure Index. Existing inequality indices are calculated with respect to discrete

weighted events. The Failure Index is calculated with respect to cumulative time-

dependent data. That is, where the Gini or Atkinson indices capture the level of

inequality in multiple individual failure events, the Failure Index captures the overall

level of volatility exhibited by the system in time.

The information captured by the FI was approximated in Chapter 3 via the

calculation of Gini and Atkinson coefficients relative to various percentiles of a system's

total lifespan. Using the FI, such percentiles are not needed, as its time-dependent nature

allows the FI to examine the volatility in cumulative system downtime with respect to

the age of the system. The Failure Index is mathematically defined as

105

I

F/e(F(7)) = 1 - ^ 1 _ 11 J F(ty~edt J (4.1)

Here, F(t) represents the cumulative distribution function of system downtime

resulting from failure, and F(T) represents the cumulative system downtime at a given

time T. As the Failure Index is constructed as a time-dependent implementation of the

Atkinson index, it also contains the parameter s, 0 < a < 1, that allows the Failure

Index to place emphasis on various segments of a distribution, with parameters closer to

(but not equal to) 1 generating FI coefficients giving greater weight to the larger

elements of the distribution than parameters closer to 0. An FI coefficient, then, captures

the level of volatility in total system downtime at time T using the given parameter, with

higher levels of volatility yielding FI coefficients closer to 1 and lower levels of

volatility yielding FI coefficients closer to 0. Equation (4.1) presents the novel

mathematical contribution of this dissertation, and all resulting analysis in Chapter 5 is

performed using this model.

Using the terminology from the LANL dataset used in Chapters 3 and 5, existing

inequality indices such as the Gini or Atkinson index generate coefficients which

measure the level of inequality contained in the "downtime " column. The Failure Index,

however, generates coefficients which measure the level of volatility in the "total

downtime" column with respect to the "time" column. Figure 4.1 shows these three

columns from System 6's reliability dataset, here represented in minutes.

106

totaldowntime
146

1385

22

24

8

64

95

56

BO

9

87

75

360

30

55

84

27

27

9

156

31

45

14

18

13

146

1531

1553

1577

1585

1649

1744

1800

1880

18S9

1976

2051

2411

2441

2496

2580

2607

2634

2643

2799

2830

2875

2889

2907

2920

Figure 4.1 "Time", "Downtime" and "Total Downtime" Columns, LANL Data

In Chapter 5, Failure Index coefficients will be generated for all 23 systems

contained in the LANL dataset. Like existing inequality indices such as the Gini and

Atkinson index, the Failure Index produces scale- and location-invariant coefficients,

allowing for the comparison of various machines regardless of size.

FI coefficients are less sensitive to the volatility caused by a single abnormally

strong or weak failure and more sensitive to stretches of volatile or non-volatile failure

behavior in time. To illustrate this, consider the datasets given in Figure 4.2 and 4.3.

jtime downtime

i 1
[17280

: 1S720

I 24480

[34560

| 44640

I 72000

; 74880

95040

] 100SOO

j 109440

i 115200

j 126720

j 132480

I 158400

! 169920

184320
; 216000

I 226080

1 269280

| 275040

I 28OSO0

' 319680

I 329760

339840

107

!time downtime totaldowntime
120

2400

3500

4800

6000

7200

8400

9600

10SO0

12000

10

10

10

400

10

10

10

10

10

10

10

20

30

430

440

450

460

470

480

430

Figure 4.2 Sample Data 1, FI Coefficients vs. Atkinson Coefficients

The above dataset generates an Atkinson index coefficient (e = 0.99) of

0.7030416 for "down time". Clearly, a high level of inequality in "down time" exists

due to a single failure causing a down time of 400 minutes. Likewise, the Failure Index

coefficient (e = 0.99) for the above dataset is 0.8281679, which represents a substantial

amount of failure volatility in the given time frame.

The system depicted in Figure 4.2 runs for a total of 12000 minutes, or 200 hours.

But what if the system ran for another 300 hours before encountering another 10 minute

failure? That situation is represented in Figure 4.3.

time e
120

2400

3600

4800

6000

7200

8400

9600

1OSO0

12000

30000

downtime

10

10

10

400

10

10

10

10

10

10

10

totaldowntime

10

20

30

430

440

450

460

470

480

490

500

Figure 4.3 Sample Data 2, FI Coefficients vs. Atkinson Coefficients

108

The Atkinson index coefficient (s = 0.99) reduces slightly to a value of

0.6905922, as more equality is introduced to the dataset when a tenth failure with an

impact of 10 minutes is accounted for. However, the Failure Index coefficient (e = 0.99)

substantially drops, to a value of 0.3925665. This is because the overall failure volatility

of the system has substantially lowered due to the 300-hour non-failure period

encountered by the system. Failure Index coefficients take such times into consideration.

Standard inequality coefficients such as those generated by the Gini and Atkinson

indices do not.

The source code used to generate these coefficients via the R statistical software

package is located in Appendix B.

4.2 The GT Index

In addition to FI coefficients, the analysis in Chapter 5 will also generate

coefficients using the GT Index, first proposed by Kaminskiy et al in 2008 [98]. The GT

is another modified version of the Atkinson index for use particularly in the evaluation of

systems with repairable parts (for which an HPC application or system certainly qualifies

- HPC system nodes can be replaced and HPC application processes can be rebooted).

The GT index models the distribution in question as a Poisson process (PP) and

measures that distribution's trend toward and away from a heterogeneous Poisson

process (HPP) in time.

In using the GT index the 0-to-l system utilized by the Failure Index is discarded

in favor of a scheme containing values ranging from -1 to 1. An improving system, noted

by values less than 0, denotes a system with a decreasing rate of occurrence of failure

(ROCOF). Likewise, those values more than zero denote a. failing system (one with

109

increasing ROCOF). Values closer to 1 or -1 improve or fail more rapidly than values

closer to 0. GT coefficients will allow us to examine changes in failure rate with respect

to time, which when combined with FI coefficients will better describe the failure

behavior of a given system. The GT index is defined as

2 CN(t)dt
GT(N(T)) = 1 - „ ° A r^N • (4.2)

Here, N (T) represents the number of failure events occurring in the given time

interval [0,7]. This is an important difference between the GT and Failure indices. The

GT is constructed in accordance to the number of events in a given time interval,

whereas the FI is constructed with respect to the cumulative impact of those failures. The

GT is associated with failure rates, and the FI is associated with failure volatility. The

GT says nothing about the impact of a given failure.

Recall that the GT index models the underlying distribution as a Poisson process.

Here, an improving Poisson process is defined as one with decreasing ROCOF, while a

deteriorating process has increasing ROCOF. A heterogeneous Poisson process has a

constant ROCOF. Improving Poisson processes yield GT coefficients closer to -1, while

deteriorating Poisson processes yield GT coefficients closer to 1.

In Chapter 5, GT coefficients will be calculated for all time intervals for which FI

coefficients are generated. The source code for generating GT coefficients via the R

statistical software package can be found in Appendix C.

CHAPTER 5

USING THE FAILURE INDEX: A CASE STUDY

5.1 Introduction

In this chapter we generate Failure Index coefficients for each of the 23 Los

Alamos National Laboratory systems. A detailed description of this dataset can be found

in the introduction to Chapter 3.

