5,874 research outputs found

    Classification hardness for supervised learners on 20 years of intrusion detection data

    Get PDF
    This article consolidates analysis of established (NSL-KDD) and new intrusion detection datasets (ISCXIDS2012, CICIDS2017, CICIDS2018) through the use of supervised machine learning (ML) algorithms. The uniformity in analysis procedure opens up the option to compare the obtained results. It also provides a stronger foundation for the conclusions about the efficacy of supervised learners on the main classification task in network security. This research is motivated in part to address the lack of adoption of these modern datasets. Starting with a broad scope that includes classification by algorithms from different families on both established and new datasets has been done to expand the existing foundation and reveal the most opportune avenues for further inquiry. After obtaining baseline results, the classification task was increased in difficulty, by reducing the available data to learn from, both horizontally and vertically. The data reduction has been included as a stress-test to verify if the very high baseline results hold up under increasingly harsh constraints. Ultimately, this work contains the most comprehensive set of results on the topic of intrusion detection through supervised machine learning. Researchers working on algorithmic improvements can compare their results to this collection, knowing that all results reported here were gathered through a uniform framework. This work's main contributions are the outstanding classification results on the current state of the art datasets for intrusion detection and the conclusion that these methods show remarkable resilience in classification performance even when aggressively reducing the amount of data to learn from

    Can FCA-based Recommender System Suggest a Proper Classifier?

    Full text link
    The paper briefly introduces multiple classifier systems and describes a new algorithm, which improves classification accuracy by means of recommendation of a proper algorithm to an object classification. This recommendation is done assuming that a classifier is likely to predict the label of the object correctly if it has correctly classified its neighbors. The process of assigning a classifier to each object is based on Formal Concept Analysis. We explain the idea of the algorithm with a toy example and describe our first experiments with real-world datasets.Comment: 10 pages, 1 figure, 4 tables, ECAI 2014, workshop "What FCA can do for "Artifficial Intelligence

    GPU acceleration of object classification algorithms using NVIDIA CUDA

    Get PDF
    The field of computer vision has become an important part of today\u27s society, supporting crucial applications in the medical, manufacturing, military intelligence and surveillance domains. Many computer vision tasks can be divided into fundamental steps: image acquisition, pre-processing, feature extraction, detection or segmentation, and high-level processing. This work focuses on classification and object detection, specifically k-Nearest Neighbors, Support Vector Machine classification, and Viola & Jones object detection. Object detection and classification algorithms are computationally intensive, which makes it difficult to perform classification tasks in real-time. This thesis aims in overcoming the processing limitations of the above classification algorithms by offloading computation to the graphics processing unit (GPU) using NVIDIA\u27s Compute Unified Device Architecture (CUDA). The primary focus of this work is the implementation of the Viola and Jones object detector in CUDA. A multi-GPU implementation provides a speedup ranging from 1x to 6.5x over optimized OpenCV code for image sizes of 300 x 300 pixels up to 2900 x 1600 pixels while having comparable detection results. The second part of this thesis is the implementation of a multi-GPU multi-class SVM classifier. The classifier had the same accuracy as an identical implementation using LIBSVM with a speedup ranging from 89x to 263x on the tested datasets. The final part of this thesis was the extension of a previous CUDA k-Nearest Neighbor implementation by exploiting additional levels of parallelism. These extensions provided a speedup of 1.24x and 2.35x over the previous CUDA implementation. As an end result of this work, a library of these three CUDA classifiers has been compiled for use by future researchers
    • …
    corecore