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Abstract: Any high dimensional data in its original raw form may contain obviously classifiable clusters which are 

difficult to identify given the high-dimension representation.  In reducing the dimensions it may be possible to perform a 

simple classification technique to extract this cluster information whilst retaining the overall topology of the data set.  

The supervised method presented here takes a high dimension data set consisting of multiple clusters and employs 

curvilinear distance as a relation between points, projecting in a lower dimension according to this relationship.  This 

representation allows for linear separation of the non-separable high dimensional cluster data and the classification to 

a cluster of any successive unseen data point extracted from the same higher dimension. 
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1   Introduction 
As problems become defined by greater amounts of data, dimensionality can increase.  The high dimensionality of 

data can lead to complex non-linearly separable clusters developing in the higher dimension space which are not easily 

identified by simple classification methods.  The data may in fact contain values in a dimension which allow it to be 

perfectly separated, however the influence of other dimensions may obscure the required classifiable relationships 

present in the data.   

An issue arises in high dimension data when the distance which separates clusters is too small to enable 

differentiation, or the data within the clusters themselves is too sparse.  The ability to detect outliers in sparse high 

dimension data is a commonly tackled problem; [1] notes that while in one dimension a data point may be an outlier, in 

another it may belong to a typical cluster‟s representation.   

This “curse of dimensionality” is commonly referenced; the greater the amount of information (dimensions) the lesser 

the ability to make sense of the data.  This is relevant when addressing the k-nearest neighbour function due to the fact 

that with a higher dimension, standard Euclidean distance functions lose their usefulness and so clustering with such 

methods becomes less accurate.  There are 4 problems which relate to the “curse of dimensionality” and the increasing 

number of attributes [2 , 3 , 4]: Optimisation becomes difficult, relative distance between extreme points converges to 0 

(discrimination between nearest and farthest neighbour becomes poor), dimensions become “noise” given that their 

relevance to the data may be little and some dimensions may even “exhibit correlations among each other” - thus 

becoming redundant. 

A technique capable of separating clusters would result in datasets on which successive linear-based operations can 

be performed – such as a simple binary classifier to identify successive data points‟ membership to a cluster.  The k-

means and vector quantisation techniques produce clusters which are initially identified according to the arithmetic 

mean of a number of values, with new clusters being identified when a mean is deemed too far (in a Euclidean space) 

from any other clusters‟.  When the clusters in classifiable data have a non-evident relationship mathematically, these 

methods won‟t produce the required results as they rely on the inherent properties of a cluster being similar.  In some 

non-linear data sets this is the case as a data point may belong to a cluster only because its nearest neighbour also 

belongs, not because it shares a common property with the overall cluster. 

Neural network based classifiers can also be applied to non-linear high dimension data in order to identify the non-

linear relationship and classify successive points according to the properties of the data set.  The problem with such 

approaches is their need for trial-and-error in the choice of the number of layers, neurons and iterations.  The end result 

may also be impractical if the determined “solution” has actually fallen in a local minimum, thereby producing false 

results and reducing the sensitivity of the classifier. 

The technique presented here for reduction/separation retains the same structure for all problems where the input data 

contains classifiable clusters which in their current dimensional representation are not linearly separable. Such a method 

enables simple implementation for any data set given that the principles remain the same in all cases: the cluster data is 

first projected into a lower dimension space where it is easily separated, before a single layer neural network such as a 

perceptron is applied to classify the data sets and successive interpolated points in the new space.  Experiments on the 
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non-linearly separable Fisher‟s Iris data and other such available sets have shown this combined dimension reduction 

and classification method to be accurate to a higher degree than with a supervised neural network approach alone. 

In Section 2 we look at dimension reduction using this method with the intention of using the lower dimension data 

for classification of future data points.  Section 3 provides numerous examples on commonly used data sets, with details 

of classification results on both high and low dimensions and use in neural networks for comparison.  Section 4 

summarises the results before the conclusion and possibilities for further work are discussed in section 5. 

