782 research outputs found

    Graph Symmetry Detection and Canonical Labeling: Differences and Synergies

    Full text link
    Symmetries of combinatorial objects are known to complicate search algorithms, but such obstacles can often be removed by detecting symmetries early and discarding symmetric subproblems. Canonical labeling of combinatorial objects facilitates easy equivalence checking through quick matching. All existing canonical labeling software also finds symmetries, but the fastest symmetry-finding software does not perform canonical labeling. In this work, we contrast the two problems and dissect typical algorithms to identify their similarities and differences. We then develop a novel approach to canonical labeling where symmetries are found first and then used to speed up the canonical labeling algorithms. Empirical results show that this approach outperforms state-of-the-art canonical labelers.Comment: 15 pages, 10 figures, 1 table, Turing-10

    On the Complexity and Approximation of Binary Evidence in Lifted Inference

    Full text link
    Lifted inference algorithms exploit symmetries in probabilistic models to speed up inference. They show impressive performance when calculating unconditional probabilities in relational models, but often resort to non-lifted inference when computing conditional probabilities. The reason is that conditioning on evidence breaks many of the model's symmetries, which can preempt standard lifting techniques. Recent theoretical results show, for example, that conditioning on evidence which corresponds to binary relations is #P-hard, suggesting that no lifting is to be expected in the worst case. In this paper, we balance this negative result by identifying the Boolean rank of the evidence as a key parameter for characterizing the complexity of conditioning in lifted inference. In particular, we show that conditioning on binary evidence with bounded Boolean rank is efficient. This opens up the possibility of approximating evidence by a low-rank Boolean matrix factorization, which we investigate both theoretically and empirically.Comment: To appear in Advances in Neural Information Processing Systems 26 (NIPS), Lake Tahoe, USA, December 201

    The density matrix renormalization group for ab initio quantum chemistry

    Get PDF
    During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. Its underlying wavefunction ansatz, the matrix product state (MPS), is a low-rank decomposition of the full configuration interaction tensor. The virtual dimension of the MPS, the rank of the decomposition, controls the size of the corner of the many-body Hilbert space that can be reached with the ansatz. This parameter can be systematically increased until numerical convergence is reached. The MPS ansatz naturally captures exponentially decaying correlation functions. Therefore DMRG works extremely well for noncritical one-dimensional systems. The active orbital spaces in quantum chemistry are however often far from one-dimensional, and relatively large virtual dimensions are required to use DMRG for ab initio quantum chemistry (QC-DMRG). The QC-DMRG algorithm, its computational cost, and its properties are discussed. Two important aspects to reduce the computational cost are given special attention: the orbital choice and ordering, and the exploitation of the symmetry group of the Hamiltonian. With these considerations, the QC-DMRG algorithm allows to find numerically exact solutions in active spaces of up to 40 electrons in 40 orbitals.Comment: 24 pages; 10 figures; based on arXiv:1405.1225; invited review for European Physical Journal
    corecore