8 research outputs found

    On control of discrete-time state-dependent jump linear systems with probabilistic constraints: A receding horizon approach

    Full text link
    In this article, we consider a receding horizon control of discrete-time state-dependent jump linear systems, particular kind of stochastic switching systems, subject to possibly unbounded random disturbances and probabilistic state constraints. Due to a nature of the dynamical system and the constraints, we consider a one-step receding horizon. Using inverse cumulative distribution function, we convert the probabilistic state constraints to deterministic constraints, and obtain a tractable deterministic receding horizon control problem. We consider the receding control law to have a linear state-feedback and an admissible offset term. We ensure mean square boundedness of the state variable via solving linear matrix inequalities off-line, and solve the receding horizon control problem on-line with control offset terms. We illustrate the overall approach applied on a macroeconomic system

    Robust Observer Design for Takagi-Sugeno Fuzzy Systems with Mixed Neutral and Discrete Delays and Unknown Inputs

    Get PDF
    A robust observer design is proposed for Takagi-Sugeno fuzzy neutral models with unknown inputs. The model consists of a mixed neutral and discrete delay, and the disturbances are imposed on both state and output signals. Delay-dependent sufficient conditions for the design of an unknown input T-S observer with time delays are given in terms of linear matrix inequalities. Some relaxations are introduced by using intermediate variables. A numerical example is given to illustrate the effectiveness of the given results

    Stability Analysis for Markovian Jump Neutral Systems with Mixed Delays and Partially Known Transition Rates

    Get PDF
    The delay-dependent stability problem is studied for Markovian jump neutral systems with partial information on transition probabilities, and the considered delays are mixed and model dependent. By constructing the new stochastic Lyapunov-Krasovskii functional, which combined the introduced free matrices with the analysis technique of matrix inequalities, a sufficient condition for the systems with fully known transition rates is firstly established. Then, making full use of the transition rate matrix, the results are obtained for the other case, and the uncertain neutral Markovian jump system with incomplete transition rates is also considered. Finally, to show the validity of the obtained results, three numerical examples are provided

    Optimal control of DC-DC buck converter via linear systems with inaccessible Markovian jumping modes

    Get PDF
    The note presents an algorithm for the average cost control problem of continuous-time Markov jump linear systems. The controller assumes a linear state-feedback form and the corresponding control gain does not depend on the Markov chain. In this scenario, the control problem is that of minimizing the long-run average cost. As an attempt to solve the problem, we derive a global convergent algorithm that generates a gain satisfying necessary optimality conditions. Our algorithm has practical implications, as illustrated by the experiments that were carried out to control an electronic dc–dc buck converter. The buck converter supplied a load that suffered abrupt changes driven by a homogeneous Markov chain. Besides, the source of the buck converter also suffered abrupt Markov-driven changes. The experimental results support the usefulness of our algorithm.Peer ReviewedPostprint (author's final draft

    Stabilization of Linear Systems Over Markov communication channels

    Get PDF
    corecore