 

 

2   Dimension Reduction 
As highlighted, the measurement of straight-line (Euclidean) distance within high dimension data is unreliable given 

its tendency to misrepresent true topology.  Similarly, identifying correlations (based on a least-squares approach) in the 

data as in PCA [5 , 6] is not guaranteed to be accurate in non-linear high dimension data given that such a distance 

relation is unreliable.  When reducing dimensions, it is therefore feasible to assume that reconstructing data purely with 

such a distance is inadequate and will result in similarly inseparable clusters as in the higher dimension space.  The 

Curvilinear Distance Analysis (CDA) [7] is considered here, yet extended to incorporate a method of separating clusters 

while reducing the intrinsic dimension of the data.  CDA is able to preserve the higher dimension space‟s topology 

while also sufficiently reproducing the local environment.  In the interpolation of successive data points, the 

classification to a cluster is based on the nearest-neighbour metric: where the single closest prototype determines where 

that new point will be positioned in the lower dimension space.   

A scheme is proposed which takes as its input a multi-dimensional training data set, in which a combination of 

dimensional values signifies classification to a cluster.  Let                 be the data set of observations, where 

      is in an N dimensional space.  Without loss of generality, we know that there are two classes,          and 

         in       , where M=M1+M2. Because XA and XB are not linearly separable, a nonlinear boundary has to 

be determined by multiple layered neural networks or nonlinear kernels if the classification is carried out directly in the 

high dimension.  This can be a tedious trial-and-error process.  In this paper, a dimensional reduction technique is 

applied for data pre-processing.   

Processing each of the class clusters in turn, those points which typify the topology of the cluster are identified as 

“prototypes”.  These prototypes are then interlinked according to neighbourhood before each cluster is then connected 

to another via a single link and a graph created detailing curvilinear distances between all prototypes in the data set.  

The set                 is projected to a lower dimension        
          , where these distances are 

recreated as Euclidean, thus “flattening” the high dimension data and linearly separating the clusters    and    in the 

lower dimensional space.  Based on distance to their closest prototype, successive points can be interpolated and 

projected from the high to the low dimension and once separated a simple classifier, e.g. a single layer perceptron, can 

be used to identify their parent cluster.  The proposed approach is summarised in fig.1. 

 

Fig.1 Dimension reduction with subsequent classification 

The CDA method was itself an extension to the original CCA [8] and serves to unfold the data from high-dimension -

n-space to the low-dimension p-space.  The distances between prototypes of the single manifold are kept, whilst the 

remaining data points from within that manifold are projected such that their p-space distance is comparable to the n-

space distance about the closest prototype.  The principle is used extensively to reduce single 3D manifolds to 2D, in 

reduction of dimensions of visual data [9] and in Mass Spectrometry [10].   

Fig.2 shows a simple, general example of how in 2D, the data clusters (letters, in this case) are more easily 

identifiable than in the 3D representation.  If the original 3D data were to be used in a supervised learning scheme for 

classification, the properties of each cluster would be unclear as some overlap between the letters occurs.  In such cases 

where this sort of data has been used for training, subsequent inputs can be incorrectly classified when their properties 

fit in the overlap.  If the dimensionally reduced data is used there is a higher chance of correct classification given that 

during training the separate cluster sets are able to be identified as such, with each having significantly different 

properties to another. 



 

Fig.2 Reduction from 3D to 2D shows better separation 

The documented CDA method is not equipped to tackle such a problem as defined here.  If data consisting of multiple 

clusters is treated as a single combined manifold, the properties which make a cluster unique can be lost in its projection 

to a lower dimension.  Treating the clusters as separate homogenous manifolds and then linking (chain-like) together as 

one before projecting enables internal cluster structure to be retained in the same way that the overall topology is in the 

conventional CDA.   

As in CDA, the distance between prototypes of a cluster and prototypes in different clusters is computed using a 

routing algorithm (Dijkstra) and is therefore the total distance traversed along the path which connects them.  The 

distance is required to be such that it enables retention of global topology between dimensions, so use of a statistical 

distance measuring similarity within a cluster is for this application inappropriate as it could significantly alter the 

internal structure of the cluster.   

Whilst in CDA the interpolation of successive unseen data points uses the common Euclidean distance to project 

locally (the shortcomings of which when used in a high dimension were discussed above), a curvilinear distance more 

adequately represents a relation between data points in clusters as it enables visible separation over long distances.  In 

this scheme the projection of supplementary interpolated points is therefore computed according to curvilinear distance 

also, given that CDA‟s low-error Euclidean distance measure for local representation would be impossible to achieve 

once the distance between prototypes has been “stretched” for maximum separation.  