In this analysis, FI coefficients are generated with parameters e = 0, e = 0.20 and

e = 0.99. Further, a GT coefficient is generated for each system using Equation (4.2). The

GT coefficient represents the system's rate of occurrence of failure (ROCOF) with

respect to time. Increases in ROCOF generate positive GT coefficients. Likewise,

decreases in ROCOF generate negative GT coefficients. Coefficients closer to 1 or -1

contain higher increases or decreases in ROCOF than coefficients closer to 0.

In addition, this analysis plots the total downtime exhibited by the system versus

the age of the system. Much like a Lorenz curve, a perfectly non-volatile system would

generate a 45-degree line on such a graph. Failure Index coefficients capture fluctuations

toward and away from this line.

Further, FI (e = 0) and GT coefficients are plotted in relation to the age of the

system. This shows fluctuations in failure volatility and failure rate in time.

110

I l l

Long stretches of time without failure activity lower FI coefficients. Rapid and

highly unequal failure activity increases FI coefficients. Section 4.1 reviews the

information collected by the Failure Index relative to the information captured by

inequality indices such as the Gini and Atkinson.

The following section displays all results from this case study. Tables 5.1 through

5.23 show the FI coefficients generated for each system using parameters 0, 0.20 and

0.99, in addition to the GT coefficients generated by each system. Figures 5.1 through

5.69 plot the total downtime exhibited by each system with respect to time, the FI

coefficient efficient with respect to time and the GT coefficient with respect to time for

each of the 23 systems. Tables 5.24 through 5.26 illustrate the number of LANL systems

with increasing and decreasing ROCOF, the FI coefficient averages for those systems

and the FI coefficient averages for all 23 systems. Section 5.3 will draw conclusions

from these results.

5.2 Results

Table 5.1 FI Coefficients and ROCOF, System 2, LANL Data

System

2

FI (s = 0)

0.3488647

FI (s = 0.20)

0.3739617

FI (e = 0.99)

0.560606

GT (N(T))

-0.2452266

i 1 r

500 1000 1500 2000

System Age (days)

2500 3000

Figure 5.1 Total Downtime vs. System Age, System 2, LANL Data

113

0 500 1000 1500 2000 2500 3000

System Age (days)

Figure 5.2 FI Coefficient vs. System Age, System 2, LANL Data

114

o

a
- -1-1

<->

m
o

O
H
O

o
o

o

System Age (days)

Figure 5.3 ROCOF vs. System Age, System 2, LANL Data

Table 5.2 FI Coefficients and ROCOF, System 3, LANL Data

System

3

FI (s = 0)

0.4762693

FI (s = 0.20)

0.4928603

FI (e = 0.99)

0.6238533

GT(N(T))

-0.1400224

o
o
o
O

O
O
O
O

o
o
CD
O

O
O
O

o

0 200 400 600

System Age (days)

Figure 5.4 Total Downtime vs. System Age, System 3, LANL Data

116

o

o

in
O

o

CD

System Age (days)

Figure 5.5 FI Coefficient vs. System Age, System 3, LANL Data

117

0 200 400 600

System Age (days)

Figure 5.6 ROCOF vs. System Age, System 3, LANL Data

Table 5.3 FI Coefficients and ROCOF, System 4, LANL Data

System

4

FI (s = 0)

0.5312802

FI (s = 0.20)

0.5510522

FI (s = 0.99)

0.6861621

GT(N(T))

-0.1069729

o
o
o
o

o
o
o
o
CO

o
o
o
o

o
o
CD

o -

0 100 200 300 400 500 600 700

System Age (days)

Figure 5.7 Total Downtime vs. System Age, System 4, LANL Data

119

o

o

o

o

o

0 100 200 300 400 500 600 700

System Age (days)

Figure 5.8 FI Coefficient vs. System Age, System 4, LANL Data

120

0 100 200 300 400 500 600 700

System Age (days)

Figure 5.9 ROCOF vs. System Age, System 4, LANL Data

Table 5.4 FI Coefficients and ROCOF, System 5, LANL Data

System

5

FI (s = 0)

0.4517466

FI (s = 0.20)

0.4683794

FI (s = 0.99)

0.6250355

GT(N(T))

-0.05701952

o
O
O
O

o
o
o
o

o
o
CM

o
o
o

CD —

200 300 400 500 600 700

System Age (days)

Figure 5.10 Total Downtime vs. System Age, System 5, LANL Data

0 0

CD

CD

CD

o

CD

on
CD

0 100 200 300 400 500 600 700

System Age (days)

Figure 5.11 FI Coefficient vs. System Age, System 5, LANL Data

123

0 100 200 300 400 500 600 700

System Age (days)

Figure 5.12 ROCOF vs. System Age, System 5, LANL Data

Table 5.5 FI Coefficients and ROCOF, System 6, LANL Data

System

6

FI (s = 0)

0.4661334

FI (s = 0.20)

0.4750499

FI (e = 0.99)

0.5761766

GT(N(T))

-0.009286395

o
o
o o

o
o
o

o
o
o

o
o

o
o
on

o
o
o
CM

O

O

0 200 400 600

System Age (days)

Figure 5.13 Total Downtime vs. System Age, System 6, LANL Data

125

m
CD

o
O

o
in

m

o

o

<D
4->
1U

u in

^ o

o
on

i n

o
CM

0 200 400 600

System Age (days)

Figure 5.14 FI Coefficient vs. System Age, System 6, LANL Data

126

o
O

O

CM

O

O

o

0 200 400 600

System Age (days)

Figure 5.15 ROCOF vs. System Age, System 6, LANL Data

Table 5.6 FI Coefficients and ROCOF, System 7, LANL Data

System

7

FI (s = 0)

0.5590928

FI (s = 0.20)

0.5754688

FI (s = 0.99)

0.6686179

GT(N(T))

-0.2554706

System Age (days)

Figure 5.16 Total Downtime vs. System Age, System 7, LANL Data

128

<D
4-1
iD

S3
<D

o
m

<D
O
O
i—i

oo
O

r-
o

o

o

on
o

o

0 500 1000 1500

System Age (days)

Figure 5.17 FI Coefficient vs. System Age, System 7, LANL Data

129

O

CO
O

-(->
a ' i j

o m
<D
O

o H
O

o
o

CO
o

System Age (days)

Figure 5.18 ROCOF vs. System Age, System 7, LANL Data

Table 5.7 FI Coefficients and ROCOF, System 8, LANL Data

System

8

FI (s = 0)

0.5743319

FI (e = 0.20)

0.5965732

FI (s = 0.99)

0.7276079

GT (N(T))

0.1277645

3
c

O
P

o
E-H

System Age (days)

Figure 5.19 Total Downtime vs. System Age, System 8, LANL Data

131

0 500 1000 1500

System Age (days)

Figure 5.20 FI Coefficient vs. System Age, System 8, LANL Data

132

System Age (days)

Figure 5.21 ROCOF vs. System Age, System 8, LANL Data

Table 5.8 FI Coefficients and ROCOF, System 9, LANL Data

System

9

FI (8 = 0)

0.3801783

FI (8 = 0.20)

0.4195316

FI (s = 0.99)

0.7901992

GT (N(T))

0.4110598

CD
CD

CD
O
CO

O
O
CD
O
U~l
CM

CD
CD
CD
CD
CD
CM

CD
CD
O o
in

CD
CD
CD
CD
CD

O
CD
CD
CD

0 100 200 300 400 500 600 700

System Age (days)

