9,418 research outputs found

    Velocity Dealiased Spectral Estimators of Range Migrating Targets using a Single Low-PRF Wideband Waveform

    Get PDF
    Wideband radars are promising systems that may provide numerous advantages, like simultaneous detection of slow and fast moving targets, high range-velocity resolution classification, and electronic countermeasures. Unfortunately, classical processing algorithms are challenged by the range-migration phenomenon that occurs then for fast moving targets. We propose a new approach where the range migration is used rather as an asset to retrieve information about target velocitiesand, subsequently, to obtain a velocity dealiased mode. More specifically three new complex spectral estimators are devised in case of a single low-PRF (pulse repetition frequency) wideband waveform. The new estimation schemes enable one to decrease the level of sidelobes that arise at ambiguous velocities and, thus, to enhance the discrimination capability of the radar. Synthetic data and experimental data are used to assess the performance of the proposed estimators

    Off-grid Direction of Arrival Estimation Using Sparse Bayesian Inference

    Full text link
    Direction of arrival (DOA) estimation is a classical problem in signal processing with many practical applications. Its research has recently been advanced owing to the development of methods based on sparse signal reconstruction. While these methods have shown advantages over conventional ones, there are still difficulties in practical situations where true DOAs are not on the discretized sampling grid. To deal with such an off-grid DOA estimation problem, this paper studies an off-grid model that takes into account effects of the off-grid DOAs and has a smaller modeling error. An iterative algorithm is developed based on the off-grid model from a Bayesian perspective while joint sparsity among different snapshots is exploited by assuming a Laplace prior for signals at all snapshots. The new approach applies to both single snapshot and multi-snapshot cases. Numerical simulations show that the proposed algorithm has improved accuracy in terms of mean squared estimation error. The algorithm can maintain high estimation accuracy even under a very coarse sampling grid.Comment: To appear in the IEEE Trans. Signal Processing. This is a revised, shortened version of version
    • …
    corecore