
Efficient Neural Network Verification Using Branch and Bound

Shiqi Wang

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2022

© 2022

Shiqi Wang

All Rights Reserved

Abstract

Efficient Neural Network Verification Using Branch and Bound

Shiqi Wang

Neural networks have demonstrated great success in modern machine learning systems. How-

ever, they remain susceptible to incorrect corner-case behaviors, often behaving unpredictably

and producing surprisingly wrong results. Therefore, it is desirable to formally guarantee their

trustworthiness for certain robustness properties when applied to safety-/security-sensitive systems

like autonomous vehicles and aircraft. Unfortunately, the task is extremely challenging due to the

complexity of neural networks, and traditional formal methods were not efficient enough to verify

practical properties. Recently, a Branch and Bound (BaB) framework is generally extended for

neural network verification and shows great success in accelerating the verification. This dissertation

focuses on state-of-the-art neural network verifiers using BaB. We will first introduce two efficient

neural network verifiers ReluVal and Neurify using basic BaB approaches involving two main steps:

(1) They will recursively split the original verification problem into easier independent subproblems

by splitting input or hidden neurons; (2) For each split subproblem, we propose an efficient and tight

bound propagation method called symbolic interval analysis, producing sound estimated bounds for

outputs using convex linear relaxations. Both ReluVal and Neurify are three orders of magnitude

faster than previously state-of-the-art formal analysis systems on standard verification benchmarks.

However, basic BaB approaches like Neurify have to construct each subproblem into a Linear

Programming (LP) problem and solve it using expensive LP solvers, significantly limiting the

overall efficiency. This is because each step of BaB will introduce neuron split constraints (e.g., a

ReLU neuron larger or smaller than 0), which are hard to be handled by existing efficient bound

propagation methods. We propose novel designs of bound propagation method 𝛼-CROWN and

its improved variance 𝛽-CROWN, solving the verification problem by optimizing Lagrangian

multipliers 𝜶 and 𝜷 with gradient ascent without requiring to call any expensive LP solvers. They

were built based on previous work CROWN, a generalized efficient bound propagation method using

linear relaxation. BaB verification using 𝛼-CROWN and 𝛽-CROWN cannot only provide tighter

output estimations than most of the bound propagation methods but also can fully leverage the

accelerations by GPUs with massive parallelization. Combining our methods with BaB empowers

the state-of-the-art verifier 𝛼, 𝛽-CROWN (alpha-beta-CROWN), the winning tool in the second

International Verification of Neural Networks Competition (VNN-COMP 2021) with the highest

total score. Our 𝛼, 𝛽-CROWN can be three orders of magnitude faster than LP solver based

BaB verifiers and is notably faster than all existing approaches on GPUs. Recently, we further

generalize 𝛽-CROWN and propose an efficient iterative approach that can tighten all intermediate

layer bounds under neuron split constraints and strengthen the bound tightness without LP solvers.

This new approach in BaB can greatly improve the efficiency of 𝛼, 𝛽-CROWN, especially on several

challenging benchmarks.

Lastly, we study verifiable training that incorporates verification properties in training procedures

to enhance the verifiable robustness of trained models and scale verification to larger models and

datasets. We propose two general verifiable training frameworks: (1) MixTrain that can significantly

improve verifiable training efficiency and scalability and (2) adaptive verifiable training that can

improve trained verifiable robustness accounting for label similarity. The combination of verifiable

training and BaB based verifiers opens promising directions for more efficient and scalable neural

network verification.

