4,373 research outputs found

    Semi-supervised transfer learning methodology for fault detection and diagnosis in air-handling units

    Get PDF
    Heating, ventilation and air-conditioning (HVAC) systems are the major energy consumers among buildings’ equipment. Reliable fault detection and diagnosis schemes can effectively reduce their energy consumption and maintenance costs. In this respect, data-driven approaches have shown impressive results, but their accuracy depends on the availability of representative data to train the models, which is not common in real applications. For this reason, transfer learning is attracting growing attention since it tackles the problem by leveraging the knowledge between datasets, increasing the representativeness of fault scenarios. However, to date, research on transfer learning for heating, ventilation and air-conditioning has mostly been focused on learning algorithmic, overlooking the importance of a proper domain similarity analysis over the available data. Thus, this study proposes the design of a transfer learning approach based on a specific data selection methodology to tackle dissimilarity issues. The procedure is supported by neural network models and the analysis of eventual prediction uncertainties resulting from the assessment of the target application samples. To verify the proposed methodology, it is applied to a semi-supervised transfer learning case study composed of two publicly available air-handling unit datasets containing some fault scenarios. Results emphasize the potential of the proposed domain dissimilarity analysis reaching a classification accuracy of 92% under a transfer learning framework, an increase of 37% in comparison to classical approaches.Objectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats SosteniblesObjectius de Desenvolupament Sostenible::12 - Producció i Consum ResponsablesPostprint (published version

    Fault Detection and Diagnosis Process for Oversizing Design on Multiple Packaged Air-conditioning Units

    Get PDF
    Heating, ventilation, air-conditioning and Refrigeration (HVAC&R) systems are seldom designed or commissioned properly. The situation leads to abrupt or degradation faults resulting in inefficient energy uses, excessive energy consumption and high service costs. To solve these aforementioned problems, fault detection and diagnosis (FDD) is utilized to firstly detect any abnormal conditions of a system and then diagnoses and determines their causes. In order to apply this concept in HVAC oversizing designs, this paper proposes the state-of-art procedure of a FDD procedure for analyzing the inherently faulty design (oversizing) of multiple packaged air-conditioning units used to supply cooling for an open space in light commercial buildings. A generic process of FDD for a packaged unit is briefly introduced to efficiently design FDD algorithms and to illustrate an overview picture for new researchers in FDD areas. In the procedures, compressor statuses, time-on and time-off operations and outdoor air temperatures are recorded by means of the on-board controller of each machine unit. These physical and electrical monitoring data are applied to diagnose and evaluate oversizing level in terms of runtime fraction (RTF) and cycling rate (N). Eventually, an adaptive control is designed and implemented to enhance process recovery for soft-repairing and permanently reducing fault effect caused by oversizing without intervening system operations (non-invasive technology)

    Simulation-assisted control in building energy management systems

    Get PDF
    Technological advances in real-time data collection, data transfer and ever-increasing computational power are bringing simulation-assisted control and on-line fault detection and diagnosis (FDD) closer to reality than was imagined when building energy management systems (BEMSs) were introduced in the 1970s. This paper describes the development and testing of a prototype simulation-assisted controller, in which a detailed simulation program is embedded in real-time control decision making. Results from an experiment in a full-scale environmental test facility demonstrate the feasibility of predictive control using a physically-based thermal simulation program

    HVAC SYSTEM REMOTE MONITORING AND DIAGNOSIS OF REFRIGERANT LINE OBSTRUCTION

    Get PDF
    A heating, ventilation, and air conditioning (HVAC) system of a building includes a refrigerant loop. A monitoring system for the HVAC system includes a monitoring device installed at the building. The monitoring device is configured to measure a first temperature of refrigerant in a refrigerant line located between a filter - drier of the refrigerant loop and an expansion valve of the refrigerant loop. The monitoring system includes a monitoring server, located remotely from the building. The monitoring server is con figured to receive the first temperature and, in response to the first temperature being less than a threshold, generate a refrigerant line restriction advisory. The monitoring server is configured to, in response to the refrigerant line restriction advisory, selectively generate an alert for transmission to at least one of a customer and an HVAC contractor

    Building fault detection data to aid diagnostic algorithm creation and performance testing.

    Get PDF
    It is estimated that approximately 4-5% of national energy consumption can be saved through corrections to existing commercial building controls infrastructure and resulting improvements to efficiency. Correspondingly, automated fault detection and diagnostics (FDD) algorithms are designed to identify the presence of operational faults and their root causes. A diversity of techniques is used for FDD spanning physical models, black box, and rule-based approaches. A persistent challenge has been the lack of common datasets and test methods to benchmark their performance accuracy. This article presents a first of its kind public dataset with ground-truth data on the presence and absence of building faults. This dataset spans a range of seasons and operational conditions and encompasses multiple building system types. It contains information on fault severity, as well as data points reflective of the measurements in building control systems that FDD algorithms typically have access to. The data were created using simulation models as well as experimental test facilities, and will be expanded over time
    • …
    corecore