Figure 5.22 Total Downtime vs. System Age, System 9, LANL Data

134

CO

o

o

CM

o

0 100 200 300 400 500 600 700

System Age (days)

Figure 5.23 FI Coefficient vs. System Age, System 9, LANL Data

135

o

o

o
o

-3-
o

^o
o

0 100 200 300 400 500 600 700

System Age (days)

Figure 5.24 ROCOF vs. System Age, System 9, LANL Data

Table 5.9 FI Coefficients and ROCOF, System 10, LANL Data

System

10

FI (s = 0)

0.4393362

FI (s = 0.20)

0.4668898

FI (s = 0.99)

0.6757968

GT (N(T))

0.3073982

o

+

o

+
CO

in
o

+
(D

o
o

0 100 200 300 400 500 600

System Age (days)

Figure 5.25 Total Downtime vs. System Age, System 10, LANL Data

137

o

II
u
OD

4->
<D

S3

- l- i
C!
•D

O

iD
o

O
i—i

4 }
o

o

o

o

System Age (days)

Figure 5.26 FI Coefficient vs. System Age, System 10, LANL Data

138

o

CM

(U

o

m
iD
O

U

O
O

CM
O

T
o

o

© o
o

<5^
no°
o
o

° c
©

o

1

o
o

<e
o

1

o

1

o

1

8
o
§
o
o

o
o
o
o
o
o

o°
o
o

o

1 1 1

0 100 200 300 400 500 600

System Age (days)

Figure 5.27 ROCOF vs. System Age, System 10, LANL Data

139

Table 5.10 FI Coefficients and ROCOF, System 11, LANL Data

System

11

FI (s = 0)

0.3228945

FI (s = 0.20)

0.3503598

FI (s = 0.99)

0.6125574

GT(N(T))

0.3016312

0 100 200 300 400 500 600

System Age (days)

Figure 5.28 Total Downtime vs. System Age, System 11, LANL Data

140

o

o
o

o o
o
o
o

oo
oo o

8 o o

o °

1 1

<o

o
°o

9>
1

o

1 1 1 1

0 100 200 300 400 500 600

System Age (days)

Figure 5.29 FI Coefficient vs. System Age, System 11, LANL Data

141

o

CM
O

O
O

CM

O

O

0 100 200 300 400 500 600

System Age (days)

Figure 5.30 ROCOF vs. System Age, System 11, LANL Data

Table 5.11 FI Coefficients and ROCOF, System 12, LANL Data

System

12

FI (s = 0)

0.3989725

FI (8 = 0.20)

0.4317884

FI (8 = 0.99)

0.666791

GT (N(T))

0.3937295

o
o
CD
o
o
CO

o
o
o
o
LTl

O
CD
O
O
CD
CM

O
O
O
CD

CD
CD
CD

o
CD

CD
CD
CD
CD
LTl

0 100 200 300 400 500 600 700

System Age (days)

Figure 5.31 Total Downtime vs. System Age, System 12, LANL Data

143

S3

U

m
o

O
i—i
P4

00
o

o

o

o

o

o

o

700

System Age (days)

Figure 5.32 FI Coefficient vs. System Age, System 12, LANL Data

144

o

Csl

o

o
o

Csl

O

o

o

o
o

o
o o

o
o
o o

oo
o

8

1

o
o

o

o

o

Q}
o
o
o

o

1

o
o

o

1

o
o

o o

1

y^
I
§

c$8
§
8 o

CO
o
o

0°
0
0
o

o
o

o

1 1 1 1

0 100 200 300 400 500 600 700

System Age (days)

Figure 5.33 ROCOF vs. System Age, System 12, LANL Data

Table 5.12 FI Coefficients and ROCOF, System 13, LANL Data

System

13

FI (e = 0)

0.3546629

FI (e = 0.20)

0.3805183

FI (s = 0.99)

0.6209388

GT (N(T))

0.298536

0 100 200 300 400 500 600

System Age (days)

Figure 5.34 Total Downtime vs. System Age, System 13, LANL Data

146

00
o

o

o

o

o

o

o o

o

ft °
0 o O

o o

o

0

o

1 1

o

1

°^v ^ \

1 1

tS<»r,
^ %

1 1

0 100 200 300 400 500 600

System Age (days)

Figure 5.35 FI Coefficient vs. System Age, System 13, LANL Data

147

O
O

i n
o

0 100 200 300 400 500 600

System Age (days)

Figure 5.36 ROCOF vs. System Age, System 13, LANL Data

Table 5.13 FI Coefficients and ROCOF, System 14, LANL Data

System

14

FI (8 = 0)

0.3113004

FI (s = 0.20)

0.3501405

FI (s = 0.99)

0.7133446

GT(N(T))

0.1522754

o
+
ID

o
+

o
+
CM

O
O

+
o

0 100 200 300 400 500

System Age (days)

Figure 5.37 Total Downtime vs. System Age, System 14, LANL Data

149

S3

c!
<D *-(O

s
o

O
i—i

0 0

o

CD

O

O

0 100 200 300 400 500

System Age (days)

Figure 5.38 FI Coefficient vs. System Age, System 14, LANL Data

GT Coefficient

^Tj

C
i-t

n>
L/i

L>
ô

J«
O
o
O ^Tj

< C/J

00
v;

r 4 -

a
B
>

0 0

GO

v; <Z>
^+
fD

3
i — k

*>
r
>
2
r
D
SO
r-t-
P

CO
<̂ en

r-t-

B

£
n>

^^ &* &> ^ w

O

_ i

o
CD

ro
o o

LiO
CD
o

-Ca.
O
O

O
CD

-0 4 -0 2 00 02 04
_ l I I I L_

o
o ° o n o

O O 0 0 Q (g) o © o o

0 Q ^
O O O OOD

O O O

O O

O O 0 0 0
O O O

OOO'

o

Table 5.14 FI Coefficients and ROCOF, System 15, LANL Data

System

15

FI (s = 0)

0.3203539

FI (s = 0.20)

0.3445422

FI (s = 0.99)

0.6678887

GT (N(T))

-0.3574969

o o o

o o o

o
o
o

System Age (days)

Figure 5.40 Total Downtime vs. System Age, System 15, LANL Data

152

DO
O

o

o

CO

o

System Age (days)

Figure 5.41 FI Coefficient vs. System Age, System 15, LANL Data

153

System Age (days)

Figure 5.42 ROCOF vs. System Age, System 15, LANL Data

Table 5.15 FI Coefficients and ROCOF, System 16, LANL Data

System

16

FI (s = 0)

0.506235

FI (s = 0.20)

0.5470675

FI (e = 0.99)

0.7952932

GT(N(T))

-0.1423502

o
o
o
o
o

o
o
o
CD
<o
CD

CD
CD
CD
CD
CD

System Age (days)

Figure 5.43 Total Downtime vs. System Age, System 16, LANL Data

155

0 500 1000 1500 2000

System Age (days)

Figure 5.44 FI Coefficient vs. System Age, System 16, LANL Data

156

O

o

01
o

O
O

o

o

System Age (days)

Figure 5.45 ROCOF vs. System Age, System 16, LANL Data

Table 5.16 FI Coefficients and ROCOF, System 17, LANL Data

System

17

FI (s = 0)

0.4431006

FI (s = 0.20)

