8,993 research outputs found

    Dimension reduction for linear separation with curvilinear distances

    Get PDF
    Any high dimensional data in its original raw form may contain obviously classifiable clusters which are difficult to identify given the high-dimension representation. In reducing the dimensions it may be possible to perform a simple classification technique to extract this cluster information whilst retaining the overall topology of the data set. The supervised method presented here takes a high dimension data set consisting of multiple clusters and employs curvilinear distance as a relation between points, projecting in a lower dimension according to this relationship. This representation allows for linear separation of the non-separable high dimensional cluster data and the classification to a cluster of any successive unseen data point extracted from the same higher dimension

    Text authorship identified using the dynamics of word co-occurrence networks

    Full text link
    The identification of authorship in disputed documents still requires human expertise, which is now unfeasible for many tasks owing to the large volumes of text and authors in practical applications. In this study, we introduce a methodology based on the dynamics of word co-occurrence networks representing written texts to classify a corpus of 80 texts by 8 authors. The texts were divided into sections with equal number of linguistic tokens, from which time series were created for 12 topological metrics. The series were proven to be stationary (p-value>0.05), which permits to use distribution moments as learning attributes. With an optimized supervised learning procedure using a Radial Basis Function Network, 68 out of 80 texts were correctly classified, i.e. a remarkable 85% author matching success rate. Therefore, fluctuations in purely dynamic network metrics were found to characterize authorship, thus opening the way for the description of texts in terms of small evolving networks. Moreover, the approach introduced allows for comparison of texts with diverse characteristics in a simple, fast fashion

    An Emergent Space for Distributed Data with Hidden Internal Order through Manifold Learning

    Full text link
    Manifold-learning techniques are routinely used in mining complex spatiotemporal data to extract useful, parsimonious data representations/parametrizations; these are, in turn, useful in nonlinear model identification tasks. We focus here on the case of time series data that can ultimately be modelled as a spatially distributed system (e.g. a partial differential equation, PDE), but where we do not know the space in which this PDE should be formulated. Hence, even the spatial coordinates for the distributed system themselves need to be identified - to emerge from - the data mining process. We will first validate this emergent space reconstruction for time series sampled without space labels in known PDEs; this brings up the issue of observability of physical space from temporal observation data, and the transition from spatially resolved to lumped (order-parameter-based) representations by tuning the scale of the data mining kernels. We will then present actual emergent space discovery illustrations. Our illustrative examples include chimera states (states of coexisting coherent and incoherent dynamics), and chaotic as well as quasiperiodic spatiotemporal dynamics, arising in partial differential equations and/or in heterogeneous networks. We also discuss how data-driven spatial coordinates can be extracted in ways invariant to the nature of the measuring instrument. Such gauge-invariant data mining can go beyond the fusion of heterogeneous observations of the same system, to the possible matching of apparently different systems
    corecore