200 research outputs found

    Supporting group maintenance through prognostics-enhanced dynamic dependability prediction

    Get PDF
    Condition-based maintenance strategies adapt maintenance planning through the integration of online condition monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating prognostics predictions and grouping maintenance actions respectively. In complex industrial systems, however, effective condition-based maintenance is intricate. Such systems are comprised of repairable assets which can fail in different ways, with various effects, and typically governed by dynamics which include time-dependent and conditional events. In this context, system reliability prediction is complex and effective maintenance planning is virtually impossible prior to system deployment and hard even in the case of condition-based maintenance. Addressing these issues, this paper presents an online system maintenance method that takes into account the system dynamics. The method employs an online predictive diagnosis algorithm to distinguish between critical and non-critical assets. A prognostics-updated method for predicting the system health is then employed to yield well-informed, more accurate, condition-based suggestions for the maintenance of critical assets and for the group-based reactive repair of non-critical assets. The cost-effectiveness of the approach is discussed in a case study from the power industry

    The ORIS Tool: Quantitative Evaluation of Non-Markovian Systems

    Get PDF

    Supporting group maintenance through prognostics-enhanced dynamic dependability prediction

    Get PDF
    Condition-based maintenance strategies adapt maintenance planning through the integration of online condition monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating prognostics predictions and grouping maintenance actions respectively. In complex industrial systems, however, effective condition-based maintenance is intricate. Such systems are comprised of repairable assets which can fail in different ways, with various effects, and typically governed by dynamics which include time-dependent and conditional events. In this context, system reliability prediction is complex and effective maintenance planning is virtually impossible prior to system deployment and hard even in the case of condition-based maintenance. Addressing these issues, this paper presents an online system maintenance method that takes into account the system dynamics. The method employs an online predictive diagnosis algorithm to distinguish between critical and non-critical assets. A prognostics-updated method for predicting the system health is then employed to yield well-informed, more accurate, condition-based suggestions for the maintenance of critical assets and for the group-based reactive repair of non-critical assets. The cost-effectiveness of the approach is discussed in a case study from the power industry

    Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review

    Get PDF
    YesSystem safety, reliability and risk analysis are important tasks that are performed throughout the system lifecycle to ensure the dependability of safety-critical systems. Probabilistic risk assessment (PRA) approaches are comprehensive, structured and logical methods widely used for this purpose. PRA approaches include, but not limited to, Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), and Event Tree Analysis (ETA). Growing complexity of modern systems and their capability of behaving dynamically make it challenging for classical PRA techniques to analyse such systems accurately. For a comprehensive and accurate analysis of complex systems, different characteristics such as functional dependencies among components, temporal behaviour of systems, multiple failure modes/states for components/systems, and uncertainty in system behaviour and failure data are needed to be considered. Unfortunately, classical approaches are not capable of accounting for these aspects. Bayesian networks (BNs) have gained popularity in risk assessment applications due to their flexible structure and capability of incorporating most of the above mentioned aspects during analysis. Furthermore, BNs have the ability to perform diagnostic analysis. Petri Nets are another formal graphical and mathematical tool capable of modelling and analysing dynamic behaviour of systems. They are also increasingly used for system safety, reliability and risk evaluation. This paper presents a review of the applications of Bayesian networks and Petri nets in system safety, reliability and risk assessments. The review highlights the potential usefulness of the BN and PN based approaches over other classical approaches, and relative strengths and weaknesses in different practical application scenarios.This work was funded by the DEIS H2020 project (Grant Agreement 732242)

    State estimation of probabilistic hybrid systems with particle filters

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 117-123).Robotic and embedded systems have become increasingly pervasive in every-day applications, ranging from space probes and life support systems to autonomous rovers. In order to act robustly in the physical world, robotic systems must handle the uncertainty and partial observability inherent in most real-world situations. A convenient modeling tool for many applications, including fault diagnosis and visual tracking, are probabilistic hybrid models. In probabilistic hybrid models, the hidden state is represented with discrete and continuous state variables that evolve probabilistically. The hidden state is observed indirectly, through noisy observations. A challenge is that real-world systems are non-linear, consist of a large collection of concurrently operating components, and exhibit autonomous mode transitions, that is, discrete state transitions that depend on the continuous dynamics. In this thesis, we introduce an efficient algorithm for hybrid state estimation that combines Rao-Blackwellised particle filtering with a Gaussian representation. Conceptually, our algorithm samples trajectories traced by the discrete variables over time and, for each trajectory, estimates the continuous state with a Kalman Filter. A key insight to handling the autonomous transitions is to reuse the continuous estimates in the importance sampling step. We extended the class of autonomous transitions that can be efficiently handled by Gaussian techniques and provide a detailed empirical evaluation of the algorithm on a dynamical system with four continuous state variables. Our results indicate that our algorithm is substantially more efficient than non-RaoBlackwellised approaches. Though not as good as a k-best filter in nominal scenarios, our algorithm outperforms(cont.) a k-best filter when the correct diagnosis has too low a probability to be included in the leading set of trajectories. Through these accomplishments, the thesis lays ground work for a unifying stochastic search algorithm that shares the benefits of both methods.by Stanislav Funiak.M.Eng
    • …
    corecore