0.4693957

FI (s = 0.99)

0.6992799

GT (N(T))

-0.1168528

CD
CD

CD
CD
CD
CD

CD
CD
CD

0 200 400 600 800 1000 1200

System Age (days)

Figure 5.46 Total Downtime vs. System Age, System 17, LANL Data

158

CD

II
Ui
ID
+^

3

m
ID
o

O
p — i

P4

00
o

CD

CD

CD

o
i 1 r

200 400 600 800 1000 1200

System Age (days)

Figure 5.47 FI Coefficient vs. System Age, System 17, LANL Data

159

o

CM
O

O
CD

o

CD

0 200 400 600 800 1000 1200

System Age (days)

Figure 5.48 ROCOF vs. System Age, System 17, LANL Data

Table 5.17 FI Coefficients and ROCOF, System 18, LANL Data

System

18

FI (s = 0)

0.4424562

FI (s = 0.20)

0.4581639

FI (s = 0.99)

0.5760466

GT(N(T))

-0.01011574

System Age (days)

Figure 5.49 Total Downtime vs. System Age, System 18, LANL Data

161

CD

-t->

o

O
O
i — i

PH

0"\

CD

CO
O

CD

CD

in
CD

CD

CO
CD

System Age (days)

Figure 5.50 FI Coefficient vs. System Age, System 18, LANL Data

162

o
m

ID

o
O
H
O

in
o

o
o

o

0 200 400 600 800 1000 1200

System Age (days)

Figure 5.51 ROCOF vs. System Age, System 18, LANL Data

Table 5.18 FI Coefficients and ROCOF, System 19, LANL Data

System

19

FI (s = 0)

0.4978905

FI (s = 0.20)

0.5130915

FI (e = 0.99)

0.6412173

GT (N(T))

-0.02191605

System Age (days)

Figure 5.52 Total Downtime vs. System Age, System 19, LANL Data

164

o

00
o

o

o

O

0 200 400 600 800 1000

System Age (days)

Figure 5.53 FI Coefficient vs. System Age, System 19, LANL Data

165

0 200 400 600 800 1000

System Age (days)

Figure 5.54 ROCOF vs. System Age, System 19, LANL Data

166

Table 5.19 FI Coefficients and ROCOF, System 20, LANL Data

System

20

FI (s = 0)

0.2358755

FI (8 = 0.20)

0.2441450

FI (s = 0.99)

0.3392873

GT (N(T))

-0.3663878

i r
1200 1400

System Age (days)

Figure 5.55 Total Downtime vs. System Age, System 20, LANL Data

167

o

IIJ

Pi CD

S3

o

o

o
I—I

o

on
o

0 200 400 600 800 1000 1200 1400

System Age (days)

Figure 5.56 FI Coefficient vs. System Age, System 20, LANL Data

168

o

CM

O

O
O

CM

O

O

1400

System Age (days)

Figure 5.57 ROCOF vs. System Age, System 20, LANL Data

169

Table 5.20 FI Coefficients and ROCOF, System 21, LANL Data

System

21

FI (s = 0)

0.3521442

FI (s = 0.20)

0.3752301

FI (s = 0.99)

0.821141

GT(N(T))

-0.2562533

0 20 40 60 80 100

System Age (days)

Figure 5.58 Total Downtime vs. System Age, System 21, LANL Data

170

&
II
u
(D

&

o
O

oo
CD

[^

o

in
o

^

^3-
o

System Age (days)

Figure 5.59 FI Coefficient vs. System Age, System 21, LANL Data

171

m
o
O
H
O

o

o

o
o

O

System Age (days)

Figure 5.60 ROCOF vs. System Age, System 21, LANL Data

172

Table 5.21 FI Coefficients and ROCOF, System 22, LANL Data

System

22

FI (e = 0)

0.4140757

FI (8 = 0.20)

0.443951

FI (s = 0.99)

0.6050619

GT (N(T))

-0.1168699

0 500 1000 1500 2000 2500

System Age (days)

Figure 5.61 Total Downtime vs. System Age, System 22, LANL Data

173

o

o

d

o

o

CO

0 500 1000 1500 2000 2500

System Age (days)

Figure 5.62 FI Coefficient vs. System Age, System 22, LANL Data

174

O

m
ID

o
O
H
O

o

o

i n
O

System Age (days)

Figure 5.63 ROCOF vs. System Age, System 22, LANL Data

175

Table 5.22 FI Coefficients and ROCOF, System 23, LANL Data

System

23

FI (s = 0)

0.4729281

FI (s = 0.20)

0.4977982

FI (s = 0.99)

0.6634825

GT(N(T))

-0.003102837

CD
O
O
O
DO

O
O
O
CD

CD
O
O
O

o
o
CD
CD

0 500 1000 1500 2000 2500

System Age (days)

Figure 5.64 Total Downtime vs. System Age, System 23, LANL Data

176

oo
o

ID
O

O
i—i
P4

>*0

O

CM
O

System Age (days)

Figure 5.65 FI Coefficient vs. System Age, System 23, LANL Data

177

O

o

o
o

o

o

0 500 1000 1500 2000 2500

System Age (days)

Figure 5.66 ROCOF vs. System Age, System 23, LANL Data

178

Table 5.23 FI Coefficients and ROCOF, System 24, LANL Data

System

24

FI (8 = 0)

0.3328124

FI (e = 0.20)

0.3583177

FI (e = 0.99)

0.514077

GT (N(T))

-0.3460315

System Age (days)

Figure 5.67 Total Downtime vs. System Age, System 24, LANL Data

179

O

m
o

O
i—i
PL,

r-
<z>

O

o

o

o

0 500 1000 1500 2000 2500

System Age (days)

Figure 5.68 FI Coefficient vs. System Age, System 24, LANL Data

180

U

O
O
H
O

CM

O
O

CNI
<3

o

0 500 1000 1500 2000 2500

System Age (days)

Figure 5.69 ROCOF vs. System Age, System 24, LANL Data

Table 5.24 Number of Systems with Increasing vs. Decreasing ROCOF, LANL Data

Increasing ROCOF

16

Decreasing ROCOF

7

Table 5.25 FI Coefficient Averages, Increasing vs. Decreasing ROCOF, LANL Data

Systems With:

Increasing ROCOF

Decreasing ROCOF

FI (s = 0)

0.405614

0.430932

FI (e = 0.20)

0.42934

0.455128

FI (e = 0.99)

0.632599

0.659323

181

Table 5.26 Coefficient Averages, All Systems, LANL Data

Index

Avg.

FI (s = 0)

0.418823

FI (e = 0.20)

0.442795

FI (e = 0.99)

0.646542

GT(N(T))

0.052074

5.3 Conclusions

Sixteen of the 23 systems exhibit increasing ROCOF. Seven of the systems have

decreasing ROCOF. However, increasing or decreasing ROCOF has little impact on the

failure volatility of a given system, as systems with increasing ROCOF generated an FI

(e = 0.99) coefficient of 0.632599 and systems with decreasing ROCOF generated an FI

(e = 0.99) coefficient of 0.659323, values which are not significantly different.

On average, the systems generated an FI (s = 0) coefficient of 0.418823, an FI (e

= 0.20) coefficient of 0.442795 and an FI (e = 0.99) coefficient of 0.646542. Similar to

the relationship reported in the inequality index results from Chapter 3, this suggests that

the higher failure volatility exists amongst the larger failures incurred by a system, and

less failure volatility exists amongst the smaller failures.