The initial steps in this method follow those set forth by Lee et al. in [9].  This implementation is intended to require 

as little involvement with the user as possible, so there are few adjustable parameters.  Currently within the method the 

most significant variable parameter is the tolerable loss of the vector quantisation; if the value is higher then the 

quantised points generalise the clusters to a higher degree and thus computation is lighter, yet the resultant 

representation after interpolation can be seen to be less accurate.   

 

2.1   Normalisation and Prototypes 

From experimentation it is found that raw, high-dimension data is not always conducive to computationally fast 

operations.  A distance relation in the n-space can be in the order of thousands, which when summing for the error can 

place great strain on a typical system.  Normalising all input data first will solve this problem and given that the result in 

p-space is used solely for clustering purposes, the normalised distance representation will readily suffice.   

A prototype is a data point in the n-space which will serve as a marker in the p-space around which data points can be 

projected.  Using vector quantisation, the best prototypes representing these data sets can be determined.  We approach 

each cluster individually and create prototypes within them in order to provide a decent generalisation of that cluster‟s 

topology.  Any vector quantisation method may be employed, where here we use a dynamic vector quantisation which 

uses a competitive update scheme to bring the prototypes to a more reliable representation of the data: 

for each cluster 

max_distance is 0 

  for all data points in cluster  

if distance between 2 points is greater than max_distance 

    distance becomes max_distance 

end 

  end 

  radius = max_distance × tolerable_loss 

  prototype = [] 

  prototype_num = 0 

   while iteration is acceptable or prototype_num continues to increase 

     for all data points in cluster 

       for all prototypes  

         if data point is not within radius of prototype 

           data point becomes a prototype 

          prototype_num = prototype_num + 1 

         else 

move closest prototype within radius by an amount which 

decreases with every iteration 

         end 

       end 

     end 

  end 

end 

As the neighbourhood window propagates through the data a series of initial prototypes are defined.  Each iteration of 

the process sees the prototypes become more and more representative of the data as they move towards the centre of the 

points within their respective radii.   

The convergence to an optimum number of prototypes will typically occur early on in the process and it is at this 

iteration we can stop the vector quantisation, or choose to continue on for a set number of iterations.  This step is 



performed for each cluster, with all prototypes being held in a 3-dimensional data matrix (of size |          |  
|          |  |        |). 

 

2.2   Link Prototypes According to Neighbourhood 

This step requires another initial neighbourhood radius to be set, which in this instance is the mean of the 3 shortest 

distances between all prototypes (to enable at least one point to be encompassed by the radius for the first iteration):  

       
 

 
∑   

 

   

 (1) 

Where a is an ordered list (from low to high) of distances between all prototypes in the cluster.  The step-increase of 

the neighbourhood per iteration is then found with the initial neighbourhood and the maximum distance between 

prototypes:  
                    (2) 

A square linkage matrix (3) is also created which contains information about which prototypes within a cluster are 

connected.  It consists of | |  entries and is initially populated entirely by “Inf” (∞) values to symbolise all are initially 

non-traversable links. 

 [
       
   

       
] (3) 

When evaluating each individual prototype i, if another, j, falls within the neighbourhood radius then the linkage 

matrix updates to accommodate the distance between the two at that index point (linkij).  Once the neighbourhood is 

evaluated, Dijkstra‟s algorithm is employed to ascertain whether or not prototypes can now reach all other prototypes 

through the created linkages.  In the initial instance with the first prototype this will obviously be impossible; we decide 

if all linkages are traversable by returning the maximum distance in the Dijkstra matrix: if the maximum distance 

remains “Inf” there are still some unreachable prototypes.  If some are still unreachable, the neighbourhood radius 

increases by a step-size and the evaluation process continues until the maximum distance is reduced.  Once the linkages 

are all traversable, it can be said that the cluster is fully connected.  The process repeats for all clusters until they are all 

internally linked.  

The linkage matrix at each stage updates with the first calculated distance between prototypes: if the neighbourhood 

window happens to include a prototype via Euclidean distance before it is reachable via curvilinear distance through 

Dijkstra, the Euclidean distance becomes the shortest from one prototype to another.  However, if the curvilinear 

encompasses a prototype before the neighbourhood expands, then that distance is the shortest.  This avoids a web-like 

connection matrix which can cause subsequent projection errors. 

CDA originally used a k-nearest neighbours approach to internal linking which sometimes would result in a parasitic 

connection between parts of a manifold.  This automated method is more suited to the CDA process than the 

documented original as it significantly reduces the possibility of such connections and greatly assists in this CDA 

adapted for cluster-separation.   