Table of Contents

Acknowledgments . ix

Chapter 1: Introduction . 1

Chapter 2: Background and Related Work . 6

2.1 Basic Concepts of Neural Networks . 6

2.2 Adversarial Robustness . 7

2.3 Neural Network Verification . 9

2.4 Threat Model for Neural Network Verification . 12

Chapter 3: Neural Network Verification with Basic Branch and Bound 15

3.1 ReluVal: Branch and Bound with Iterative Input Split Refinement 15

3.1.1 Overview of ReluVal: A Working Example 16

3.1.2 Bounding with Symbolic Interval Analysis 20

3.1.3 Branching with Iterative Input Split Refinement 22

3.1.4 Proof of Correctness . 25

3.2 Neurify: Branch and Bound with ReLU Neuron Split Refinement Using Linear Solver 29

3.2.1 Overview of Neurify . 30

3.2.2 Bounding with Symbolic Linear Relaxation 32

3.2.3 Branching with ReLU Neuron Split Refinement 35

i

3.2.4 Implementation Details . 39

3.3 Experimental Results for Neurify and ReluVal . 41

3.3.1 Experimental Setup and Summary . 42

3.3.2 ReluVal and Neurify on Standard Verification Benchmarks 42

3.3.3 Neurify on Properties with High Input Dimensions 44

3.3.4 Ablation Studies for Each Technique . 46

3.4 Conclusion and Future Work . 48

Chapter 4: Branch and Bound with GPU Acceleration for Neural Network Verification . . . 49

