
Incorporating Farthest Neighbours in Instance Space
Classification

Daniel Vaccaro-Senna and Mohamed Medhat Gaber

School of Computing, University of Portsmouth, Hampshire, England, PO1 3HE, UK
{daniel.vaccaro-senna,mohamed.gaber}@port.ac.uk

Abstract. The nearest neighbour (NN) classifier is often known as a ‘lazy’ ap-
proach but it is still widely used particularly in the systems that require pattern
matching. Many algorithms have been developed based on NN in an attempt to
improve classification accuracy and to reduce the time taken, especially in large
data sets. This paper proposes a new classification technique based on k-
Nearest Neighbour (k-NN), called k-Nearest & Farthest Neighbours (k-NFN).
Farthest neighbours are used to identify classes that an unseen record may not
belong to and are considered with the nearest neighbours in the classification
decision. Two neighbour voting systems are also proposed to further improve k-
NN and k-NFN accuracy. The first uses a ranking system and the second uses a
spectrum to consider how near or far a neighbour actually is. The accuracy of
our three proposed k-NFN techniques and k-NN are compared using the stan-
dard ten cross fold validation experiments on a number of real data sets, evi-
dencing the superiority of our proposed techniques in terms of accuracy.

Keywords. k-Nearest Neighbour, Farthest Neighbour, classification accuracy

1 Introduction

The surge in data collection and analysis has been met with a new field of interest to
computer science known as data mining. A core aspect of this field is data classifica-
tion. This can be defined as dividing objects into classes [1]. For example, patients in
a hospital database may be classified by their illness or injury. The process often in-
volves building a classification model that can identify the class an unseen instance
belongs to. A tree model is a commonly used structure for decision making that has
been used in classification techniques [2-5]. Constructing models on large data sets
can be complicated and increase the time of classification, especially when a model
needs to be rebuilt with each new instance.

Different approaches exist which use pattern recognition techniques. A ‘benchmark
method’ [6] considered to be one of the top 10 data mining algorithms is the k-
Nearest Neighbour (k-NN) classifier [7]. The idea is to estimate the class of an in-
stance by studying the instances that are defined as the closest to it. The algorithm is
considered simple and commonly used in pattern recognition [8]. As k-NN does not
build a classification model in advance, it is considered a method of ‘lazy learning’
which can affect its efficiency on large or complex data sets [9]. The method is totally

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29582287?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

focused on the similar instances, and consequently does not consider the wider pic-
ture. It is possible for instances that are not neighbours to still have the same class.
This would be considered a vague class label. In this paper, we set out to extend the k-
NN algorithm to consider its nearest and farthest neighbours to classify data without
adding a model or rules, in order to maintain the original algorithm’s simplicity. We
also look at different ideas for voting systems amongst the neighbours and how the
farthest neighbours may be best used for classification.

Three voting systems involving farthest neighbours are proposed. The first takes
the standard k-NN and applies the farthest neighbours as direct opposites. In practice,
each farthest neighbour cancels out a nearest neighbour with the same class. The
second ranks the nearest neighbours in order of ‘closeness’ and scores higher values
for classes that appear top of the rank. The same is applied to the farthest neighbours
except that a class’s majority score is decreased. The third creates a spectrum-like
model. The single nearest and single farthest neighbours are used as the minimum and
maximum on the scale. The remaining neighbours are given a score based on their
relative position on the spectrum.

The use of farthest neighbours is labeled as the K Nearest & Farthest Neighbour
algorithm (k-NFN). The three methods proposed based on k-NFN in this paper are
named; k-NFN Original, k-NFN Rank (k-NFNR) and k-NFN Spectrum (k-NFNS) re-
spectively.

2 Background

The k-Nearest Neighbour algorithm gets its name from classifying instances by the
integer k number of instances that are most similar or closest from the training set. To
do this, the distance between instances must be determined based upon their
attributes. Each training instance can be considered a point in n dimensional space
where n is the number of descriptive attributes [10]. As a result of this, graph theory
can be applied to the instances and the City Block or Euclidean distance function can
be used. The City Block distance [1] between two points is based on the idea that you
cannot usually take a direct route from one place to another. Considering two points
in a graph, you can find the distance by taking the sum of horizontal and vertical dis-
tances. A more popular distance measurement is the Euclidean distance. This calcu-
lates the direct route between two points. The Euclidean distance between two in-
stances x and y can be described as in equation (1)

 𝐷(𝑥, 𝑦) = �∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1 (1)

The Euclidean distance finds the difference between the values of x and y for each
attribute from i to n and applies the Pythagoras theorem to find the overall distance. A
potential problem with using Euclidean, or even the City Block distance function, is
that attributes with large domains may dominate. A solution to this is normalisation.