 

Fig.3 Linking of the clusters by maximum distance: 1 to 2 via ab, 2 to 3 via cd, 3 to 4 via ef and 4 to 5 via gh. 

2.3   Cluster Linking for Unfolding 

In order to represent the clusters in a lower (unfolded) dimension such that the topology of the higher dimension is 

retained – yet maximum separation achieved – we link the clusters through their furthest distance from each other.  That 

is to say that each cluster, once internally linked, has each of its prototypes evaluated for its Euclidean distance to all 

other prototypes in other clusters.  The maximum distance from one cluster to another (i.e. furthest distance between 

two prototypes of different clusters) then becomes the minimum linking distance and therefore the shortest distance 

present between clusters in the lower dimension.  Fig.3 demonstrates the linking, with clusters 1 through 5 linked 

independently to their closest neighbour forming a chain link from the first to the last.  It would also be possible to link 

clusters by their closest points, but for this application maximum visible separation of clusters is desired and maximum 

distance in the high-dimension representation is the most appropriate whilst retaining structural properties of the 

clusters. 

 

 



2.4   CDA Projection 

The determining of the curvilinear distances between all prototypes in all clusters occurs as in the original CDA 

implementation, using Dijkstra‟s algorithm to provide a matrix which contains all pairwise curvilinear distances.  The 

projection of these prototypes also follows the typical CDA methodology which is covered in more detail in the original 

authors‟ work [7 , 9 , 11] with some further information in [8] covering the choice of some of the variable parameters.  

The projection involves reducing the error between the computed curvilinear distances of the n-space and the new 

equivalent Euclidean distances in the lower dimension p-space.  The result is an “unfolded” or “flattened” 

representation of the original n-space data which retains the distances between prototypes of a cluster yet separation 

between clusters has been maximised. 

 

2.5   Interpolation of Supplementary Points 

As put forth by the authors in [7 , 9], once the prototypes have been located in the lower dimension, the data which 

these prototypes typify must be similarly placed also.  Given that the prototypes represent the data‟s clusters, their 

projections in the p-space can be taken as landmarks around which to project other points within the data set.   

 
Fig.4 Selection of 3 closest prototypes to point (smaller, black point; light grey neighbourhood) in higher dimension 

and the subsequent projections in the lower dimension 

Given that the linkage between clusters is a single connection, the resultant representation in p-space is somewhat 

stretched in order to maintain the curvilinear distances calculated.  This then forces the original interpolation scheme 

developed for CDA to be further modified to accommodate the change.  Therefore the “local”, direct mapping of point-

to-prototype Euclidean distance is replaced with a “global” mapping using curvilinear distances (which may be larger 

than Euclidean) - as was used in the projection of the original prototypes.  This means that instead of locating closest 

prototypes to a data point and projecting in p-space according to Euclidean distance to them (as in the original CDA), 

we first identify the 3 closest prototypes according to their Euclidean distance.  Had just 1 been taken as reference, the 

projection of the point may be anywhere 360º about the prototype; 2 prototypes would result in 2 possible positions 

whereas 3 allows for adequate triangulation of the interpolated point. 

We determine the first closest prototype‟s distance to the other two not through the straight-line distance but the 

curvilinear, as it may be true that all prototypes belong to different clusters and therefore to represent locally (given the 

stretching of the links) is not possible.  In this way, we can say that this modified CDA works such like a nearest-

neighbour classifier and the projection position in the lower dimension is identified based on the single closest 

prototype. 

The optimization of the error function works the same as with CDA, whereby a single point is moved in relation to all 

others in order to minimize the error between the high dimension curvilinear and the low dimension Euclidean distances 

to the closest prototypes.  Once the original data set is projected, clusters are visible in the p-space as being linearly 

separable: so long as the maximum distance between clusters is large enough to overcome possible projection errors 

which may project prototypes in too close a proximity to others from different clusters.  

It can be proven that a data set can always be made linearly separable with the proposed method if the distances from 

the high dimension space are retained; thus a single layer perceptron is sufficient for subsequent classification.  

Assume    and    are mapped to a lower space to be    and   .  It is theorised that    and     are linearly separable 

if the linking distance                    , where        is the diameter of a cluster, i.e. maximum in-cluster 

distance in (3). 