4.1 Background: A Unified Branch and Bound Framework for Verification 50

4.1.1 Notations for Neural Network Verification 50

4.1.2 Branch and Bound for Complete Verification 51

4.1.3 CROWN: An Efficient Incomplete Verifier Using Linear Relaxation 54

4.2 Complete Verification with 𝛼-CROWN BaB . 58

4.2.1 Overview of 𝛼-CROWN BaB . 58

4.2.2 𝛼-CROWN: An Optimized Linear Relaxation Bound 60

4.2.3 Batch Splits . 62

4.2.4 Completeness with Minimal Usage of LP Bounding Procedure 63

4.2.5 Complete Verification Framework 𝛼-CROWN BaB 66

4.3 Complete Verification with 𝛽-CROWN BaB . 68

4.3.1 𝛽-CROWN in Primal Space . 70

4.3.2 Connections to Dual Space . 73

4.3.3 Joint Optimization of Free Variables in 𝛽-CROWN 74

ii

4.3.4 Complete Verification Framework 𝛽-CROWN BaB 75

4.3.5 Proofs for 𝛽-CROWN . 79

4.4 Experimental Evaluation for 𝛼, 𝛽-CROWN . 93

4.4.1 Comparisons to Complete Verifiers . 95

4.4.2 Comparisons to Incomplete Verifiers . 96

4.4.3 Ablation Studies for 𝛼, 𝛽-CROWN BaB and 𝛽-CROWN BaB 98

4.5 Generalized 𝛽-CROWN: Intermediate Bound Refinement for Branch and Bound . . 100

4.5.1 Issues with BaB Refinement Using Existing Bound Propagation Methods . 102

4.5.2 Potential Intermediate Bound Refinement Using LP Solvers 105

4.5.3 Intermediate Bound Refinement as Differentiable Optimizations 108

4.5.4 Experimental Evaluation . 114

4.6 Conclusion . 119

Chapter 5: Training Neural Networks for Verification . 121

5.1 Additional Background and Related Work for Verifiable Training 122

5.2 MixTrain: Scalable Training of Verifiably Robust Neural Networks 124

5.2.1 Motivation . 126

5.2.2 Stochastic Robust Approximation . 127

5.2.3 Dynamic Mixed Training . 129

5.2.4 Experimental Results for MixTrain . 131

5.3 Adaptive Verifiable Training Using Pairwise Class Similarity 142

5.3.1 Class Similarity Identification . 144

5.3.2 Inter-Group Robustness Prioritization (IGRP) 145

iii

5.3.3 Neural Decision Tree . 147

5.3.4 Experimental Results for Adaptive Verifiable Training 149

5.4 Conclusion . 156

Chapter 6: Conclusion and Open Challenges . 159

6.1 Open Challenge 1: More Scalable BaB-Based Complete Verifiers 159

6.2 Open Challenge 2: BaB-Friendly Verifiable Training 160

6.3 Open Challenge 3: BaB-Based Complete Verifiers for Realistic Properties 160

References . 162

iv

List of Figures

2.1 Threat model for neural network verification . 14

3.1 A running example for illustrating ReluVal . 17

3.2 ReluVal illustrations for symbolic interval analysis and BaB with input split refinement 18

3.3 Workflow of ReluVal . 19

3.4 A BaB search tree where each node represents a split subproblem 23

3.5 Neurify illustrations for symbolic linear relaxation and BaB with ReLU neuron split
refinement using linear solvers . 31

3.6 Workflow of Neurify . 32

3.7 An illustration of symbolic linear relaxation on an unstable ReLU neuron 33

3.8 Symbolic interval element-wise matrix multiplications for convolutional kernels . . 41

3.9 Performance of ReluVal and Neurify on MNIST models w.r.t different 𝐿∞ distances 42

3.10 Performance of Neurify, ReluVal, and improved ReluVal with symbolic linear
relaxation on MNIST models . 47

4.1 Different relaxations of a ReLU neuron . 55

4.2 An illustration of our 𝛼-CROWN and the BaB process 59

4.3 Converged 𝛼-CROWN bounds compared to the LP verifier bound 62

4.4 𝛽-CROWN BaB performance with growing time compared to SOTA complete verifiers 96

4.5 Evaluation of bound tightness obtained by 𝛽-CROWN BaB 99

v

4.6 A toy example illustrating the issues of bound propagation methods in BaB 102

4.7 Lower bound distribution of our intermediate bound refinement approach 117

4.8 BaB performance with growing time by our intermediate bound refinement approach118

4.9 Evaluation of bound tightness obtained by our intermediate bound refinement approach119

5.1 The observed conflict between regular loss and verifiable robust loss 126

5.2 Similar verifiable robust loss distributions from sampled and entire training set . . . 128

5.3 Training convergence of MixTrain . 136

5.4 Model robustness trained by MixTrain w.r.t different 𝐿∞ norm distances 139

5.5 Model robustness trained by MixTrain w.r.t different 𝐿2 and 𝐿0 norm distances . . 139

5.6 Ablation studies for fixed balancing parameter 𝛼 in MixTrain 141

5.7 Motivations for adaptive verifiable training . 143

5.8 A basic Neuron Decision Tree (NDT) architecture 148

5.9 Illustrations for the obtained F-MNIST and CIFAR10 label groups 151

vi

List of Tables

3.1 Details and summarized numbers of safety properties verified by Neurify 41

3.2 Performance of ReluVal and Neurify for ACAS Xu safety properties 43

3.3 Performance of Neurify on self-driving model Dave 44

3.4 Performance of Neurify for safety properties on Drebin models 45

3.5 The tightness improvements of symbolic linear relaxation on MNIST models . . . 46

3.6 Ablation studies of Neurify . 46

4.1 Model architectures for 𝛼-CROWN BaB and 𝛽-CROWN BaB evaluation 94

4.2 Performance of 𝛽-CROWN BaB compared to SOTA complete verifiers 96

4.3 𝛽-CROWN BaB compared to SOTA incomplete verifiers kPoly, OptC2V, and PRIMA 97