 𝑁(𝑣𝑎𝑙𝑢𝑒) = (𝑣𝑎𝑙𝑢𝑒−𝑚𝑖𝑛𝑖𝑚𝑢𝑚)

(𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝑚𝑖𝑛𝑖𝑚𝑢𝑚)
 (2)

As shown in equation (2), to normalise data, the maximum and minimum values of
each attribute are identified for the calculation to take place. Distances among cate-
gorical attributes have been set to 0 for the same values and 1 if the values are differ-
ent. In this paper, we have handled missing values by replacing them by the average.

3 Related Work

Classification methods have been the focus of a large body of the data mining litera-
ture. The k-Nearest Neighbour technique is a popular algorithm noted as one of the
best [7]. The k-NN algorithm is highly rated, but it also has its issues including; com-
putational complexity [8] and the curse of dimensionality [11]. Some extensions of k-
NN have been made that successfully improved the classification accuracy in some
data sets by improving the distance function or neighbourhood size. These include the
weight adjusted k-nearest neighbour (WAKNN) and dynamic k-nearest neighbour
(DKNN) [11]. Research into the importance of the value for k resulted in Variable k-
NN (V-kNN) which discovers the optimum for each training set [12]. Another idea for
improving k-NN’s performance was developed through Class Based k-NN (CB-kNN)
[12]. This algorithm considers how there may be an unbalanced set of classes in the
data. Another proposed algorithm is the cluster-based trees [13]. The K Best Cluster
Based Neighbour (KB-CB-N) [10] is a classification technique that also uses a cluster
based approach combined with three different similarity measures rather than just the
Euclidean distance.

Most advancements on k-NN change the method of calculating neighbours. None
of them consider the use of more than just the nearest neighbours to classify instances.
The distance between an unseen instance and every instance in the training set are
calculated but only a small sample, defined by k, is used. The Density Based k-NN
(DB-kNN) algorithm is a notable classification technique that evaluates the neigh-
bours rather than just counting them. Because of this it has been labeled an ‘important
step forward’ [12]. Nearest neighbour classifications are considered lazy [9], even
with weight adjustments and different values of k. Using more neighbours, such as the
farthest, may increase the knowledge base of classification. As there is no considera-
ble research into the use of farthest neighbours, there is also no defined method of
using them.

4 K-NFN Classification

In our novel algorithm the nearest k neighbours are not the only factor in the classifi-
cation of an unseen instance. A new integer value labeled fk is introduced (also k is
renamed nk). fk represents the number of farthest neighbours to include. A farthest
neighbour is a record considered to be the farthest in distance from the instance. The
Euclidean distance function is still used to calculate the distances.

The farthest neighbours are being considered in this paper because they may be
used to identify vague classes or may be useful in deciding close decisions. If one
class label beats another by only 1 appearance but also appears several times in the

farthest instances, it may be more accurate to classify the new instance with the
second class label. In this situation this may be correct because the first class label is
used on similar and dissimilar instances which show no real connection between the
common attributes of the neighbours, to the class.

Once the farthest neighbours have been found there are several ways they can be

used in classification. In this paper we have tested 3 of those methods on several data
sets and compared the results to k-NN. The new algorithm is labeled k-NFN (k-
Nearest & Farthest Neighbours). The first method of k-NFN is considered the original
k-NFN. 2 further algorithms were developed as extensions to the original. The same
extensions were applied to k-NN to create similar k-NN functions which were experi-
mented on so the use of farthest neighbours can be compared for each method. The
base of the k-NFN algorithm is described in Algorithm 1.

Three different k-NFN methods are proposed in this paper. They differ by vote
function. K-NFN Original uses voteOriginal, k-NFN Rank (k-NFNR) uses voteRank
and k-NFN Spectrum (k-NFNS) uses voteSpectrum. The three methods are discussed
in the following subsections.

