13,298 research outputs found

    Approximate maximum likelihood estimation of two closely spaced sources

    Get PDF
    The performance of the majority of high resolution algorithms designed for either spectral analysis or Direction-of-Arrival (DoA) estimation drastically degrade when the amplitude sources are highly correlated or when the number of available snapshots is very small and possibly less than the number of sources. Under such circumstances, only Maximum Likelihood (ML) or ML-based techniques can still be effective. The main drawback of such optimal solutions lies in their high computational load. In this paper we propose a computationally efficient approximate ML estimator, in the case of two closely spaced signals, that can be used even in the single snapshot case. Our approach relies on Taylor series expansion of the projection onto the signal subspace and can be implemented through 1-D Fourier transforms. Its effectiveness is illustrated in complicated scenarios with very low sample support and possibly correlated sources, where it is shown to outperform conventional estimators

    A multi-resolution approximation for massive spatial datasets

    Full text link
    Automated sensing instruments on satellites and aircraft have enabled the collection of massive amounts of high-resolution observations of spatial fields over large spatial regions. If these datasets can be efficiently exploited, they can provide new insights on a wide variety of issues. However, traditional spatial-statistical techniques such as kriging are not computationally feasible for big datasets. We propose a multi-resolution approximation (M-RA) of Gaussian processes observed at irregular locations in space. The M-RA process is specified as a linear combination of basis functions at multiple levels of spatial resolution, which can capture spatial structure from very fine to very large scales. The basis functions are automatically chosen to approximate a given covariance function, which can be nonstationary. All computations involving the M-RA, including parameter inference and prediction, are highly scalable for massive datasets. Crucially, the inference algorithms can also be parallelized to take full advantage of large distributed-memory computing environments. In comparisons using simulated data and a large satellite dataset, the M-RA outperforms a related state-of-the-art method.Comment: 23 pages; to be published in Journal of the American Statistical Associatio
    • …
    corecore