2 research outputs found

    Hierarchical learning : theory with applications in speech and vision

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 123-132).Over the past two decades several hierarchical learning models have been developed and applied to a diverse range of practical tasks with much success. Little is known, however, as to why such models work as well as they do. Indeed, most are difficult to analyze, and cannot be easily characterized using the established tools from statistical learning theory. In this thesis, we study hierarchical learning architectures from two complementary perspectives: one theoretical and the other empirical. The theoretical component of the thesis centers on a mathematical framework describing a general family of hierarchical learning architectures. The primary object of interest is a recursively defined feature map, and its associated kernel. The class of models we consider exploit the fact that data in a wide variety of problems satisfy a decomposability property. Paralleling the primate visual cortex, hierarchies are assembled from alternating filtering and pooling stages that build progressively invariant representations which are simultaneously selective for increasingly complex stimuli. A goal of central importance in the study of hierarchical architectures and the cortex alike, is that of understanding quantitatively the tradeoff between invariance and selectivity, and how invariance and selectivity contribute towards providing an improved representation useful for learning from data. A reasonable expectation is that an unsupervised hierarchical representation will positively impact the sample complexity of a corresponding supervised learning task.(cont.) We therefore analyze invariance and discrimination properties that emerge in particular instances of layered models described within our framework. A group-theoretic analysis leads to a concise set of conditions which must be met to establish invariance, as well as a constructive prescription for meeting those conditions. An information-theoretic analysis is then undertaken and seen as a means by which to characterize a model's discrimination properties. The empirical component of the thesis experimentally evaluates key assumptions built into the mathematical framework. In the case of images, we present simulations which support the hypothesis that layered architectures can reduce the sample complexity of a non-trivial learning problem. In the domain of speech, we describe a 3 localized analysis technique that leads to a noise-robust representation. The resulting biologically-motivated features are found to outperform traditional methods on a standard phonetic classification task in both clean and noisy conditions.by Jacob V. Bouvrie.Ph.D

    Contribution to study and implementation of a bio-inspired perception system based on visual and auditory attention

    Get PDF
    The main goal of these researches is the design of one artificial perception system allowing to identify events or scenes in a complex environment. The work carried out during this thesis focused on the study and the conception of a bio-inspired perception system based on the both visual and auditory saliency. The main contributions of this thesis are auditory saliency with sound recognition and visual saliency with object recognition. The auditory saliency is computed by merging information from the both temporal and spectral signals with a saliency map of a spectrogram. The visual perception system is based on visual saliency and recognition of foreground object. In addition, the originality of the proposed approach is the possibility to do an evaluation of the coherence between visual and auditory observations using the obtained information from the features extracted from both visual and auditory patters. The experimental results have proven the interest of this method in the framework of scene identification in a complex environmentL'objectif principal de cette thèse porte sur la conception d'un système de perception artificiel permettant d'identifier des scènes ou évènements pertinents dans des environnements complexes. Les travaux réalisés ont permis d'étudier et de mettre en œuvre d'un système de perception bio-inspiré basé sur l'attention visuelle et auditive. Les principales contributions de cette thèse concernent la saillance auditive associée à une identification des sons et bruits environnementaux ainsi que la saillance visuelle associée à une reconnaissance d'objets pertinents. La saillance du signal sonore est calculée en fusionnant des informations extraites des représentations temporelles et spectrales du signal acoustique avec une carte de saillance visuelle du spectrogramme du signal concerné. Le système de perception visuelle est quant à lui composé de deux mécanismes distincts. Le premier se base sur des méthodes de saillance visuelle et le deuxième permet d'identifier l'objet en premier plan. D'autre part, l'originalité de notre approche est qu'elle permet d'évaluer la cohérence des observations en fusionnant les informations extraites des signaux auditifs et visuels perçus. Les résultats expérimentaux ont permis de confirmer l'intérêt des méthodes utilisées dans le cadre de l'identification de scènes pertinentes dans un environnement complex
    corecore