Algorithm 2: voteOriginal (nn: Ordered array of the nearest neighbours,
fn: Ordered array of the farthest neighbours)

begin
 for each instance i in nn do
 find class label C of i;
 add 1 to C occurence in arrayOfClassLabels;
 endfor;
 for each instance j in fn do
 find class label C of j;
 subtract 1 from C occurence in arrayOfClassLabels;
 endfor;
 return C with highest occurrence in arrayOfClassLabels;
end;

Algorithm 1: Neighbours(data: training data set, nk: integer of nearest neighbours,
 fk: integer of farthest neighbours, r: new data record)
begin
 for each instance i in data do
 calculate distance(i, r) as D on their attributes;
 store D in arrayOfDistances;
 endfor;
 Order arrayOfDistances from lowest to highest;
 Find nk nearest neighbours from arrayOfDistances as nn;
 Find fk farthest neighbours from arrayOfDistances as fn;
 r.Class = result of vote(nn,fn) using either voteOriginal, voteRank or
 voteSpectrum;
end;

4.1 K-NFN Original

The voting in the first version of the k-NFN algorithm treats the farthest neighbours
as opposites to the nearest. This means that for each class that appears as a farthest
neighbour, a point is deducted from its nearest total. In practice this would mean that
if class A appeared 4 times in the nearest neighbours and 3 times in the farthest
neighbours, the total appearance of class A would be considered as 1. The voting
system used for k-NFN is described in Algorithm 2.

4.2 K-NFNR

In k-NFNR, there are changes to how neighbours influence the class decision. A
ranking system is used. The nearest neighbours are ordered by their distances and
given a rank value depending on the integer nk. The very nearest is given the value of
nk. This value is decremented for every instance that precedes it until the last nearest
neighbour is given the value of 1. Table 1 shows how this would work when 5 neigh-
bours are used (nk is set to 5), with two class labels denoted A and B.

Table 1. Example of ranking neighbours

Instance Class Rank Value
Nearest A 5
2nd Nearest B 4
3rd Nearest B 3
4th Nearest B 2
5th Nearest A 1

The rank value is then used to score the classes. Thus, in Table 1, class A has a to-

tal value of 6 and class B has a total value of 9. So if classification was applied using
just nearest neighbours, class B would be chosen in this example (k-NN Ranking).

The k-NFN Ranking method applies the ranking to nearest neighbours and then ap-
plies the same technique to the farthest neighbours. The farthest instance is given a
rank value of fk so that the farthest has the greatest influence. Each preceding instance
is then given a value based on its position. Table 2 shows an example of this.

Table 2. Example of ranking Farthest Neighbours

Instance Class Rank Value
Farthest B 5
2nd Farthest A 4
3rd Farthest A 3
4th Farthest B 2
5th Farthest A 1

The rank values of the farthest neighbours are totaled and subtracted from the val-

ues of the nearest for each class. Thus if an unseen instance being classified had the

nearest neighbours in Table 1 and farthest from Table, 2 it would be classified as
follows:
1. Class A has a value of 6 (5+1) from nearest neighbours and a value of 8 (4+3+1)

from the farthest. Applying nearest – farthest gives Class A the value of -2 (6-8).
2. Class B has a value of 9 (4+3+2) from nearest neighbours and a value of 7 (5+2)

from the farthest. Applying nearest – farthest gives Class B the value of 2 (9-7).
3. As class B has a higher value than class A, the instance would be classified under

class B.
The algorithm for voteRank is given in Algorithm 3.

Algorithm 4: plotSpectrum (nn: Instance of nearest neighbour, fn: Instance of farthest
neighbour, neighbour: neighbour to be plotted)

begin
 spectrumLength := 2; nd := nn.distance; fd := fn.distance;
 n := neighbour.distance;
 //First calculate distance between Nearest and Farthest
 totalDistance := |fd – nd|;
 //If nearest n being plotted, find distance of n compared to nearest else find

//distance of neighbour to farthest
 if n = a nearest neighbour then distance = |n- nd|
 else distance = |n - fd|; end if;
 // Find this distance as a percentage of the gap between nearest and farthest
 pd := distance / totalDistance * 100;
 // Find the distance on spectrum by using percentage on spectrum length
 sd := spectrumLength / 100 * pd;
 //If plotting nearest neighbour, get neighbour position by subtracting distance

 //from 1 else add distance to -1
 if n = a nearest neighbour then return 1-sd;
 else return -1+sd; end if;
end;

Algorithm 3: voteRank (nn: Ordered array of the nearest neighbours, fn: Ordered
array of the farthest neighbours)

begin
 rankScore := nn.length;
 for each instance i in nn do
 find class label C of i;
 add rankScore to C occurence in arrayOfClassLabels;
 rankScore := rankScore-1;
 endfor;
 rankScore := fn.length;
 for each instance j in fn do
 find class label C of j;
 subtract rankScore from C occurence in arrayOfClassLabels;
 rankScore := rankScore-1;
 endfor;
 return C with highest occurrence in arrayOfClassLabels;
end;

4.3 K-NFNS

The last extension of the original k-NFN algorithm presented in this paper creates a
spectrum-like measurement based on the single nearest and the single farthest neigh-
bours (k-NFNS). All other neighbours are then plotted on the spectrum based on how
near or far they are to the unseen instance.

