914 research outputs found

    Civil Space Technology Initiative: a First Step

    Get PDF
    This is the first published overview of OAST's focused program, the Civil Space Technology Initiative, (CSTI) which started in FY88. This publication describes the goals, technical approach, current status, and plans for CSTI. Periodic updates are planned

    Relation of NEEDS to OSTA

    Get PDF
    The NEEDS program was examined, the interfaces between OSTA and NEEDS were identified, and the responsiveness of the NEEDS program to OSTA technological requirements were assessed. Existing and planned NEEDS elements are discussed

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    NASA SpaceCube Edge TPU SmallSat Card for Autonomous Operations and Onboard Science-Data Analysis

    Get PDF
    Using state-of-the-art artificial intelligence (AI)frameworks onboard spacecraft is challenging because common spacecraft processors cannot provide comparable performance to data centers with server-grade CPUs and GPUs available for terrestrial applications and advanced deep-learning networks. This limitation makes small, low-power AI microchip architectures, such as the Google Coral Edge Tensor Processing Unit (TPU), attractive for space missions where the application-specific design enables both high-performance and power-efficient computing for AI applications. To address these challenging considerations for space deployment, this research introduces the design and capabilities of a CubeSat-sized Edge TPU-based co-processor card, known as the SpaceCube Low-power Edge Artificial Intelligence Resilient Node (SC-LEARN). This design conforms to NASA’s CubeSat Card Specification (CS2) for integration into next-generation SmallSat and CubeSat systems. This paper describes the overarching architecture and design of the SC-LEARN, as well as, the supporting test card designed for rapid prototyping and evaluation. The SC-LEARN was developed with three operational modes: (1) a high-performance parallel-processing mode,(2)a fault-tolerant mode for onboard resilience, and (3) a power-saving mode with cold spares. Importantly, this research also elaborates on both training and quantization of TensorFlow models for the SC-LEARN for use onboard with representative, open-source datasets. Lastly, we describe future research plans, including radiation-beam testing and flight demonstration

    NASA Space Engineering Research Center for VLSI systems design

    Get PDF
    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design

    Investigating, Optimizing, and Emulating Candidate Architectures for On-Board Space Processing

    Get PDF
    With increasing computational demands in the defense and commercial industries, future space missions will require new, high-performance architectures. Extensive research, benchmarking, and analysis of candidate architectures is required before performing the expensive, time-consuming process of radiation-hardening on suitable devices. In this work, we first compare two such candidate architectures: the Texas Instruments KeyStone II octa-core DSP and the ARM Cortex-A53 quad-core CPU. We evaluate the performance of a key kernel used in space applications, the Fast Fourier Transform (FFT), and a key space application, the complex ambiguity function (CAF), on each architecture. We also develop and evaluate a direct-memory access scheme to take advantage of the KeyStone II architecture to perform FFTs. The KeyStone II’s batched 1D-FFT performance-per-watt is 4.1 times greater than the ARM Cortex-A53 and the CAF performance-per-watt is 1.8 times greater. Next, we develop and employ an emulator to study the performance of the High-Performance Spaceflight Computing (HPSC) processor. The HPSC processor is a future architecture under development by Boeing and funded by NASA and AFRL for their future space missions. HPSC is comprised of “chiplets” which have two quad-core ARM Cortex-A53 CPUs connected by an AMBA bus. These chiplets can be connected by different serial interfaces depending on mission needs. By employing two ARM platforms, an octa-core ARM architecture and two quad-core ARM architectures connected by Ethernet, we project HPSC performance for FFTs and another key space application: synthetic-aperture radar (SAR). We project that SAR will scale well on a multi-chiplet platform with a performance gain of 2.94 over a single US+ board when using two connected chiplets. Our research provides new insights on the tradeoffs encountered when parallelizing functions on these candidate architectures, including novel optimization techniques for each architectures

    NASA Capability Roadmaps Executive Summary

    Get PDF
    This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps

    SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 6: Controls and guidance

    Get PDF
    Viewgraphs of briefings from the Space Systems and Technology Advisory Committee (SSTAC)/ARTS review of the draft Integrated Technology Plan (ITP) on controls and guidance are included. Topics covered include: strategic avionics technology planning and bridging programs; avionics technology plan; vehicle health management; spacecraft guidance research; autonomous rendezvous and docking; autonomous landing; computational control; fiberoptic rotation sensors; precision instrument and telescope pointing; microsensors and microinstruments; micro guidance and control initiative; and earth-orbiting platforms controls-structures interaction
    corecore