Let the furthest points for    and    be xA and xB in the high dimension.  They are projected to the low dimension 

space as    and   .  A perceptron can be constructed with weight and bias: 
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          (5) 

The line function for classification can be written as: 

            
     

‖     ‖
                 (6) 

With the perceptron output              .  For any sample     taken from cluster A the net output can be 

obtained from (6): 
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Therefore the perceptron output         .   

For any sample     taken from cluster B, the net output can again be obtained from (6):  
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As   ‖     ‖                   : 
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Therefore the perceptron output         .  The projection in the low dimension space is linearly separable.  

 

 

3   Common Data Set Examples 
Many data sets exist for the testing of classification methods and dimension reduction techniques.  Commonly the 

most difficult problem is in representing and separating non-linearly separable data.  The publically available data sets 

used here are Fisher‟s Iris Data, Bupa Liver Data, Breast Cancer Data and Wine Data – all of which are available at the 

UCI Machine Learning Repository [12].  A 3 dimensional set of artificial test data was created to aid in the visualisation 

of the reduction method given that the other sets are impossible to project (visualise) in their original high dimensional 

form. 

All data sequences are split into two separate sets, with one set used in the prototyping and the other for successive 

testing.  The dimensionality of each data set varied significantly, with the maximum being 13 for the Wine Data and the 

minimum being the 3D artificial data. 

The results of each reduction can be seen in fig.5, where the resultant projection of successive data is promising yet 

obviously not without error (discussed in the next section).  The prototypes of the test data are projected as block-colour 

circles, with the interpolated points from both the initial test sequence and the successive data being distinguishable by 

their darker edges. 

Using the curvilinear method we optimize placement to the point where the overall error between recreated distance 

in the lower and actual distance in the higher dimension is reduced to less than 0.1.  In practice this results in reasonable 

representations of the original data, whilst not being too computationally time consuming.  If the application requires it, 

the maximum number of iterations of error reduction can be set – however to achieve optimal representation this would 

require other parameters within the CDA method to be adjusted to accommodate the change. 

It can hopefully be clearly seen that the each of the clusters within the original data are reproduced separately in the 

lower dimension, and the interpolated points also fit within the respective boundaries laid out by their prototypes.  

 

Fig.5 (Top) Fisher's Iris Data, Bupa Liver Data, Breast Cancer Data.  (Bottom) Wine Data, 3D 

square-bowl data in raw form before the results of its dimension reduction. 



4   Testing and Results 
Whilst it is evident that the clusters are adequately represented as linearly separate in the lower dimension, it is also 

possible to see that in some data sets there will be miss-classifications of some successive data points.  Given that the 

neighbourhood radius is used to determine the membership to a cluster, if a prototype falls too close to a point which 

does not belong to that cluster, the point immediately associates itself with that cluster.  This is evident in the Wine Data 

set where one point which would normally belong to the middle class has in fact been identified as being a member of 

the top class. 

What should be noted is that within Fisher‟s Iris Data, the two non-linearly separable clusters of Iris Virginica and 

Versicolor have been separated and the interpolated points have been successfully tagged to the correct cluster.  With 

many supervised learning techniques this would also be possible, however through prototyping the initial clusters we 

have achieved a generalised view of each set, to which the neighbourhood function of successive points adequately 

allows for correct interpolation.  

Using Matlab the effectiveness of the dimension reduction/clustering can be tested using a comparable neural 

network approach.  A feed-forward back-propagation network is capable of solving almost any problem provided the 

network parameters are correctly chosen.  In this test the Iris data in its raw form is submitted to the network and 

training commenced.  The network consists of 2 layers and 20 neurons in the input layer and is trained for 1000 epochs 

or until the generalisation stops improving.  Then the pre-processed, dimension reduced data is submitted to a similarly 

constructed 2 layer network.  

With the non-reduced data, the classifications are returned as values which must be taken to one significant figure to 

provide a class; the reduced data provides correct classes of 1, 2 or 3 straight from the network.  In the case of the non-

reduced data 97% were correctly classified after hard limiting the output to an integer class.  With the raw data 100% of 

Irises were returned as the correct class with no further processing required.  The difference in performance error was 

10
-9

 less for the reduced data, producing a more accurate result.  

Conducting an experiment with a 3 layer network with different numbers of hidden layer neurons also returns a 

similar result.  With 10 neurons in the hidden layer, the maximum error in classification for raw data is -1, where the 

maximum for the processed is 10
-8

.  With 20 neurons, the raw data training error increases to -2 at the point where 

training reaches the best performance; processed data again has a maximum classification error of 10
-8

.  These results 

show that the networks are much more receptive for classification if the data being classified can first be separated. 

