7,011 research outputs found

    A New Approach to Time-Optimal Path Parameterization based on Reachability Analysis

    Full text link
    Time-Optimal Path Parameterization (TOPP) is a well-studied problem in robotics and has a wide range of applications. There are two main families of methods to address TOPP: Numerical Integration (NI) and Convex Optimization (CO). NI-based methods are fast but difficult to implement and suffer from robustness issues, while CO-based approaches are more robust but at the same time significantly slower. Here we propose a new approach to TOPP based on Reachability Analysis (RA). The key insight is to recursively compute reachable and controllable sets at discretized positions on the path by solving small Linear Programs (LPs). The resulting algorithm is faster than NI-based methods and as robust as CO-based ones (100% success rate), as confirmed by extensive numerical evaluations. Moreover, the proposed approach offers unique additional benefits: Admissible Velocity Propagation and robustness to parametric uncertainty can be derived from it in a simple and natural way.Comment: 15 pages, 9 figure

    Fast Algorithms for Separable Linear Programs

    Full text link
    In numerical linear algebra, considerable effort has been devoted to obtaining faster algorithms for linear systems whose underlying matrices exhibit structural properties. A prominent success story is the method of generalized nested dissection~[Lipton-Rose-Tarjan'79] for separable matrices. On the other hand, the majority of recent developments in the design of efficient linear program (LP) solves do not leverage the ideas underlying these faster linear system solvers nor consider the separable structure of the constraint matrix. We give a faster algorithm for separable linear programs. Specifically, we consider LPs of the form minAx=b,lxucx\min_{\mathbf{A}\mathbf{x}=\mathbf{b}, \mathbf{l}\leq\mathbf{x}\leq\mathbf{u}} \mathbf{c}^\top\mathbf{x}, where the graphical support of the constraint matrix ARn×m\mathbf{A} \in \mathbb{R}^{n\times m} is O(nα)O(n^\alpha)-separable. These include flow problems on planar graphs and low treewidth matrices among others. We present an O~((m+m1/2+2α)log(1/ϵ))\tilde{O}((m+m^{1/2 + 2\alpha}) \log(1/\epsilon)) time algorithm for these LPs, where ϵ\epsilon is the relative accuracy of the solution. Our new solver has two important implications: for the kk-multicommodity flow problem on planar graphs, we obtain an algorithm running in O~(k5/2m3/2)\tilde{O}(k^{5/2} m^{3/2}) time in the high accuracy regime; and when the support of A\mathbf{A} is O(nα)O(n^\alpha)-separable with α1/4\alpha \leq 1/4, our algorithm runs in O~(m)\tilde{O}(m) time, which is nearly optimal. The latter significantly improves upon the natural approach of combining interior point methods and nested dissection, whose time complexity is lower bounded by Ω(m(m+mαω))=Ω(m3/2)\Omega(\sqrt{m}(m+m^{\alpha\omega}))=\Omega(m^{3/2}), where ω\omega is the matrix multiplication constant. Lastly, in the setting of low-treewidth LPs, we recover the results of [DLY,STOC21] and [GS,22] with significantly simpler data structure machinery.Comment: 55 pages. To appear at SODA 202

    Mathematical models for space shuttle ground systems

    Get PDF
    Math models are a series of algorithms, comprised of algebraic equations and Boolean Logic. At Kennedy Space Center, math models for the Space Shuttle Systems are performed utilizing the Honeywell 66/80 digital computers, Modcomp II/45 Minicomputers and special purpose hardware simulators (MicroComputers). The Shuttle Ground Operations Simulator operating system provides the language formats, subroutines, queueing schemes, execution modes and support software to write, maintain and execute the models. The ground systems presented consist primarily of the Liquid Oxygen and Liquid Hydrogen Cryogenic Propellant Systems, as well as liquid oxygen External Tank Gaseous Oxygen Vent Hood/Arm and the Vehicle Assembly Building (VAB) High Bay Cells. The purpose of math modeling is to simulate the ground hardware systems and to provide an environment for testing in a benign mode. This capability allows the engineers to check out application software for loading and launching the vehicle, and to verify the Checkout, Control, & Monitor Subsystem within the Launch Processing System. It is also used to train operators and to predict system response and status in various configurations (normal operations, emergency and contingent operations), including untried configurations or those too dangerous to try under real conditions, i.e., failure modes

