45 research outputs found

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    An Overview of Legged Robots

    Get PDF
    The objective of this paper is to present the evolution and the state-of-theart in the area of legged locomotion systems. In a first phase different possibilities for mobile robots are discussed, namely the case of artificial legged locomotion systems, while emphasizing their advantages and limitations. In a second phase an historical overview of the evolution of these systems is presented, bearing in mind several particular cases often considered as milestones on the technological and scientific progress. After this historical timeline, some of the present day systems are examined and their performance is analyzed. In a third phase are pointed out the major areas for research and development that are presently being followed in the construction of legged robots. Finally, some of the problems still unsolved, that remain defying robotics research, are also addressed.N/

    A Mobile Quad-Arm Robot ARMS: Wheel-Legged Tripedal Mobility and Quad-Arm Manipulation

    Full text link
    This letter proposes a mobile quad-arm robot: ARMS that unifies wheel-legged tripedal mobility, wheeled mobility, and quad-arm manipulation. The four arms have different mechanics and are designed to be general-purpose arms to enable the wheel-legged hybrid mobilities and manipulation. The three-degree-of-freedom (DOF) front arm has an active wheel, which is used for wheel-legged tripedal walking and wheel driving with passive wheels attached to the torso. The three-DOF rear arms are series elastic arms, which are used for wheel-legged tripedal walking, object grasping, and manipulation. The two-DOF upper arm is used for manipulation only; its position and orientation are determined by coordinating all arms. Each motor is controlled by an angle controller and trajectory modification with angle, angular velocity, angular acceleration, and torque constraints. ARMS was experimentally validated on the basis of the following four tasks: wheel-legged walking, wheel-driving, wheel-driving with grasping, and carrying a bag

    Modeling, Control and Estimation of Reconfigurable Cable Driven Parallel Robots

    Get PDF
    The motivation for this thesis was to develop a cable-driven parallel robot (CDPR) as part of a two-part robotic device for concrete 3D printing. This research addresses specific research questions in this domain, chiefly, to present advantages offered by the addition of kinematic redundancies to CDPRs. Due to the natural actuation redundancy present in a fully constrained CDPR, the addition of internal mobility offers complex challenges in modeling and control that are not often encountered in literature. This work presents a systematic analysis of modeling such kinematic redundancies through the application of reciprocal screw theory (RST) and Lie algebra while further introducing specific challenges and drawbacks presented by cable driven actuators. It further re-contextualizes well-known performance indices such as manipulability, wrench closure quality, and the available wrench set for application with reconfigurable CDPRs. The existence of both internal redundancy and static redundancy in the joint space offers a large subspace of valid solutions that can be condensed through the selection of appropriate objective priorities, constraints or cost functions. Traditional approaches to such redundancy resolution necessitate computationally expensive numerical optimization. The control of both kinematic and actuation redundancies requires cascaded control frameworks that cannot easily be applied towards real-time control. The selected cost functions for numerical optimization of rCDPRs can be globally (and sometimes locally) non-convex. In this work we present two applied examples of redundancy resolution control that are unique to rCDPRs. In the first example, we maximize the directional wrench ability at the end-effector while minimizing the joint torque requirement by utilizing the fitness of the available wrench set as a constraint over wrench feasibility. The second example focuses on directional stiffness maximization at the end-effector through a variable stiffness module (VSM) that partially decouples the tension and stiffness. The VSM introduces an additional degrees of freedom to the system in order to manipulate both reconfigurability and cable stiffness independently. The controllers in the above examples were designed with kinematic models, but most CDPRs are highly dynamic systems which can require challenging feedback control frameworks. An approach to real-time dynamic control was implemented in this thesis by incorporating a learning-based frameworks through deep reinforcement learning. Three approaches to rCDPR training were attempted utilizing model-free TD3 networks. Robustness and safety are critical features for robot development. One of the main causes of robot failure in CDPRs is due to cable breakage. This not only causes dangerous dynamic oscillations in the workspace, but also leads to total robot failure if the controllability (due to lack of cables) is lost. Fortunately, rCDPRs can be utilized towards failure tolerant control for task recovery. The kinematically redundant joints can be utilized to help recover the lost degrees of freedom due to cable failure. This work applies a Multi-Model Adaptive Estimation (MMAE) framework to enable online and automatic objective reprioritization and actuator retasking. The likelihood of cable failure(s) from the estimator informs the mixing of the control inputs from a bank of feedforward controllers. In traditional rigid body robots, safety procedures generally involve a standard emergency stop procedure such as actuator locking. Due to the flexibility of cable links, the dynamic oscillations of the end-effector due to cable failure must be actively dampened. This work incorporates a Linear Quadratic Regulator (LQR) based feedback stabilizer into the failure tolerant control framework that works to stabilize the non-linear system and dampen out these oscillations. This research contributes to a growing, but hitherto niche body of work in reconfigurable cable driven parallel manipulators. Some outcomes of the multiple engineering design, control and estimation challenges addressed in this research warrant further exploration and study that are beyond the scope of this thesis. This thesis concludes with a thorough discussion of the advantages and limitations of the presented work and avenues for further research that may be of interest to continuing scholars in the community