The single nearest neighbour is given the value of 1. The single farthest neighbour
is given the value of -1. Each of the nearest neighbours up to the value of nk, are giv-
en a value that represents how near they are based on the difference to the nearest
distance. This is calculated using a percentage difference. The percentage of a neigh-
bours distance from the nearest or farthest, on the total distance between the nearest
and farthest is found and applied to the spectrum length. We can plot a neighbour on
the spectrum by using Algorithm 4.

As an example, we take an instance with a nearest neighbour of distance 1.4 and a
farthest neighbour of distance 6. To plot the second nearest neighbour of distance 2.1
we follow the steps in Figure 1.

Fig. 1. Plotting neighbour with 2.1 distances on a spectrum

Thus the second nearest neighbour in this example will have a position of 0.6957
on the spectrum. Its position is shown on the spectrum in Figure 2.

Fig. 2. Plotting neighbour with distance of 2.1 on a spectrum diagram

The position on the spectrum is the value used to total up appearances of a class.
So in the example of Figure 2, if both the nearest neighbour and second nearest
neighbour belong to class A then the value of class A would be 1+0.6957.

Our motivation to use the spectrum is that if the nearest neighbours are not that
close in proximity to the instance, they should have less influence on the classifica-
tion. For farthest neighbours, it is the case that neighbours that are not very far should
have less influence. The voting system in k-NFNS is given in Algorithm 5.

Initial Values: fd = 6. nd = 1.4. n = 2.1. spectrumlength = 2
Distance between Nearest and Farthest: 6 – 1.4 = 4.6
Distance of neighbour to nearest: 2.1 – 1.4 = 0.7
Percentage of difference: 0.7

4.6
∗ 100 = 15.2173 ….

Find distance on spectrum from nearest: 2
100

∗ 15.2173 … . = 0.3043 ….
Plot neighbour by subtracting from 1: 1 – 0.3043.... = 0.6957 (4dp)

5 Experimental Results

We implemented the three variations of the K-NFN algorithms and their K-NN coun-
terparts using the Java programming language. Then we compared their accuracy
using real data sets with a 10 fold cross validation technique [14]. The experimental
study in this paper has two targets:
1. To evaluate the performance of K-NFN algorithms against K-NN.
2. To assess how the difference in nk and fk values may affect classification

All the data sets used in this paper have been retrieved from the UCI data reposito-
ry [15]. Table 3 displays the details of the data sets used. Variations in the properties
of the data in terms of size, dimensionality and number of classes have been the fac-
tors we used to choose the data sets for our experimental study.

Table 3. Data set details

Data set No. Of
Attributes

No. Of
Instances

No. Of
Classes

Iris 4 105 3
Haberman 3 306 2
Balance Scale (BS) 4 625 3
Tic-Tac-Toe (TTT) 9 958 2
Heart 44 267 2
Glass 9 214 7
Ecoli 7 336 8
Hayes-Roth 5 132 3
Sonar 60 208 2
Breast-Cancer-Wisconsin (BCW) 10 699 2

Algorithm 5: voteSpectrum (nn: Ordered array of the nearest neighbours,
 fn: Ordered array of the farthest neighbours)
begin
 nearest := first instance in nn;

farthest:= first instance in fn;
 for each instance i in nn do
 find class label C of i;
 spectrumPoint := plotSpectrum(nearest, farthest, i);
 add spectrumPoint to C occurence in arrayOfClassLabels;
 endfor;
 for each instance j in fn do
 find class label C of j;
 spectrumPoint := plotSpectrum(nearest, farthest, j);
 add spectrumPoint from C occurence in arrayOfClassLabels;
 endfor;
 return C with highest occurrence in arrayOfClassLabels;
end;

Each data set was validated C times, where C is the number of classes within the
data set. For each method, the value of nk is set to 1 and fk to C for the first cross fold
validation experiment. nk is then incremented and fk decremented and the set is vali-
dated again. This continues until nk equals C (and fk should finish at 1). This cycle of
nk and fk is done for each algorithm on each data set. Table 4 shows the results of the
average cross validation accuracy for each algorithm on all the data sets.