Large periods of non-failure behavior significantly impact the failure volatility

(and as such the resulting FI coefficient) of a given system. System 21, for example,

contains a significant period of no failure activity toward the end of its lifetime, resulting

in an FI (e = 0.99) coefficient of 0.821141. This was the highest FI coefficient reported

by any system. Likewise, System 20, which contains the most regular time intervals

between each failure, reported an FI (e = 0.99) coefficient of 0.3392873, the lowest of

any system.

182

In conclusion, the amount of time between successive failures significantly

contributes to the overall failure volatility exhibited by an HPC system. Such time

periods are not accounted for using traditional inequality indices such as the Gini or

Atkinson index. The FI, however, does capture these time periods, and results show that

systems with more regular time intervals between system failures exhibit lower levels of

volatility than those with prolonged periods of highly unequal time between successive

failures. FI coefficients are less affected by single large failures than Gini or Atkinson

coefficients, though the level of inequality in the impact of each failure exhibited by the

system does still play a role in the volatility reported by a Failure Index coefficient.

The relationship between system volatility as captured by FI coefficients and

system failure rate as captured by GT coefficients can be seen in the plots of FI and GT

coefficients in relation to time. A system's ROCOF levels as the system ages, while

system volatility continues to fluctuate in the latter days of a system's lifespan.

The following chapter closes the dissertation by drawing results from the entirety

of the work and proposing future uses of the Failure Index. The source code used to

generate the FI and GT coefficients reported in this chapter are given in Appendix B and

Appendix C, respectively. A list of the acronyms used in this dissertation is given in

Appendix A.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this dissertation we introduced and demonstrated a Failure Index for High

Performance Computing applications. The FI is a time-dependent implementation of the

Atkinson Index and captures the failure volatility exhibited by an HPC system in a given

period. It is less affected by single large failures and more affected by fluctuations in

failure strength over time and irregular time intervals between successive failures.

Existing inequality indices such as the Gini and Atkinson index do not take time into

consideration. System failure rates level as HPC system's age, while system volatility

does not.

Background information was given in the first two chapters in order to

demonstrate the need for such a metric, including a general introduction to HPC

resilience, a look at previous work in statistically analyzing large HPC datasets, and a

means to generate application-specific data from a large-scale HPC application.

Inequality indices were then introduced from a statistical standpoint and their

applicability was demonstrated via application to a dataset containing failure information

from 23 machines housed at Los Alamos National Laboratory from 1996 to 2005.

183

184

The FI was then mathematically introduced in Chapter 4, along with an overview

of the GT Index, which captures a system's rate of occurrence of failure (ROCOF). In

Chapter 5, the FI and GT Indices were applied to the LANL dataset, with results showing

time plays an important role in the failure volatility exhibited by a given system. Results

also show that a system's ROCOF and its level of failure volatility are not statistically

related.

6.2 Future Work

Suggested future work in this area consists largely of implementing the Failure

Index in real time on an existing suitably-scaled HPC system. Specifically, it is

suggested that an FI module be created for the SLURM platform, which in its current

form is much like the proposed Resilience Framework mentioned in the first chapter of

this dissertation.

This effort would require a large dedication to both application programming and

tuning as well as interface development. However, the utility of a real time FI is clear -

one would be able to react to changes in application failure volatility in accordance with

real time fluctuations of a system's FI coefficient, which when combined with existing

metrics such as MTBF and the 'nines' system reliability allows for greater flexibility in

how to proactively prepare for the failure behavior exhibited by a given system.

Future work also includes combining the FI with the real-time application metric

generation software Gilgamesh, developed by the author and discussed in Chapter 2.

This would allow for the generation of live per-application FI coefficients immediately

after the extraction of relevant failure-related data from that application. This would

allow for the real time monitoring of an application's failure volatility.

APPENDIX A

LIST OF ACRONYMS

185

ASCI - Advanced Scientific Computing Initiative

BG/L - Blue/Gene L

BLCR - Berkeley Laboratory Checkpoint/Restart

Blobs - Binary Large OBjectS

C/R - Checkpoint/Restart

CIF - Cumulative Intensity Function

CLI - Command Line Interface

CMU - Carnegie Melon University

CPU - Central Processing Unit

CTD - Collection of Training Data

DOE - Department of Energy

FC() - Failure Classification Function

FENCE - Fault-Aware ENabled Computing Environment

FI - Failure Index

FLOPS - Floating Point Operations Per Second

FPM - Failure Probability Model

GUI - Graphical User Interface

HPC - High Performance Computing

K-S - Kolmogorov-Smirnov

LAM - Local Area Multicomputer MPI

LANL - Los Alamos National Laboratory

LLNL - Lawrence Livermore National Laboratory

MPI - Message Passing Interface

MTBF - Mean Time Between Failure

MTTF - Mean Time To Failure

MTTR - Mean Time To Repair

OSS - Open|SpeedShop

ROCOF - Rate of Occurrence of Failure

RRE - Resilience-Related Event

SEP - Similar Event Prediction

SGI - Silicon Graphics, Inc.

TTF - Time To Failure

TTR - Time To Repair

APPENDIX B

FAILURE INDEX SOURCE CODE

188

189

#FISCRIPT.R -- Computes a time-dependent Failure Index coefficient for

the given dataset

#AUTHOR: Clayton Chandler, Louisiana Tech University

#load the necessary libraries

library(caTools)

#NOTE: dataset must be ran before running script.

#NOTE: parameter must be set before running script.

#set the necessary values, assuming data has already been loaded

idx = 2:length(data$time)

T <- as.double(data$time[idx][(length(data$time)-1)])

FT <- as.double(data$totaldowntime[idx][(length(data$downtime)-1)])

#get the mean values for both time and downtime

EFT <- as.double(mean(data$totaldowntime))

ET <- as.double(mean(data$time))

tfind the integral using the trapezoid rule and the given parameter

INTEGRAL <- as.double((data$time[idx] - data$time[idx-1]) %*%

((data$totaldowntime[idx]A(1-parameter)) + (data$totaldowntime[ldx-

1]A(1-parameter))) / 2)

#Multiply the integral by (1 / T)

INSIDEPRODUCT <- as.double(INTEGRAL * (1/T))

tObtam the Inside Product to the (1 / 1-parameter) power

POWER <- as.double(INSIDEPRODUCT A as.double(1/(1-parameter)))

190

#Multiply the result by 1/E(T)

OUTSIDEPRODUCT <- as.double(POWER * as.double(1/FT))

#Take one minus this to get final result

FI <- as.double(1 - OUTSIDEPRODUCT)

tReturn the resulting FI coefficient

return (as.double(FI))

APPENDIX C

GT INDEX SOURCE CODE

191

192

#GTSCRIPT.R — Computes a GT Index coefficient for the given dataset

#AUTHOR: Clayton Chandler, Louisiana Tech University

#load the necessary libraries

library(caTools)

#NOTE: dataset must be ran before running script.

#NOTE: parameter must be set before running script.

