6,169 research outputs found

    Fast brain decoding with random sampling and random projections

    Get PDF
    International audienceMachine learning from brain images is a central tool for image-based diagnosis and diseases characterization. Predicting behavior from functional imaging, brain decoding, analyzes brain activity in terms of the behavior that it implies. While these multivariate techniques are becoming standard brain mapping tools, like mass-univariate analysis, they entail much larger computational costs. In an time of growing data sizes, with larger cohorts and higher-resolutions imaging, this cost is increasingly a burden. Here we consider the use of random sampling and projections as fast data approximation techniques for brain images. We evaluate their prediction accuracy and computation time on various datasets and discrimination tasks. We show that the weight maps obtained after random sampling are highly consistent with those obtained with the whole feature space, while having a fair prediction performance. Altogether, we present the practical advantage of random sampling methods in neuroimaging, showing a simple way to embed back the reduced coefficients, with only a small loss of information

    Statistical Physics and Representations in Real and Artificial Neural Networks

    Full text link
    This document presents the material of two lectures on statistical physics and neural representations, delivered by one of us (R.M.) at the Fundamental Problems in Statistical Physics XIV summer school in July 2017. In a first part, we consider the neural representations of space (maps) in the hippocampus. We introduce an extension of the Hopfield model, able to store multiple spatial maps as continuous, finite-dimensional attractors. The phase diagram and dynamical properties of the model are analyzed. We then show how spatial representations can be dynamically decoded using an effective Ising model capturing the correlation structure in the neural data, and compare applications to data obtained from hippocampal multi-electrode recordings and by (sub)sampling our attractor model. In a second part, we focus on the problem of learning data representations in machine learning, in particular with artificial neural networks. We start by introducing data representations through some illustrations. We then analyze two important algorithms, Principal Component Analysis and Restricted Boltzmann Machines, with tools from statistical physics

    MR image reconstruction using deep density priors

    Full text link
    Algorithms for Magnetic Resonance (MR) image reconstruction from undersampled measurements exploit prior information to compensate for missing k-space data. Deep learning (DL) provides a powerful framework for extracting such information from existing image datasets, through learning, and then using it for reconstruction. Leveraging this, recent methods employed DL to learn mappings from undersampled to fully sampled images using paired datasets, including undersampled and corresponding fully sampled images, integrating prior knowledge implicitly. In this article, we propose an alternative approach that learns the probability distribution of fully sampled MR images using unsupervised DL, specifically Variational Autoencoders (VAE), and use this as an explicit prior term in reconstruction, completely decoupling the encoding operation from the prior. The resulting reconstruction algorithm enjoys a powerful image prior to compensate for missing k-space data without requiring paired datasets for training nor being prone to associated sensitivities, such as deviations in undersampling patterns used in training and test time or coil settings. We evaluated the proposed method with T1 weighted images from a publicly available dataset, multi-coil complex images acquired from healthy volunteers (N=8) and images with white matter lesions. The proposed algorithm, using the VAE prior, produced visually high quality reconstructions and achieved low RMSE values, outperforming most of the alternative methods on the same dataset. On multi-coil complex data, the algorithm yielded accurate magnitude and phase reconstruction results. In the experiments on images with white matter lesions, the method faithfully reconstructed the lesions. Keywords: Reconstruction, MRI, prior probability, machine learning, deep learning, unsupervised learning, density estimationComment: Published in IEEE TMI. Main text and supplementary material, 19 pages tota

    A role for recurrent processing in object completion: neurophysiological, psychophysical and computational"evidence

    Get PDF
    Recognition of objects from partial information presents a significant challenge for theories of vision because it requires spatial integration and extrapolation from prior knowledge. We combined neurophysiological recordings in human cortex with psychophysical measurements and computational modeling to investigate the mechanisms involved in object completion. We recorded intracranial field potentials from 1,699 electrodes in 18 epilepsy patients to measure the timing and selectivity of responses along human visual cortex to whole and partial objects. Responses along the ventral visual stream remained selective despite showing only 9-25% of the object. However, these visually selective signals emerged ~100 ms later for partial versus whole objects. The processing delays were particularly pronounced in higher visual areas within the ventral stream, suggesting the involvement of additional recurrent processing. In separate psychophysics experiments, disrupting this recurrent computation with a backward mask at ~75ms significantly impaired recognition of partial, but not whole, objects. Additionally, computational modeling shows that the performance of a purely bottom-up architecture is impaired by heavy occlusion and that this effect can be partially rescued via the incorporation of top-down connections. These results provide spatiotemporal constraints on theories of object recognition that involve recurrent processing to recognize objects from partial information

    Closed-loop estimation of retinal network sensitivity reveals signature of efficient coding

    Full text link
    According to the theory of efficient coding, sensory systems are adapted to represent natural scenes with high fidelity and at minimal metabolic cost. Testing this hypothesis for sensory structures performing non-linear computations on high dimensional stimuli is still an open challenge. Here we develop a method to characterize the sensitivity of the retinal network to perturbations of a stimulus. Using closed-loop experiments, we explore selectively the space of possible perturbations around a given stimulus. We then show that the response of the retinal population to these small perturbations can be described by a local linear model. Using this model, we computed the sensitivity of the neural response to arbitrary temporal perturbations of the stimulus, and found a peak in the sensitivity as a function of the frequency of the perturbations. Based on a minimal theory of sensory processing, we argue that this peak is set to maximize information transmission. Our approach is relevant to testing the efficient coding hypothesis locally in any context where no reliable encoding model is known

    High accuracy decoding of dynamical motion from a large retinal population

    Get PDF
    Motion tracking is a challenge the visual system has to solve by reading out the retinal population. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar's position. Instead, we found that ganglion cells fired sparsely over an area much larger than predicted by their receptive fields, so that the neural image did not track the bar. This highly redundant organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.Comment: 23 pages, 7 figure
    corecore