562 research outputs found

    Fault tolerant control for sensor fault of a single-link flexible manipulator system

    Get PDF
    This paper presents a new approach for sensor fault tolerant control (FTC) of a single-link flexible manipulator system (FMS) by using Finite Element Method (FEM). In this FTC scheme, a new control law is proposed where it is added to the nominal control. This research focuses on one element without any payload assumption in the modelling. The FTC method is designed in such way that aims to reduce fault while maintaining nominal FMS controller without any changes in both faulty and fault free cases. This proposed FTC approach is achieved by augmenting Luenberger observer that is capable of estimating faults in fault detection and isolation (FDI) analysis. From the information provided by the FDI, fault magnitude is assessed by using Singular Value Decomposition (SVD) where this information is used in the fault compensation strategy. For the nominal FMS controller, Proportional- integral- derivative (PID) controller is used to control the FMS where it follows the desired hub angle. This work proved that the FTC approach is capable of reducing fault with both incipient and abrupt signals and in two types of faulty conditions where the sensor is having loss of effectiveness and totally malfunction. All the performances are compared with FTC with Unknown Input Observer (FTC-UIO) method via the integral of the absolute magnitude of error (IAE) method

    FAULT TOLERANT CONTROL FOR SENSOR FAULT OF A SINGLE-LINK FLEXIBLE MANIPULATOR SYSTEM

    Full text link

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Modularity in Service Robotics

    Get PDF

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    Adaptive planning for distributed systems using goal accomplishment tracking

    Get PDF
    Goal accomplishment tracking is the process of monitoring the progress of a task or series of tasks towards completing a goal. Goal accomplishment tracking is used to monitor goal progress in a variety of domains, including workflow processing, teleoperation and industrial manufacturing. Practically, it involves the constant monitoring of task execution, analysis of this data to determine the task progress and notification of interested parties. This information is usually used in a passive way to observe goal progress. However, responding to this information may prevent goal failures. In addition, responding proactively in an opportunistic way can also lead to goals being completed faster. This paper proposes an architecture to support the adaptive planning of tasks for fault tolerance or opportunistic task execution based on goal accomplishment tracking. It argues that dramatically increased performance can be gained by monitoring task execution and altering plans dynamically

    An annotated bibligraphy of multisensor integration

    Get PDF
    technical reportIn this paper we give an annotated bibliography of the multisensor integration literature

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    Unknown input observer approaches to robust fault diagnosis

    Get PDF
    This thesis focuses on the development of the model-based fault detection and isolation /fault detection and diagnosis (FDI/FDD) techniques using the unknown input observer (UIO) methodology. Using the UI de-coupling philosophy to tackle the robustness issue, a set of novel fault estimation (FE)-oriented UIO approaches are developed based on the classical residual generation-oriented UIO approach considering the time derivative characteristics of various faults. The main developments proposed are:- Implement the residual-based UIO design on a high fidelity commercial aircraft benchmark model to detect and isolate the elevator sensor runaway fault. The FDI design performance is validated using a functional engineering simulation (FES) system environment provided through the activity of an EU FP7 project Advanced Fault Diagnosis for Safer Flight Guidance and Control (ADDSAFE).- Propose a linear time-invariant (LTI) model-based robust fast adaptive fault estimator (RFAFE) with UI de-coupling to estimate the aircraft elevator oscillatory faults considered as actuator faults.- Propose a UI-proportional integral observer (UI-PIO) to estimate actuator multiplicative faults based on an LTI model with UI de-coupling and with added Hāˆž optimisation to reduce the effects of the sensor noise. This is applied to an example on a hydraulic leakage fault (multiplicative fault) in a wind turbine pitch actuator system, assuming that thefirst derivative of the fault is zero. - Develop an UIā€“proportional multiple integral observer (UI-PMIO) to estimate the system states and faults simultaneously with the UI acting on the system states. The UI-PMIO leads to a relaxed condition of requiring that the first time derivative of the fault is zero instead of requiring that the finite time fault derivative is zero or bounded. - Propose a novel actuator fault and state estimation methodology, the UIā€“proportional multiple integral and derivative observer (UI-PMIDO), inspired by both of the RFAFE and UI-PMIO designs. This leads to an observer with the comprehensive feature of estimating faults with bounded finite time derivatives and ensuring fast FE tracking response.- Extend the UI-PMIDO theory based on LTI modelling to a linear parameter varying (LPV) model approach for FE design. A nonlinear two-link manipulator example is used to illustrate the power of this method
    • ā€¦
    corecore