3,976 research outputs found

    Fast projections onto mixed-norm balls with applications

    Full text link
    Joint sparsity offers powerful structural cues for feature selection, especially for variables that are expected to demonstrate a "grouped" behavior. Such behavior is commonly modeled via group-lasso, multitask lasso, and related methods where feature selection is effected via mixed-norms. Several mixed-norm based sparse models have received substantial attention, and for some cases efficient algorithms are also available. Surprisingly, several constrained sparse models seem to be lacking scalable algorithms. We address this deficiency by presenting batch and online (stochastic-gradient) optimization methods, both of which rely on efficient projections onto mixed-norm balls. We illustrate our methods by applying them to the multitask lasso. We conclude by mentioning some open problems.Comment: Preprint of paper under revie

    Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints

    Full text link
    Regularization of ill-posed linear inverse problems via â„“1\ell_1 penalization has been proposed for cases where the solution is known to be (almost) sparse. One way to obtain the minimizer of such an â„“1\ell_1 penalized functional is via an iterative soft-thresholding algorithm. We propose an alternative implementation to â„“1\ell_1-constraints, using a gradient method, with projection on â„“1\ell_1-balls. The corresponding algorithm uses again iterative soft-thresholding, now with a variable thresholding parameter. We also propose accelerated versions of this iterative method, using ingredients of the (linear) steepest descent method. We prove convergence in norm for one of these projected gradient methods, without and with acceleration.Comment: 24 pages, 5 figures. v2: added reference, some amendments, 27 page

    Spatiotemporally Constrained Action Space Attacks on Deep Reinforcement Learning Agents

    Full text link
    Robustness of Deep Reinforcement Learning (DRL) algorithms towards adversarial attacks in real world applications such as those deployed in cyber-physical systems (CPS) are of increasing concern. Numerous studies have investigated the mechanisms of attacks on the RL agent's state space. Nonetheless, attacks on the RL agent's action space (AS) (corresponding to actuators in engineering systems) are equally perverse; such attacks are relatively less studied in the ML literature. In this work, we first frame the problem as an optimization problem of minimizing the cumulative reward of an RL agent with decoupled constraints as the budget of attack. We propose a white-box Myopic Action Space (MAS) attack algorithm that distributes the attacks across the action space dimensions. Next, we reformulate the optimization problem above with the same objective function, but with a temporally coupled constraint on the attack budget to take into account the approximated dynamics of the agent. This leads to the white-box Look-ahead Action Space (LAS) attack algorithm that distributes the attacks across the action and temporal dimensions. Our results shows that using the same amount of resources, the LAS attack deteriorates the agent's performance significantly more than the MAS attack. This reveals the possibility that with limited resource, an adversary can utilize the agent's dynamics to malevolently craft attacks that causes the agent to fail. Additionally, we leverage these attack strategies as a possible tool to gain insights on the potential vulnerabilities of DRL agents.Comment: Version 2 with supplementary material
    • …
    corecore