Table 4. Table of Cross Validation Accuracy Results as Percentages

Data set k-NN k-NNR k-NNS k-NFN k-NFNR k-NFNS
Iris 95.25926 95.25926 95.18519 95.33333 95.7037 95.55556
Haberman 67.25826 68.77778 68.81532 70.34685 71.61411 70.16967
BS 79.62847 79.64596 79.51822 81.76505 81.91542 81.27347
TTT 74.8605 81.40504 81.31749 78.37557 79.19486 79.22858
Heart 64.79167 67.5 68.33333 67.5 67.70833 67.29167
Glass 67.15646 69.07392 68.62313 60.75646 60.44717 63.64898
Ecoli 78.48769 78.48422 76.51263 78.84059 78.14015 76.19066
Hayes-Roth 68.90598 80.25071 80.62108 67.04274 73.66952 71.85755
Sonar 84.57184 85.67241 86.29598 85.59483 81.12356 85.14368
BCW 95.91879 95.66226 95.42958 95.29994 95.27273 95.18804

In Table 4, there are cases where a k-NFN based method consistently provides bet-

ter accuracy than k-NN, notably in the Haberman and Balance Scale data sets. It can
be observed that in 40% of the used data sets, incorporating farthest neighbours have
enhanced the performance of the classification over all variations of k-NN. Further-
more, our proposed voting systems have proved their efficiency by having the highest
accuracy of classification for 80% of the data sets.

In the balance scale data set, the biggest difference between a k-NFN method and a
k-NN is when the ranking vote system is used, i.e., k-NNR & k-NFNR, as shown in
Figure 3. The ranking system also proves to be noteworthy in the Haberman data set.

Fig. 3. Graphs for Balance Scale and Haberman data set

The graph to the left in Figure 3 shows the average accuracy of the Balance Scale
data set. The graph to the right breaks down the average accuracy on the Haberman
data set. For each method, the left bar represents a (nk,fk) pair of (1,2), the middle

represents (2,1) and the last is the average across the two. The k-NFN based methods
on average outperform k-NN based ones. We can see how the values of nk and fk af-
fect the accuracy and not just the methods. For example, using 1 nearest neighbour
outperforms the use of 2 in k-NN original. However in k-NFN; the use of 2 nearest
outperforms the use of 1, when combined with 1 farthest. Thus, using a farthest
neighbour makes up for the reduction in the accuracy of k-NN, when using 2 nearest.
Here we can see a farthest neighbour can greatly improve classification for the Ha-
berman data set. Similar patterns are noticeable in k-NFNS and k-NNR.

The importance of selecting a value k is a recognised problem when using k-NN
[12], which is inherited by k-NFN. In fact, with k-NFN the difference between nk and
fk must be considered. This is noticeable in the Glass data set. On average, k-NN
based methods outperform k-NFN. However the average of k-NFN is greatly affected
by the use of 1 nearest neighbour and 7 farthest. Table 5 shows the cross validation
accuracy of the 6 algorithms on the Glass data set.

Table 5. Cross Validation Accuracy for the Glass Data Set

nk KNN KNNRank KNNSpec nk fk KNFN KNFNRank KNFNSpec
1 68.44444 69.07937 68.46984 1 7 44.74921 45.35873 46.65397
2 66.34286 67.99365 67.69524 2 6 58.38095 47.78413 64.65397
3 69.28254 70.21587 69.93016 3 5 64.8381 56.09524 65.95556
4 69.70794 69.33968 69.86667 4 4 62.40635 65.95556 67.65079
5 66.90794 67.75873 69.60635 5 3 66.74286 69.89206 65.70159
6 65.07302 69.58095 66.27302 6 2 65.1873 69.20635 66.91429
7 64.33651 69.54921 68.52063 7 1 62.99048 68.8381 68.0127

The k-NFN methods perform worse when farthest neighbours are high. As the dif-

ference between nk and fk is reduced, the accuracy between k-NN and k-NFN become
similar. The glass data set results also show that the original k-NN algorithm is outper-
formed by the proposed voting systems; rank and spectrum. The rank system is more
accurate in most cases. The use of 7 neighbours produces the largest difference in
accuracy between k-NN original and the new voting systems.