#set the necessary values, assuming data has already been loaded

idx = 2:length(data$quantile)

T <- as.double(data$quantile[idx][(length(data$quantile)-1)])

N <- as.double(data$numberofevents[idx][(length(data$numberofevents)-

1)])

#find the integral using the trapezoid rule and the given parameter

GTINTEGRAL <- as.doublet (data$quantile[idx] - data$quantile[idx-1])

%*% (data$numberofevents[idx] + data$numberofevents[idx-1]) / 2)

#Obtain the numerator

GTNUMERATOR <- as.double(GTINTEGRAL * 2)

#Obtain the denomenator

GTDENOMENATOR <- as.double(T * N)

#Get the fraction

GTFRACTION <- as.double(GTNUMERATOR / GTDENOMENATOR)

193

#Get the coefficient

GT <- as.double(1 - GTFRACTION)

#Return the resulting GT coefficient

return (as.double(GT))

REFERENCES

[1] R. Haring, IBM T.J. Watson, Personal communications, July 2005.

[2] N. Taerat, N. Nakisinehaboon, C. Chandler, J. Elliot, C. Leangsuksun, G.
Ostrouchov, and S. L. Scott, "Using Log Information to Perform Statistical
Analysis on Failures Encountered by Large-Scale HPC Deployments," in
Proceedings of the 2008 High Availability and Performance Computing
Workshop, 2008.

[3] I. Philp, "Software failures and the road to a petaflop machine," in HPCRI: 1st

Workshop on High Performance Computing Reliability Issues, in Proceedings of
the if International Symposium on High Performance Computer Architecture
(HPCA-11), IEEE Computer Society, 2005.

[4] S. Ghemawat, H. Gobioff, and S. Leung, "The Google file system," in SOSP
2003: Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, pp. 29-43, 2003.

[5] "Advanced configuration & power interface," http://www.acpi.info/, 2004, last
accessed on November 12, 2011.

[6] H. Song, C. Leangsuksun, and R. Nassar, "Availability modeling and analysis on
high performance cluster computing systems," in First International Conference
on Availability, Reliability and Security, pp. 305-313, 2006.

[7] S. Rani, C. Leangsuksun, A. Tikotekar, V. Rampure, and S. Scott, "Toward
efficient failure detection and recovery in hpc," in High Availability and
Performance Computing Workshop, 2006.

[8] S. Sankaran, J. Squyres, B. Barrett, A. Lumsdaine, J. Duell, P. Hargrove, and E.
Roman, "The LAM/MPI checkpoint/restart framework: System-initiated
checkpointing," in Proceedings, LACSISymposium, October 2003.

[9] J. Duell, "The design and implementation of Berkeley Lab's Linux checkpoint/
restart," Tr, Lawrence Berkeley National Laboratory, 2000.

194

http://www.acpi.info/

195

[10] C. Hsu and W. Feng, "A power-aware run-time system for high-performance
computing," in SC '05: Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, 2005.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.
Pratt, and A. Warfield, "Xen and the art of virtualization," in Symposium on
Operating Systems Principles, pp. 164-177, 2003.

[12] S. Chakravorty, C. Mendes, and L. Kale, "Proactive fault tolerance in large
systems," in HPCRI: 1st Workshop on High Performance Computing Reliability
Issues, in Proceedings of the 11th International Symposium on High Performance
Computer Architecture (HPCA-11), IEEE Computer Society, 2005.

[13] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. Sahoo, "BlueGene/L
failure analysis and prediction models," in The International Conference on
Dependable Systems and Networks 2006, pp. 425-434, 2006.

[14] S. Fu and C.-Z. Xu, "Exploring event correlation for failure prediction in
coalitions of clusters," in SC '07: Proceedings of the 2007 ACM/IEEE conference
on Supercomputing, pp. 1-12, 2007.

[15] S. Chakravorty, C. Mendes, and L. Kale, "Proactive fault tolerance in mpi
applications via task migration," in The International Conference on High
Performance Computing, 2006.

[16] "Advanced configuration & power interface", http://www.acpi.info/, 2005, last
accessed on November 12, 2011.

[17] R. Sahoo, A. Oliner, I. Rish, M. Gupta, J. Moreira, S. Ma, R. Vilalta, and A.
Sivasubramaniam, "Critical event prediction for proactive management in large-
scale computer clusters," in KDD '03: Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 426-
435,2003.

[18] A. Oliner, R. Sahoo, J. Moreira, M. Gupta, and A. Sivasubramaniam, "Fault-
aware job scheduling for bluegene/1 systems," in International Parallel and
Distributed Processing Symposium, 2004.

[19] T. Liu, Z. Ma, and Z. Ou, "A novel processs migration method for mpi
applications," in Symposium on Dependable Computing, pp. 247-251, 2000.

[20] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.
Pratt, and A. Warfield, "Xen and the art of virtualization," In Symposium on
Operating Systems Principles, pp. 164-177, 2003.

http://www.acpi.info/

196

[21] A. B. Nagarajan and F. Mueller, "Proactive fault tolerance for hpc with xen
virtualization," Technical Report TR 2007-1, Dept. of Computer Science, North
Carolina State University, 2007.

[22] H. Song, C. Leangsuksun, R. Nassar, N. R. Gottumukkala, S. Scott, and A. Yoo,
"Availability modeling and analysis on high performance cluster computing
systems," in Proceedings of the International Symposium on Frontiers in
Availability, Reliability and Security (FARES), April 2006.

[23] N. R. Gottumukkala, C. Leangsuksun, R. Nassar, and S. L. Scott, "Reliability-
aware resource allocation in HPC systems," in Proceedings of the IEEE
International Conference on Cluster Computing, 2007.

[24] G. Vallee and C. Morin, "A Framework for High Availability Based on Single
System Image," in Proceedings of High Availability and Performance Computing
Workshop (HAPCW) 2005, October 2005.

[25] Y. Liu and C. Leangsuksun, "Reliability-aware checkpoint/restart scheme: A
performability trade-off," in Proceedings of IEEE International Conference on
Cluster Computing (Cluster) 2005, September 26-30, 2005.

[26] A. Tikotekar, C. Leangsuksun, and S. L. Scott, "On the survivability of standard
MPI applications," in Proceedings of 7th LCI International Conference on Linux
Clusters: The HPC Revolution 2006, May 2-4 2006.

[27] Y. Zhang, M. S. Squillante, A. Sivasubramaniam, and R. K. Sahoo, "Performance
implications of failures in large-seal cluster scheduling," Job Scheduling
Strategies for Parallel Processing, vol. 3277/2005, pp. 233-252, 2005.

[28] T. Y. Lin and D. P. Siewiorek, "Error log analysis: Statistical modeling and
heuristic trend analysis," IEEE Transactions on Reliability, vol. 39, no. 4, pp.
419-^132,2000.

[29] I. Lee and R. K. Iyer, "Analysis of software halts in tandem system," in
Proceedings 3rd Intl. Software Reliability Engineering, pp. 227-236, October
1992.

[30] K. Goseva-Popstojanova and K. S. Trivedi, "Failure correlation in software
reliability models," IEEE Transactions on Reliability, vol. 49, no. 1, pp. 37-48,
2000.

[31] T. Heath, R. P.Martin, and T. D.Nguyen, "Improving cluster availability using
workstation validation," in Proceedings of the 2002 ACM SIGMETRICS
Conference, pp. 217-227, 2002.

197

[32] D. Eager, J. Zahorjan, and E. Lazowska, "Speedup versus efficiency in parallel
systems," IEEE Transactions on Computers, vol. 38, no. 3, pp. 408^423, 1989.