    The Bit Complexity of Efficient Continuous Optimization

    Full text link
    We analyze the bit complexity of efficient algorithms for fundamental optimization problems, such as linear regression, pp-norm regression, and linear programming (LP). State-of-the-art algorithms are iterative, and in terms of the number of arithmetic operations, they match the current time complexity of multiplying two nn-by-nn matrices (up to polylogarithmic factors). However, previous work has typically assumed infinite precision arithmetic, and due to complicated inverse maintenance techniques, the actual running times of these algorithms are unknown. To settle the running time and bit complexity of these algorithms, we demonstrate that a core common subroutine, known as \emph{inverse maintenance}, is backward-stable. Additionally, we show that iterative approaches for solving constrained weighted regression problems can be accomplished with bounded-error pre-conditioners. Specifically, we prove that linear programs can be solved approximately in matrix multiplication time multiplied by polylog factors that depend on the condition number κ\kappa of the matrix and the inner and outer radius of the LP problem. pp-norm regression can be solved approximately in matrix multiplication time multiplied by polylog factors in κ\kappa. Lastly, linear regression can be solved approximately in input-sparsity time multiplied by polylog factors in κ\kappa. Furthermore, we present results for achieving lower than matrix multiplication time for pp-norm regression by utilizing faster solvers for sparse linear systems.Comment: 71 page

    Two dimensional search algorithms for linear programming

    Get PDF
    Linear programming is one of the most important classes of optimization problems. These mathematical models have been used by academics and practitioners to solve numerous real world applications. Quickly solving linear programs impacts decision makers from both the public and private sectors. Substantial research has been performed to solve this class of problems faster, and the vast majority of the solution techniques can be categorized as one dimensional search algorithms. That is, these methods successively move from one solution to another solution by solving a one dimensional subspace linear program at each iteration. This dissertation proposes novel algorithms that move between solutions by repeatedly solving a two dimensional subspace linear program. Computational experiments demonstrate the potential of these newly developed algorithms and show an average improvement of nearly 25% in solution time when compared to the corresponding one dimensional search version. This dissertation\u27s research creates the core concept of these two dimensional search algorithms, which is a fast technique to determine an optimal basis and an optimal solution to linear programs with only two variables. This method, called the slope algorithm, compares the slope formed by the objective function with the slope formed by each constraint to determine a pair of constraints that intersect at an optimal basis and an optimal solution. The slope algorithm is implemented within a simplex framework to perform two dimensional searches. This results in the double pivot simplex method. Differently than the well-known simplex method, the double pivot simplex method simultaneously pivots up to two basic variables with two nonbasic variables at each iteration. The theoretical computational complexity of the double pivot simplex method is identical to the simplex method. Computational results show that this new algorithm reduces the number of pivots to solve benchmark instances by approximately 40% when compared to the classical implementation of the simplex method, and 20% when compared to the primal simplex implementation of CPLEX, a high performance mathematical programming solver. Solution times of some random linear programs are also improved by nearly 25% on average. This dissertation also presents a novel technique, called the ratio algorithm, to find an optimal basis and an optimal solution to linear programs with only two constraints. When the ratio algorithm is implemented within a simplex framework to perform two dimensional searches, it results in the double pivot dual simplex method. In this case, the double pivot dual simplex method behaves similarly to the dual simplex method, but two variables are exchanged at every step. Two dimensional searches are also implemented within an interior point framework. This dissertation creates a set of four two dimensional search interior point algorithms derived from primal and dual affine scaling and logarithmic barrier search directions. Each iteration of these techniques quickly solves a two dimensional subspace linear program formed by the intersection of two search directions and the feasible region of the linear program. Search directions are derived by orthogonally partitioning the objective function vector, which allows these novel methods to improve the objective function value at each step by at least as much as the corresponding one dimensional search version. Computational experiments performed on benchmark linear programs demonstrate that these two dimensional search interior point algorithms improve the average solution time by approximately 12% and the average number of iterations by 15%. In conclusion, this dissertation provides a change of paradigm in linear programming optimization algorithms. Implementing two dimensional searches within both a simplex and interior point framework typically reduces the computational time and number of iterations to solve linear programs. Furthermore, this dissertation sets the stage for future research topics in multidimensional search algorithms to solve not only linear programs but also other critical classes of optimization methods. Consequently, this dissertation\u27s research can become one of the first steps to change how commercial and open source mathematical programming software will solve optimization problems
    corecore