5,965 research outputs found

    Fast and Efficient Dataflow Graph Generation

    Get PDF
    International audienceDataflow modeling is a highly regarded method for the design of embedded systems. Measuring the performance of the associated analysis and compilation tools requires an efficient dataflow graph generator. This paper presents a new graph generator for Phased Computation Graphs (PCG), which augment Cyclo-Static Dataflow Graphs with both initial phases and thresholds. A sufficient condition of liveness is first extended to the PCG model. The determination of initial conditions minimizing the total amount of initial data in the channels and ensuring liveness can then be expressed using Integer Linear Programming. This contribution and other improvements of previous works are incorporated in Turbine, a new dataflow graph generator. Its effectiveness is demonstrated experimentally by comparing it to two existing generators, DFTools and SDF3

    Shared Arrangements: practical inter-query sharing for streaming dataflows

    Full text link
    Current systems for data-parallel, incremental processing and view maintenance over high-rate streams isolate the execution of independent queries. This creates unwanted redundancy and overhead in the presence of concurrent incrementally maintained queries: each query must independently maintain the same indexed state over the same input streams, and new queries must build this state from scratch before they can begin to emit their first results. This paper introduces shared arrangements: indexed views of maintained state that allow concurrent queries to reuse the same in-memory state without compromising data-parallel performance and scaling. We implement shared arrangements in a modern stream processor and show order-of-magnitude improvements in query response time and resource consumption for interactive queries against high-throughput streams, while also significantly improving performance in other domains including business analytics, graph processing, and program analysis

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft
    • 

    corecore