124 research outputs found

    Adversarial Training and Provable Robustness: A Tale of Two Objectives

    Full text link
    We propose a principled framework that combines adversarial training and provable robustness verification for training certifiably robust neural networks. We formulate the training problem as a joint optimization problem with both empirical and provable robustness objectives and develop a novel gradient-descent technique that can eliminate bias in stochastic multi-gradients. We perform both theoretical analysis on the convergence of the proposed technique and experimental comparison with state-of-the-arts. Results on MNIST and CIFAR-10 show that our method can consistently match or outperform prior approaches for provable l infinity robustness. Notably, we achieve 6.60% verified test error on MNIST at epsilon = 0.3, and 66.57% on CIFAR-10 with epsilon = 8/255.Comment: Accepted at AAAI 202

    Robustness Analysis of Neural Networks via Efficient Partitioning with Applications in Control Systems

    Full text link
    Neural networks (NNs) are now routinely implemented on systems that must operate in uncertain environments, but the tools for formally analyzing how this uncertainty propagates to NN outputs are not yet commonplace. Computing tight bounds on NN output sets (given an input set) provides a measure of confidence associated with the NN decisions and is essential to deploy NNs on safety-critical systems. Recent works approximate the propagation of sets through nonlinear activations or partition the uncertainty set to provide a guaranteed outer bound on the set of possible NN outputs. However, the bound looseness causes excessive conservatism and/or the computation is too slow for online analysis. This paper unifies propagation and partition approaches to provide a family of robustness analysis algorithms that give tighter bounds than existing works for the same amount of computation time (or reduced computational effort for a desired accuracy level). Moreover, we provide new partitioning techniques that are aware of their current bound estimates and desired boundary shape (e.g., lower bounds, weighted ℓ∞\ell_\infty-ball, convex hull), leading to further improvements in the computation-tightness tradeoff. The paper demonstrates the tighter bounds and reduced conservatism of the proposed robustness analysis framework with examples from model-free RL and forward kinematics learning

    Certified Training: Small Boxes are All You Need

    Full text link
    We propose the novel certified training method, SABR, which outperforms existing methods across perturbation magnitudes on MNIST, CIFAR-10, and TinyImageNet, in terms of both standard and certifiable accuracies. The key insight behind SABR is that propagating interval bounds for a small but carefully selected subset of the adversarial input region is sufficient to approximate the worst-case loss over the whole region while significantly reducing approximation errors. SABR does not only establish a new state-of-the-art in all commonly used benchmarks but more importantly, points to a new class of certified training methods promising to overcome the robustness-accuracy trade-off
    • …
    corecore