5 research outputs found

    Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains

    Full text link
    Many PDEs involving fractional Laplacian are naturally set in unbounded domains with underlying solutions decay very slowly, subject to certain power laws. Their numerical solutions are under-explored. This paper aims at developing accurate spectral methods using rational basis (or modified mapped Gegenbauer functions) for such models in unbounded domains. The main building block of the spectral algorithms is the explicit representations for the Fourier transform and fractional Laplacian of the rational basis, derived from some useful integral identites related to modified Bessel functions. With these at our disposal, we can construct rational spectral-Galerkin and direct collocation schemes by pre-computing the associated fractional differentiation matrices. We obtain optimal error estimates of rational spectral approximation in the fractional Sobolev spaces, and analyze the optimal convergence of the proposed Galerkin scheme. We also provide ample numerical results to show that the rational method outperforms the Hermite function approach

    A note on parallel preconditioning for the all-at-once solution of Riesz fractional diffusion equations

    Full text link
    The pp-step backwards difference formula (BDF) for solving the system of ODEs can result in a kind of all-at-once linear systems, which are solved via the parallel-in-time preconditioned Krylov subspace solvers (see McDonald, Pestana, and Wathen [SIAM J. Sci. Comput., 40(2) (2018): A1012-A1033] and Lin and Ng [arXiv:2002.01108, 17 pages]. However, these studies ignored that the pp-step BDF (p≥2p\geq 2) is not selfstarting, when they are exploited to solve time-dependent PDEs. In this note, we focus on the 2-step BDF which is often superior to the trapezoidal rule for solving the Riesz fractional diffusion equations, but its resultant all-at-once discretized system is a block triangular Toeplitz system with a low-rank perturbation. Meanwhile, we first give an estimation of the condition number of the all-at-once systems and then adapt the previous work to construct two block circulant (BC) preconditioners. Both the invertibility of these two BC preconditioners and the eigenvalue distributions of preconditioned matrices are discussed in details. The efficient implementation of these BC preconditioners is also presented especially for handling the computation of dense structured Jacobi matrices. Finally, numerical experiments involving both the one- and two-dimensional Riesz fractional diffusion equations are reported to support our theoretical findings.Comment: 18 pages. 2 figures. 6 Table. Tech. Rep.: Institute of Mathematics, Southwestern University of Finance and Economics. Revised-1: refine/shorten the contexts and correct some typos; Revised-2: correct some reference
    corecore