6 Conclusion

In this paper, we have proposed and developed a k-NFN classification algorithm
with three different methods of voting. Our hypothesis is that using farthest neigh-
bours to aid the nearest in identifying has improved the accuracy of classification.
Once neighbours have been selected their classes are given a score from the vote sys-
tem and the class with the greatest score at the end is selected. The first form of vot-
ing gives a +1 value for nearest neighbours’ classes and -1 for farthest. The second
system ranks the neighbours in order, so the single nearest and the single farthest
neighbour have more influence. The third system is similar in that the nearest and
farthest have a greater score. It uses the nearest and farthest as the minimum and max-
imum of a spectrum and all other neighbours are plotted in relation to them.

Experimental results show that the k-NFN algorithm can provide more accurate
classification than k-NN in 40% of the data sets. Moreover, our proposed voting me-
thods have shown their superiority by increasing the classification accuracy over k-
NN for 80% of the data sets. From this, we plan for future work to include research
into the affect of the difference between the nearest-k and the farthest-k. The discov-
ery of the optimum values may improve the classification for even those data sets that
were not improved in this paper.

References

1. Bramer, M.: Principles of Data Mining, Springer Verlag, New York, March 2007.
2. Friedl, M.A., Brodley, C.E.: Decision Tree Classification of Land Cover from Remotely

Sensed Data. In: Remote Sensing of Environment, vol. 61, pp. 399-409. Elsevier Science
Inc, New York (1997)

3. Kamber, M., Winstone, L., Gong, W., Cheng, S., Han, J.: Generalization and Decision
Tree Induction: Efficient Classification in Data Mining. In: Research Issues in Data Engi-
neering, pp. 111-120. Birmingham (1997)

4. Apte, C., Weiss, S.: Data mining with decision trees and decision rules. In: Future Genera-
tion Computer Systems 13, vol. 13, pp. 197-210. Elsevier Science Inc, New York (1997)

5. Quinlan, J.R.: Decision Trees and Decision making. In: Systems, Man and Cybernetics,
IEEE Transactions, vol. 20, pp. 339-346, (1990).

6. Shah, J.K., Smolenski, B.Y., Yantorno, R.E., Iyer, A.N.: Sequential k-Nearest Neighbor
Pattern Recognition for Usable Speech Classification. In: European Signal Processing
Conference (2004), pp. 741-744.

7. Wu, X., Kumar, V., et al: Top 10 algorithms in data mining. In: Knowledge and Informa-
tion Systems, vol. 14, pp. 1-37. Springer, London (2008).

8. Laaksonen, J., Oja, E.: Classification with learning k-nearest neighbors. In: Neural Net-
works, 1996., IEEE International Conference on , vol.3, pp. 1480-148. IEEE, Washington

9. Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: KNN Model-Based Approach in Classifica-
tion. In: On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and
ODBASE, vol. 2888, pp. 986-996. Springer, Berlin.

10. Abdallah, Z., Gaber, M.: KB-CB-N classification: towards unsupervised approach for su-
pervised learning. In: Proceedings of the IEEE Symposium on Computational Intelligence
and Data Mining (CIDM 2011), Paris, France (2011).

11. Liangxiao, J., Zhihua, C., Dianhong, W., Siwei, J.: Survey of Improving K-Nearest-
Neighbor for Classification. In: Fuzzy Systems and Knowledge Discovery, 2007. FSKD
2007. Fourth International Conference on , vol.1, pp.679-683

12. Voulgaris, V., Magoulas, G.D.: Extensions of the k Nearest Neighbour Methods for Clas-
sification Problems. In: AIA '08 Proceedings of the 26th IASTED International Confe-
rence on Artificial Intelligence and Applications. ACTA Press Anaheim, CA (2008)

13. Zhang, B., Srihari, S.N.: Fast k-Nearest Neighbor Classification Using Cluster-Based
Trees. In: IEEE Transactions On Pattern Analysis And Machine Intelligence, vol. 26, no.
4, pp. 525-52. IEEE (2003)

14. Schaffer, C.: Selecting a classification method by cross-validation. In: Machine Learning,
vol. 13, no. 1, pp. 135-143. Springer, Netherlands (2001)

15. Frank, A., Asuncion, A.: UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of Information and Computer Science. (2010).

	1 Introduction
	2 Background
	3 Related Work
	4 K-NFN Classification
	4.1 K-NFN Original
	4.2 K-NFNR
	4.3 K-NFNS

	5 Experimental Results
	6 Conclusion
	References