[33] V. Kumar and A. Gupta, "Analysis of scalability of parallel algorithms and
architectures: a survey," in Proceedings of the 5th international Conference on
Supercomputing, pp. 396^105, June 1991.

[34] S. Shatz, J.-P.Wang, and M. Goto, "Task allocation for maximizing reliability of
distributed computer systems," IEEE Transactions on Computers, vol. 41, no. 9,
pp. 1156-1168,1992.

[35] D. Nicol and F. Willard, "Problem size, parallel architecture, and optimal
speedup," Parallel and Distributed Computing, vol. 5, no. 4, pp. 404^120, 1988.

[36] J. W. Young, "A first order approximation to the optimum checkpoint interval,"
Communications of the ACM, vol. 17, no. 9, pp. 530-531, 1974.

[37] J. T. Daly, "A higher order estimate of the optimum checkpoint interval for
restart dumps," Future Gener. Comput. Syst, vol. 22, no. 3, pp. 303-312, 2006.

[38] R. Geist, R. Reynolds, and J. Westall, "Selection of a checkpoint interval in a
critical-task environment," Transactions on Reliability, vol. 37, no. 4, pp. 395-
400, 1988.

[39] K. F. Wong and M. Franklin, "Distributed computing systems and
checkpointing," in Proceedings of the 2nd International Symposium on High
Performance Distributed Computing, pp. 224-233, 1993.

[40] Y. Ling, J. Mi, and X. Lin, "A variational calculus approach to optimal
checkpoint placement," IEEE Transactions on Computers, vol. 50, no. 7, pp. 699-
707,2001.

[41] T. Ozaki, T. Dohi, and H. Okamura, "Distribution-free checkpoint placement
algorithms based on min-max principle," IEEE Transactions on Dependable and
Secure Computing, vol. 3, no. 2, pp. 130-140, 2006.

[42] J. Stearley, "Defining and measuring supercomputer reliability, availability, and
serviceability (ras)," in Proceedings of the 2005 Linux Clusters Institute
Conference, 2005.

[43] J. S. Plank and M. G. Thomason, "The average availability of parallel
checkpointing systems and its importance in selecting runtime parameters," in
International Symposium on Fault-Tolerant Computing, June 1999.

198

[44] S. I. Feldman and C. B. Brown, "Igor: a system for program debugging via
reversible execution," in Proceedings of the 1988 ACM SIGPLAN and SIGOPS
Workshop on Parallel and Distributed Debugging, pp. 112-123, 1989.

[45] N. H. Vaidya, "A case for two-level distributed recovery schemes," in
Proceedings of the 1995 ACM SIGMETRICS Joint International Conference on
Measurement and Modeling of Computer Systems, pp. 64-73, 1995.

[46] J. Plank, J. Xu, and R. Netzer, "Compressed differences: An algorithm for fast
incremental checkpointing," Technical Report CS-95-302 (TP CS-95-302), The
University of Tennessee at Knoxville, 1995.

[47] A. C. Palaniswamy and P. A. Wilsey, "An analytical comparison of periodic
checkpointing and incremental state saving," ACM SIGSIM Simulation Digest,
vol. 23, no. l,pp. 127-134, 1993.

[48] M. Harchol-Balter and A. B. Downey, "Exploiting process lifetimes distributions
for dynamic load balancing," Transactions on Computer Systems, vol. 15, no. 3,
pp. 253-285, 1997.

[49] R. F. deMello and L. J. Senger, "A new migration model based on the evaluation
of processes load and lifetime on heterogeneous computing environments," in the
16th Symposium of Computer Architecture and High Performance Computing,
pp. 222-227, 2004.

[50] J. Cao, Y. Li, and M. Guo, "Process migration for mpi applications based on
coordinated checkpoint," in ICPADS '05: Proceedings of the 11th International
Conference on Parallel and Distributed Systems (ICPADS'05), pp. 306-312,
2005.

[51] X.-H. Sun, Z. Lan, Y. Li, H. Jin, and Z. Zheng, "Towards a fault-aware
computing environment," in Proceedings of the 2008 High Availability and
Performance Computing Workshop, 2008.

[52] F. Salfner, M. Schieschke, and M. Malek, "Predicting failures of computer
systems: a case study for a telecommunication system," Parallel and Distributed
Processing Symposium 2006, pp. 8-12, April 2006.

[53] J. T. Daly, "A model for predicting the optimum checkpoint interval for restart
dumps," in International Conference on Computational Science, pp. 3-12, 2003.

[54] T. J. Hacker and Z. Meglicki, "Using queue structures to improve job reliability,"
in HPDC '07: Proceedings of the 16th international symposium on High
performance distributed computing, pp. 43-54, 2007.

199

[55] B. Schroeder and G. Gibson, "A large-scale study of failures in high-
performance-computing systems," in Proceedings of the 2006 International
Conference on Dependable Systems and Networks (DSN- 2006), June 2006.

[56] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and S. L. Scott,
"An optimal checkpoint/restart model for a large scale high performance
computing system," in International Parallel and Distributed Processing
Symposium, April 2008.

[57] Z. Xue, X. Dong, S. Ma, and W. Dong, "A survey on failure prediction of large-
scale server clusters," Eighth ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed
Computing, 2007, vol. 2, pp. 733-738, July 30 2007-Aug. 1 2007.

[58] W. Kang and A. Grimshaw, "Failure prediction in computational grids,"
Simulation Symposium, 2007, pp. 275-282, March 2007.

[59] N. Ye, The Handbook of Data Mining. Lawrence Erlbaum, 2003.

[60] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E.Moreira, S.Ma, R. Vilalta, and
A. Sivasubramaniam, "Critical event prediction for proactive management in
large-scale computer clusters," in KDD '03: Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data mining, pp.
426^135, ACM, 2003.

[61] P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White, "A meta-learning failure
predictor for blue gene/1 systems," in International Conference on Parallel
Processing, 2007, pp. 40^0 , September 2007.

[62] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, "An adaptive semantic filter for
blue gene/1 failure log analysis," in IEEE International Parallel and Distributed
Processing Symposium, 2007, pp. 1-8, 26-30 March 2007.

[63] G. Hamerly and C. Elkan, "Bayesian approaches to failure prediction for disk
drives," in ICML '01: Proceedings of the Eighteenth International Conference on
Machine Learning, pp. 202-209, 2001.

[64] J. Pearl, "Causality: Models, Reasoning, and Inference". HE Transacations, vol.
34, no. 6, pp. 583-589.

[65] J. Becklehimer, C. Willis, J. Lothian, D. Maxwell, and D. Vasil, "Real time
health monitoring of the cray xt3/xt4 using the simple event correlator (sec)," in
Proceedings of Cray User Group 2007, 2007.

200

[66] I. Philip, "Software Failures and the Road to a Petaflop Machine," in HPCRI: 1st
Workshop on High Performance Computing Reliability Issues, in Proceedings of
the II' International Symposium on High Performance Computer Architecture
(HPCA-U), 2005.

[67] H. Song, C. Leangsuksun, and R. Nassar, "Availability Modeling and Analysis
on High Performance Cluster Computing Systems," in First International
Conference on Availability, Reliability, and Security, pp. 305-313, 2006.

[68] "Los Alamos National Laboratory Operational Data to Support and Enable
Computer Science Research," http://institutes.lanl.gov/data/fdata/, last accessed
on November 1st, 2011.

