3 research outputs found

    Temporal - spatial recognizer for multi-label data

    Get PDF
    Pattern recognition is an important artificial intelligence task with practical applications in many fields such as medical and species distribution. Such application involves overlapping data points which are demonstrated in the multi- label dataset. Hence, there is a need for a recognition algorithm that can separate the overlapping data points in order to recognize the correct pattern. Existing recognition methods suffer from sensitivity to noise and overlapping points as they could not recognize a pattern when there is a shift in the position of the data points. Furthermore, the methods do not implicate temporal information in the process of recognition, which leads to low quality of data clustering. In this study, an improved pattern recognition method based on Hierarchical Temporal Memory (HTM) is proposed to solve the overlapping in data points of multi- label dataset. The imHTM (Improved HTM) method includes improvement in two of its components; feature extraction and data clustering. The first improvement is realized as TS-Layer Neocognitron algorithm which solves the shift in position problem in feature extraction phase. On the other hand, the data clustering step, has two improvements, TFCM and cFCM (TFCM with limit- Chebyshev distance metric) that allows the overlapped data points which occur in patterns to be separated correctly into the relevant clusters by temporal clustering. Experiments on five datasets were conducted to compare the proposed method (imHTM) against statistical, template and structural pattern recognition methods. The results showed that the percentage of success in recognition accuracy is 99% as compared with the template matching method (Featured-Based Approach, Area-Based Approach), statistical method (Principal Component Analysis, Linear Discriminant Analysis, Support Vector Machines and Neural Network) and structural method (original HTM). The findings indicate that the improved HTM can give an optimum pattern recognition accuracy, especially the ones in multi- label dataset

    Human behavior understanding for worker-centered intelligent manufacturing

    Get PDF
    “In a worker-centered intelligent manufacturing system, sensing and understanding of the worker’s behavior are the primary tasks, which are essential for automatic performance evaluation & optimization, intelligent training & assistance, and human-robot collaboration. In this study, a worker-centered training & assistant system is proposed for intelligent manufacturing, which is featured with self-awareness and active-guidance. To understand the hand behavior, a method is proposed for complex hand gesture recognition using Convolutional Neural Networks (CNN) with multiview augmentation and inference fusion, from depth images captured by Microsoft Kinect. To sense and understand the worker in a more comprehensive way, a multi-modal approach is proposed for worker activity recognition using Inertial Measurement Unit (IMU) signals obtained from a Myo armband and videos from a visual camera. To automatically learn the importance of different sensors, a novel attention-based approach is proposed to human activity recognition using multiple IMU sensors worn at different body locations. To deploy the developed algorithms to the factory floor, a real-time assembly operation recognition system is proposed with fog computing and transfer learning. The proposed worker-centered training & assistant system has been validated and demonstrated the feasibility and great potential for applying to the manufacturing industry for frontline workers. Our developed approaches have been evaluated: 1) the multi-view approach outperforms the state-of-the-arts on two public benchmark datasets, 2) the multi-modal approach achieves an accuracy of 97% on a worker activity dataset including 6 activities and achieves the best performance on a public dataset, 3) the attention-based method outperforms the state-of-the-art methods on five publicly available datasets, and 4) the developed transfer learning model achieves a real-time recognition accuracy of 95% on a dataset including 10 worker operations”--Abstract, page iv
    corecore