854 research outputs found

    On the Convergence and Consistency of the Blurring Mean-Shift Process

    Full text link
    The mean-shift algorithm is a popular algorithm in computer vision and image processing. It can also be cast as a minimum gamma-divergence estimation. In this paper we focus on the "blurring" mean shift algorithm, which is one version of the mean-shift process that successively blurs the dataset. The analysis of the blurring mean-shift is relatively more complicated compared to the nonblurring version, yet the algorithm convergence and the estimation consistency have not been well studied in the literature. In this paper we prove both the convergence and the consistency of the blurring mean-shift. We also perform simulation studies to compare the efficiency of the blurring and the nonblurring versions of the mean-shift algorithms. Our results show that the blurring mean-shift has more efficiency.Comment: arXiv admin note: text overlap with arXiv:1201.197

    LASS: a simple assignment model with Laplacian smoothing

    Full text link
    We consider the problem of learning soft assignments of NN items to KK categories given two sources of information: an item-category similarity matrix, which encourages items to be assigned to categories they are similar to (and to not be assigned to categories they are dissimilar to), and an item-item similarity matrix, which encourages similar items to have similar assignments. We propose a simple quadratic programming model that captures this intuition. We give necessary conditions for its solution to be unique, define an out-of-sample mapping, and derive a simple, effective training algorithm based on the alternating direction method of multipliers. The model predicts reasonable assignments from even a few similarity values, and can be seen as a generalization of semisupervised learning. It is particularly useful when items naturally belong to multiple categories, as for example when annotating documents with keywords or pictures with tags, with partially tagged items, or when the categories have complex interrelations (e.g. hierarchical) that are unknown.Comment: 20 pages, 4 figures. A shorter version appears in AAAI 201

    Higher-order image statistics for unsupervised, information-theoretic, adaptive, image filtering

    Get PDF
    technical reportThe restoration of images is an important and widely studied problem in computer vision and image processing. Various image filtering strategies have been effective, but invariably make strong assumptions about the properties of the signal and/or degradation. Therefore, these methods typically lack the generality to be easily applied to new applications or diverse image collections. This paper describes a novel unsupervised, informationtheoretic, adaptive filter (UINTA) that improves the predictability of pixel intensities from their neighborhoods by decreasing the joint entropy between them. Thus UINTA automatically discovers the statistical properties of the signal and can thereby restore a wide spectrum of images and applications. This paper describes the formulation required to minimize the joint entropy measure, presents several important practical considerations in estimating image-region statistics, and then presents results on both real and synthetic data
    corecore