[69] B. Schroeder and G. Gibson, "A Large-Scale Study of Failures in High
Performance-Computing Systems," in Proceedings of the International
Conference on Dependable Systems and Networks (DSN), June, 2006.

[70] F. Salfner and M. Malek, "Using hidden semi-markov models for effective online
failure prediction," 26th IEEE International Symposium on Reliable Distributed
Systems, 2007, pp. 161-174, October 2007.

[71] N. Taerat, N. Nakisinehaboon, C. Chandler, J. Elliot, C Leangsuksun, G
Ostrouchov, and S. L. Scott, "Using Log Information to Perform Statistical
Analysis on Failures Encountered by Large-Scale HPC Deployments," in
Proceedings of the 2008 High Availability and Performance Computing
Workshop, 2008.

[72] "Sisyphus Project," http://www.cs.sandia.gov/~jrstear/sisyphus/, last accessed on
November 1st, 2011.

[73] "Open|SpeedShop," http://www.openspeedshop.org, last accessed on November
11 ,2011.

[74] S.-Z. Zhang, N.-H. Yang, and X.-K. Wang, "Construction and application of
bayesian networks in flood decision supporting system," 2002 International
Conference on Machine Learning and Cybernetics, 2002, vol. 2, pp. 718-722,
2002.

[75] M. L. Wong and K. S. Leung, "An efficient data mining method for learning
bayesian networks using an evolutionary algorithm-based hybrid approach,"
IEEE Transactions on Evolutionary Computation, vol. 8, no. 4, pp. 378^404,
Aug. 2004.

[76] A. Tikotekar, C. Leangsuksun, and S. L. Scott, "On the survivability of standard
mpi applications," in LCI International Conference on Linux Clusters: The HPC
Revolution, May 2006.

http://institutes.lanl.gov/data/fdata/
http://www.cs.sandia.gov/~jrstear/sisyphus/
http://www.openspeedshop.org

201

[77] "DPCL," http://dpcl.sourceforge.net/, last accessed on July 20th, 2011.

[78] "Dynlnst," http://www.dyninst.org/, last accessed on July 20th, 2011.

[79] G.Almasi, R. Bellofatto, J. Brunheroto, C. Cascaval, J. G. Castonos, L. Ceze, P.
Crumlev, C. C. Erway, J. Gagliano, D. Lieber, X. Martorell, J. E. Moreira, A.
Sanomiva and K. Strauss, "An Overview of the Blue Gene/L System Software
Organization," Euro-Par 2003, Parallel Processing2003, pp.543-555, 2003.

[80] P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White, "A Meta-Learning Failure
Predictor for Blue Gene/L Systems," International Conference on Parallel
Processing 2007, pp. 40-47, 2007.

[81] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer and M. Snir, "Toward
Exascale Resilience," in the International Journal of High Performance
Computing Applications, vol. 23, no. 4, pp. 374-388, November 2009.

[82] J. Dongarra, P. Beckman, P. Aerts, F. Cappello, T. Lippert, S. Matsuoka, P.
Messina, T. Moore, R. Stevens, A. Trefethen and M. Valero, "The International
Exascale Software Project: A Call to Cooperative Action by the Global High-
Performance Community," in the International Journal of High Performance
Computing Applications, vol. 23, no. 4, pp. 309-322, November 2009.

[83] C. Chandler and N. DeBardeleben, "Toward Resilient High Performance
Applications through Real-Time Reliability Metric Generation and Autonomous
Failure Correction," 18th International Symposium on High Performance
Distributed Computing, 2009.

[84] C. Chandler, N. DeBardeleben and C. Leangsuksun, "Resilience Analysis of
High Performance Computing Applications via Bayesian Pattern Recognition,"
(Poster) The National Workshop on HPC Resilience, August 2010.

[85] J. L. Gastwirth, "A General Definition of the Lorenz Curve," in Econometrica,
vol. 39, pp. 1037-1039, November 1971.

[86] J. L. Gastwirth, "The Estimation of the Lorenz Curve and Gini Index," in Review
of Economics and Statistics, vol 54, no. 3, pp. 306-316, August 1972.

[87] T. G. Holland, G. D. Peterson and A. Gonzalez, "A Cross-National Analysis of
How Economic Inequality Predicts Biodiversity Loss," in Conservation Biology,
vol. 23, no. 5, pp. 1304-1313, October 2009.

[88] E. Deconinck, E. Zhang, D. Coomans and Y. V. Heyden, "Classification Tree
Models for the Prediction of Blood-Brain Barrier Passage of Drugs," in the
Journal of Chemical Information and Modeling, pp. 1410-1419, February 2006.

http://dpcl.sourceforge.net/
http://www.dyninst.org/

202

[89] G. Henriques and R. Patel, "NAFTA, Corn, and Mexico's Agricultural Trade
Liberalization," International Relations Center, February 26, 2009.

[90] B. Chandra, S. Mazumdar, V. Arena and N. Parimi, "Elegant Decision Tree
Algorithm for Classification in Data Mining," in the Third International
Conference on Web Information Systems Engineering, December 11, 2002.

[91] N. Mimoto, "Statistical Inference for Densities and Related Indices", Thesis,
University of Western Ontario, 2008.

[92] E. Cutrini, "Using Entropy Measures to Disentangle Regional from National
Localization Patterns," Regional Science and Urban Economics, vol. 39, no. 2,
pp. 243-250, November 2009.

[93] T. Taerat, N. Naksinehaboon, C. Chandler, J. Elliot, C. Leangsuksun, G.
Ostrouchov, and S. L. Scott, "Using Log Information to Perform Statistical
Analysis on Failures Encountered by Large-Scale HPC Deployments," in
Proceedings of the 2008 High Availability and Performance Computing
Workshop, 2008.

[94] D. Van de gaer, N. Funnell and T. McCarthy, "Statistical inference for two
measures of inequality when incomes are correlated," in Economics Letters, vol.
64, no. 3, pp. 295-300, September 1999.

[95] A. Tikotekar, "A Component-Based Survivability Framework for HPC
Applications," Master's Thesis, Louisiana Tech University, Ruston, LA, USA,
Mar. 2007.

[96] T. Liu, "High Availability and Performance Linux Cluster," Master's Thesis,
Louisiana Tech University, Ruston, LA, USA, May 2004.

[97] V. K. Munganuru, "On Planned Downtime Reduction for High Performance
Cluster Systems," Master's Thesis, Louisiana Tech University, Ruston, LA,
USA, Feb. 2006.

[98] M. P. Kaminskiyy and V. Krivtsov, "A Gini-Type Index for Aging/Rejuvenating
Objects," in Mathematical and Statistical Models and Methods in Reliability,
Statistics and Industry and Technology, pp. 133-140, 2010.

[99] B. Schroeder and G. A. Gibson, "A Large-Scale Study of Failures in High-
Performance Computing Systems," the International Conference on Dependable
Systems and Networks 206, 2006.

[100] "The CIA World Factbook, 2009," https://www.cia.gov/library/publications/the-
world-factbook/, last accessed on November 22nd, 2011.

https://www.cia.gov/library/publications/theworld-factbook/
https://www.cia.gov/library/publications/theworld-factbook/

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Spring 2012

	A failure index for high performance computing applications
	Clayton F. Chandler
	Recommended Citation

	ProQuest Dissertations

