11,929 research outputs found

    Assessing the effectiveness of different test approaches for power devices in a PCB

    Get PDF
    Power electronic systems employing Printed Circuit Boards (PCBs) are broadly used in many applications, including some safety-critical ones. Several standards (e.g., ISO26262 for the automotive sector and DO-178 for avionics) mandate the adoption of effective test procedures for all electronic systems. However, the metrics to be used to compute the effectiveness of the adopted test procedures are not so clearly defined for power devices and systems. In the last years, some commercial fault simulation tools (e.g., DefectSim by Mentor Graphics and TestMAX by Synopsys) for analog circuits have been introduced, together with some new fault models. With these new tools, systematic analog fault simulation finally became practically feasible. The aim of this paper is twofold: first, we propose a method to extend the usage of the new analog fault models to power devices, thus allowing to compute a Fault Coverage figure for a given test. Secondly, we adopt the method on a case study, for which we quantitatively evaluate the effectiveness of some test procedures commonly used at the PCB level for the detection of faults inside power devices. A typical Power Supply Unit (PSU) used in industrial products, including power transistors and power diodes, is considered. The analysis of the gathered results shows that using the new method we can identify the main points of strength / weakness of the different test solutions in a quantitative and deterministic manner, and pinpoint the faults escaping to each one

    Fault Coverage Measurement Technique for Analog Circuits

    Get PDF
    This report describes an effort to develop a technique for measuring the amount of fault detection coverage that an analog test pattern has for a particular analog device. The technique is based on a software tool which statistically analyzes data from a circuit simulator. One example of a fault simulation experiment is presented, and some of the results are discussed. Finally, some ideas for future work in this area are given

    A technique to aggregate classes of analog fault diagnostic data based on association rule mining

    Get PDF
    © 2018 IEEE. Analog circuits are widely used in different fields such as medicine, military, aviation and are critical for the development of reliable electronic systems. Testing and diagnosis are important tasks which detect and localize defects in the circuit under test as well as improve quality of the final product. Output responses of fault-free and faulty behavior of analog circuit can be represented by infinite set of values due to tolerances of internal components. The data mining methods may improve quality of fault diagnosis in the case of big data processing. The technique of aggregation the classes of fault diagnostic responses, based on association rule mining, is proposed. The technique corresponds to the simulation before test concept: a fault dictionary is generated by collecting the coefficients of wavelet transformation for fault-free and faulty conditions as the preprocessing of output signals. Classificator is based on k-nearest neighbors method (k-NN) and association rule mining algorithm. The fault diagnostic technique was trained and tested using data obtained after simulation of fault-free and faulty behavior of the analog filter. In result the accuracy in classifying faulty conditions and fault coverage have consisted of more than 99,09% and more than 99,08% correspondingly. The proposed technique is completely automated and can be extended

    A design for testability study on a high performance automatic gain control circuit.

    Get PDF
    A comprehensive testability study on a commercial automatic gain control circuit is presented which aims to identify design for testability (DfT) modifications to both reduce production test cost and improve test quality. A fault simulation strategy based on layout extracted faults has been used to support the study. The paper proposes a number of DfT modifications at the layout, schematic and system levels together with testability. Guidelines that may well have generic applicability. Proposals for using the modifications to achieve partial self test are made and estimates of achieved fault coverage and quality levels presente

    Oscillation-based DFT for Second-order Bandpass OTA-C Filters

    Get PDF
    This document is the Accepted Manuscript version. Under embargo until 6 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s00034-017-0648-9.This paper describes a design for testability technique for second-order bandpass operational transconductance amplifier and capacitor filters using an oscillation-based test topology. The oscillation-based test structure is a vectorless output test strategy easily extendable to built-in self-test. The proposed methodology converts filter under test into a quadrature oscillator using very simple techniques and measures the output frequency. Using feedback loops with nonlinear block, the filter-to-oscillator conversion techniques easily convert the bandpass OTA-C filter into an oscillator. With a minimum number of extra components, the proposed scheme requires a negligible area overhead. The validity of the proposed method has been verified using comparison between faulty and fault-free simulation results of Tow-Thomas and KHN OTA-C filters. Simulation results in 0.25ÎĽm CMOS technology show that the proposed oscillation-based test strategy for OTA-C filters is suitable for catastrophic and parametric faults testing and also effective in detecting single and multiple faults with high fault coverage.Peer reviewedFinal Accepted Versio

    Oscillation-Based Test Structure and Method for OTA-C Filters

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This paper describes a design for testability technique for operational transconductance amplifier and capacitor filters using an oscillation-based test topology. The oscillation-based test structure is a vectorless output test strategy easily extendable to built-in self-test. The proposed methodology converts filter under test into a quadrature oscillator using very simple techniques and measures the output frequency. The oscillation frequency may be considered as a digital signal and it can be evaluated using digital circuitry therefore the test time is very small. These characteristics imply that the proposed method is very suitable for catastrophic and parametric faults testing and also effective in detecting single and multiple faults. The validity of the proposed method has been verified using comparison between faulty and fault-free simulation results of two integrator loop and Tow-Thomas filters. Simulation results in 0.25 mum CMOS technology show that the proposed oscillation-based test strategy for OTA-C filters has 87% fault coverage and with a minimum number of extra components, requires a negligible area overhead

    Design for testability of high-order OTA-C filters

    Get PDF
    Copyright © 2016 John Wiley & Sons, Ltd.A study of oscillation-based test for high-order Operational Transconductance Amplifier-C (OTA-C) filters is presented. The method is based on partition of a high-order filter into second-order filter functions. The opening Q-loop and adding positive feedback techniques are developed to convert the second-order filter section into a quadrature oscillator. These techniques are based on an open-loop configuration and an additional positive feedback configuration. Implementation of the two testability design methods for nth-order cascade, IFLF and leapfrog (LF) filters is presented, and the area overhead of the modified circuits is also discussed. The performances of the presented techniques are investigated. Fourth-order cascade, inverse follow-the-leader feedback (IFLF) and LF OTA-C filters were designed and simulated for analysis of fault coverage using the adding positive feedback method based on an analogue multiplexer. Simulation results show that the oscillation-based test method using positive feedback provides high fault coverage of around 97%, 96% and 95% for the cascade, IFLF and LF OTA-C filters, respectively. Copyright ÂPeer reviewe

    Oscillation-based Test Method for Continuous-time OTA-C Filters

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”Design for testability technique using oscillation-based test topology for KHN OTA-C filters is proposed. The oscillation-based test structure is a vectorless output test strategy easily extendable to built-in self-test. During test mode, the filter under test is converted into an oscillator by establishing the oscillation condition in its transfer function. The oscillator frequency can be measured using digital circuitry and deviations from the cut-off frequency indicate the faulty behaviour of the filter. The proposed method is suitable for both catastrophic and parametric fault diagnosis as well as effective in detecting single and multiple faults. The validity of the proposed method has been verified using comparison between faulty and fault-free simulation results of KHN OTA-C filter. Simulation results in 0.25mum CMOS technology show that the proposed oscillation-based test strategy has 84% fault coverage and with a minimum number of extra components, requires a negligible area overhead.Final Published versio
    • …
    corecore