Given that the data can be separated in the lower dimension space with this method, it is now suited to simple binary 

classification; one perceptron could be used for each cluster whereby the output would be a 1 or 0 depending on its 

membership to that cluster.  Using the high dimension, non-linearly separable data, the perceptron training fails to 

converge and therefore cannot be used as a correct classifier.  In Matlab three perceptrons are trained with the raw data 

and the processed data, to a maximum of 1000 epochs each or earlier if the performance reaches the required value.  

Fig.6 shows the training performances, with the Virginica and Versicolor sets in the high-dimension failing to achieve a 

suitable weight and bias value allowing for generalization.  In the lower dimension, all sets are correctly trained, with 

results reflecting this.  Presenting values to the higher-dimension-trained networks gave an error of 60% for the two 

conflicting sets, where the lower-dimension-trained networks had a 0% error rate. 

 

 
Fig.6 (Top) Training of perceptrons with raw iris data.  (Bottom) Training of perceptrons with processed data.  It is 

evident that the training of the raw data is ineffective in comparison. 



4   Conclusion 
This curvilinear separation and dimension reduction method consistently provides results which fully satisfy the 

criteria needed for interpolation and classification of unseen data points.  In the dimension reduction are accomplished 

two feats: production of a data set which retains its general topology from the high to the low dimension (with an 

allowable error) - thereby maintaining overall data set characteristics - and an increased usability of the set for 

successive operations with linear classification methods.  Its speed of interpolation of data points would be desirable in 

many other methods, provided that the prototype data has adequately summarised the current cluster topology. 

It is in its offline training a time consuming process.  With high-dimensional data consisting of an extensive amount 

of data points, the vector quantisation and linking steps can take copious amounts of computer operation cycles, yet it is 

in the reduction of projection error of the prototypes that we find the lengthiest process.  Given a vast amount of data, 

linking the prototypes which generalise the component clusters results in an expansive graph which must be evaluated 

in every time-step during the minimisation of the projection error.  When the projection space is of multiple orders of 10 

larger than the initial data space (due to the “flattening” of the manifolds in the reduction method), the random 

projections which are to be relocated to minimise error can require that great distances be traversed in order to reach 

their optimum placement.  In these tests the 5 cluster artificial data took longest to optimise placements to a highly 

accurate degree.   Yet once the prototypes of the training data are located, successive interpolation of unseen points can 

be done in real-time in a matter of cycles to a very high degree of accuracy.  With this speedy interpolation being 

followed by a simple perceptron, the combined system is both fast and accurate in its classification of unseen data 

points from a non-linear high dimension data set.  

The only intended variable parameter in this system is the tolerable loss of the vector quantization step.  Setting the 

value to closer to 1 will result in fewer prototypes of the data and therefore faster projections yet the trade-off is a lower 

accuracy result.  With a lower tolerable loss (examples here used 0.1) the reproduction maintains obvious shape 

characteristics of the clusters given the increased number of prototypes.  Ultimately it is at the discretion of the user of 

the method to decide on the accuracy of the topology reproduction given its trade-off with training speed. 

The interpolation technique places the successive points in the lower dimension space within a few short iterations, 

and as such once the data‟s clusters have been prototyped it is possible to use the system in a real-time application to 

determine membership to a state.  A problem may arise if the prototypes of the data begin to generalise only a small 

subset of a cluster. As the system evolves, more data may be present in a cluster which causes them to become sparser 

and as a result the prototypes don‟t generalise that cluster as well.  Therefore during interpolation, closeness to the 

correct state can be reduced.  Re-evaluating the system‟s prototypes periodically will overcome this issue, and a further 

enhancement could be achieved through ensuring that prototypes of the data also encompass boundaries of the clusters 

themselves.   

At present, the nearest prototype to a data point determines the state to which that point belongs.  It is supposed that if 

prototypes have a strength of belonging to a cluster, the closest prototype can be evaluated to see how likely it is that the 

new point belongs to it.  If the distance to the next prototype is further, yet the strength of belonging to that cluster is 

greater, a trade-off mechanism can be evaluated to more adequately classify the data point to a cluster.  It is in the 

adjusting of this neighbourhood function that the method will become a more useful tool in the supervised classification 

of data sets and the successive unsupervised interpolation of unseen data points. 
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