    Nonlinear Model Predictive Control-based Collision Avoidance for Mobile Robot

    Get PDF
    This work proposes an efficient and safe single-layer Nonlinear Model Predictive Control (NMPC) system based on LiDAR to solve the problem of autonomous navigation in cluttered environments with previously unidentified static and dynamic obstacles of any shape. Initially, LiDAR sensor data is collected. Then, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, is used to cluster the (Lidar) points that belong to each obstacle together. Moreover, a Minimum Euclidean Distance (MED) between the robot and each obstacle with the aid of a safety margin is utilized to implement safety-critical obstacle avoidance rather than existing methods in the literature that depend on enclosing the obstacles with a circle or minimum bounding ellipse. After that, to impose avoidance constraints with feasibility guarantees and without compromising stability, an NMPC for set-point stabilization is taken into consideration with a design strategy based on terminal inequality and equality constraints. Consequently, numerous obstacles can be avoided at the same time efficiently and rapidly through unstructured environments with narrow corridors.  Finally, a case study with an omnidirectional wheeled mobile robot (OWMR) is presented to assess the proposed NMPC formulation for set-point stabilization. Furthermore, the efficacy of the proposed system is tested by experiments in simulated scenarios using a robot simulator named CoppeliaSim in combination with MATLAB which utilizes the CasADi Toolbox, and Statistics and Machine Learning Toolbox. Two simulation scenarios are considered to show the performance of the proposed framework. The first scenario considers only static obstacles while the second scenario is more challenging and contains static and dynamic obstacles. In both scenarios, the OWMR successfully reached the target pose (1.5m, 1.5m, 0°) with a small deviation. Four performance indices are utilized to evaluate the set-point stabilization performance of the proposed control framework including the steady-state error in the posture vector which is less than 0.02 meters for position and 0.012 for orientation, and the integral of norm squared actual control inputs which is 19.96 and 21.74 for the first and second scenarios respectively. The proposed control framework shows a positive performance in a narrow-cluttered environment with unknown obstacles

    DESIGN AND DEVELOPMENT OF AN OMNIDIRECTIONAL MOBILE BASE FOR A SOCIAL ROBOT

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Motion Control of Holonomic Wheeled Mobile Robot with Modular Actuation

    Full text link
    This thesis proposes a control scheme for a new holonomic wheeled mobile robot. The platform, which is called C3P (Caster 3 wheels Platform), is designed and built by the Automation Lab., University of Heidelberg. The platform has three driven caster wheels, which are used because of their simple construction and easy maintenance. The C3P has modular actuators and sensors configurations. The robot’s actuation scheme produces singularity difficulties for some wheel steering configuration, described as the following: When all wheels yield the same steering angle value, the C3P cannot be actuated in the direction perpendicular to the wheel velocity vector. The C3P has a modular sensing scheme defined by sensing the steering angle and the wheel angular velocity of each caster wheel. This work has four main contributions 1- developing a controller based on an inverse kinematics solution to handle motion commands in the singular configurations; 2- modeling the C3P’s forward dynamics of the C3P for the simulation purpose; 3- developing a motion controller based on an inverse dynamics solution; and 4- comparing the C3P with other standard holonomic WMRs. In order to escape singularity condition, the actuated inverse kinematics solution is developed based on the idea of coupling any two wheel velocities to virtually actuate the steering angular velocity of the third wheel. The solution is termed as the Wheel Coupling Equation (WCE). The C3P velocity controller consists of two parts: a) the WCE regulator to avoid singularities and adjust the steering angles to the desired value, and b) the regular PID controller to maintain the reference robot velocities with respect to the floor frame of coordinates. The solution reaches acceptable performance in the simulation examples and in the practical experiments. However, it generates relatively large displacement errors only during the steering angles adjustment period. The Euler-Lagrangian method is used for obtaining the forward dynamic and the inverse dynamic models. The forward dynamic model consists of two equations of motion: the WTD (Wheel Torque Dynamics) to calculate the wheel angular velocities with respect to the actuated wheels’ torques, and the DSE (Dynamic Steering Estimator) for calculating the steering angles and steering angular velocities corresponding to the angular wheels’ velocities and accelerations. The inverse dynamics solution defines the forces and torques acting on each actuator and joint. The solution is used in the development of the C3P velocity and position controllers. In comparison to the proposed inverse kinematics solution, the inverse dynamics solution yields less displacement errors. Lyapunov stability analysis is carried out to investigate the system stability for different steering angles’ combinations. The steering angles’ values are considered as the disturbances affecting the platform. Finally, a comparison is made between the C3P and three other holonomic wheeled mobile robots configurations. The comparison is based on the simulation results in relation to the following aspects: a) mobility, b) total energy consumed by each robot in a finite interval of time and c) hardware complexity. The C3P platform shows its advantage in the aspects “b” and “c”
    corecore