13 research outputs found

    Implementation of non-intrusive appliances load monitoring (NIALM) on k-nearest neighbors (k-NN) classifier

    Get PDF
    Nonintrusive Appliance Load Monitoring (NIALM) is used to analyze individual’s house energy consumption by distinguishing variations in voltage and current of appliances in a household. The method identifies load consumption of each appliance from the aggregated home energy consumption. NIALM will also provide information of load consumptions of each appliance by indirectly detecting the abnormal changes of appliance usage. The proposed NIALM approach is based on features extraction from load consumptions measurements of electrical power signals in order to classify appliance’s state of operation. In this work, we have improved the identification accuracy and the detection of appliances based on their operational state by employing Machine Learning (ML) technique; namely k-nearest neighbor (k-NN) classification algorithm. The dataset used to perform this process is from the publicly available (PLAID) of power, voltage and current signals of appliances from several houses. This is used as benchmark data set. The PLAID dataset is collected and processed for each appliance and our classification results based on k-NN algorithm achieved high accuracy and is able to gain cost-effective solution. In addition, the result shows that k-NN classifier is a proven as an efficient method for NIALM techniques when compared with other proposed different ML options. Based on the used dataset, the average F-score measure obtained using the k-NN classifier is 90%. Possible reasons behind these findings are discussed and areas for further exploration are proposed.</p

    Better Physical Activity Classification using Smartphone Acceleration Sensor

    Get PDF
    Obesity is becoming one of the serious problems for the health of worldwide population. Social interactions on mobile phones and computers via internet through social e-networks are one of the major causes of lack of physical activities. For the health specialist, it is important to track the record of physical activities of the obese or overweight patients to supervise weight loss control. In this study, acceleration sensor present in the smartphone is used to monitor the physical activity of the user. Physical activities including Walking, Jogging, Sitting, Standing, Walking upstairs and Walking downstairs are classified. Time domain features are extracted from the acceleration data recorded by smartphone during different physical activities. Time and space complexity of the whole framework is done by optimal feature subset selection and pruning of instances. Classification results of six physical activities are reported in this paper. Using simple time domain features, 99 % classification accuracy is achieved. Furthermore, attributes subset selection is used to remove the redundant features and to minimize the time complexity of the algorithm. A subset of 30 features produced more than 98 % classification accuracy for the six physical activities

    An IoT System for Converting Handwritten Text to Editable Format via Gesture Recognition

    Get PDF
    Evaluation of traditional classroom has led to electronic classroom i.e. e-learning. Growth of traditional classroom doesn’t stop at e-learning or distance learning. Next step to electronic classroom is a smart classroom. Most popular features of electronic classroom is capturing video/photos of lecture content and extracting handwriting for note-taking. Numerous techniques have been implemented in order to extract handwriting from video/photo of the lecture but still the deficiency of few techniques can be resolved, and which can turn electronic classroom into smart classroom. In this thesis, we present a real-time IoT system to convert handwritten text into editable format by implementing hand gesture recognition (HGR) with Raspberry Pi and camera. Hand Gesture Recognition (HGR) is built using edge detection algorithm and HGR is used in this system to reduce computational complexity of previous systems i.e. removal of redundant images and lecture’s body from image, recollecting text from previous images to fill area from where lecture’s body has been removed. Raspberry Pi is used to retrieve, perceive HGR and to build a smart classroom based on IoT. Handwritten images are converted into editable format by using OpenCV and machine learning algorithms. In text conversion, recognition of uppercase and lowercase alphabets, numbers, special characters, mathematical symbols, equations, graphs and figures are included with recognition of word, lines, blocks, and paragraphs. With the help of Raspberry Pi and IoT, the editable format of lecture notes is given to students via desktop application which helps students to edit notes and images according to their necessity
    corecore