4.4 𝛽-CROWN BaB compared to SOTA incomplete verifiers SDP-FO 98

4.5 Performance of 𝛽-CROWN BaB using different available computation resources . . 99

4.6 Ablation studies of 𝛽-CROWN BaB on CIFAR10 models 100

4.7 Model architectures for our intermediate bound refinement approach evaluation . . 115

4.8 BaB complete verification evaluation for our intermediate bound refinement approach116

4.9 Avg. runtime for each split subdomain of our intermediate bound refinement approach119

5.1 Scalability issues of existing verifiers and necessity of verifiable training 121

5.2 Model architectures for MixTrain evaluation . 131

vii

5.3 MixTrain compared to adversarial training methods 134

5.4 MixTrain compared to verifiable training methods 135

5.5 The shortest training time needed by different verifiable training methods 137

5.6 MixTrain for Tiny-ImageNet ResNet architecture 138

5.7 GPU memory usage required by MixTrain . 138

5.8 Ablation studies for sampling rate 𝑘 in MixTrain 140

5.9 Dynamically adapted balancing parameter 𝛼 compared to fixed 𝛼 in MixTrain . . . 142

5.10 Model architectures for adaptive verifiable training evaluation 149

5.11 Performance of our IGRP and NDT using Basic model architecture 152

5.12 Performance of our IGRP and NDT using DM-Large model architecture 154

5.13 Adaptive verifiable training with multiple robustness criteria 154

5.14 Performance on CIFAR100 showing the effect of truncated NDT 155

viii

Acknowledgements

I would like to express my sincere gratitude to my PhD advisor Professor Suman Jana, who

always supported my research and gave me constructive suggestions and guidance. I still remember

how clueless I was when I joined as a new PhD student in 2017, knowing nothing about machine

learning then. It was Suman who led me to neural network verification and advised me very closely

on our first two projects ReluVal and Neurify. He taught me how to develop a unique research

taste, to do decent research works with carefully designed experiments, and to write well-organized

papers with concise and precise language. It was his support that enabled me to work on this topic

for five years and to eventually complete this thesis. I also want to deeply thank Professors Junfeng

Yang, Baishakhi Ray, and Cho-Jui Hsieh for serving on my doctoral committee and giving me

insightful guidance during my PhD life.

As a part of a great team, I want to thank my collaborators Huan Zhang and Kaidi Xu for

continuously working with me for several years, publishing good papers, and eventually producing

our strong verifier 𝛼, 𝛽-CROWN. I also want to thank Yihan Wang, Zhouxing Shi for helping in

building 𝛼, 𝛽-CROWN. I am grateful for the insightful suggestions and supports on improving

these influential works from my advisor, Professor Suman Jana, and other Professors Lin Xue, Zico

Kolter, and Cho-Jui Hsieh.

I want to thank my collaborators Yizheng Chen and Professor David Wagner for working with

me on machine learning related security topics. I want to thank Kexin Pei, Justin Whitehouse,

and Professor Junfeng Yang for helping me improve Neurify and ReluVal. I want to thank Vikash

Sehwag and Professor Prateek Mittal for familiarizing me with neural network pruning. I want to

ix

thank Bai Li and Professor Lawrence Carin for working with me to improve adversarial training.

I want to thank my mentors Yunhan Jia, Zhenyu Zhong, and Yantao Lu, who let me know the

industry research styles during my internship at Baidu X-Lab USA in 2019. I want to thank my

other mentors Kevin Eykholt, Taesung Lee, Jiyong Jang, and Ian Molloy. During my internship

at IBM in 2020, we developed and published the adaptive verifiable training using pairwise class

similarity from scratch in three months. I also want to thank my mentors Wedward Wei and Hamid

Vaezi Joze for broadening my research to industrial computer vision projects in my 2021 internship

at Microsoft Research.

I am honored to have my PhD life at Columbia University. I appreciate the great research

environment and supportive interactions with all the PhD advisors and other PhD students in our

department and school.

Last but not least, I would like to give my deepest thanks to my family for their firmest support

in the past five years.

x

Chapter 1: Introduction

Neural Networks (NNs) have enjoyed tremendous progress, achieving or surpassing human-

level performance in many tasks such as speech recognition [1], image classification [2], and game

playing [3]. We are already adopting neural networks in security- and mission-critical domains

like collision avoidance and autonomous driving [4]. For example, unmanned Aircraft Collision

Avoidance System X (ACAS Xu) uses neural networks to predict best actions according to the

location and the speed of the attacker/intruder planes in the vicinity. It was successfully tested by

NASA and FAA [5] and is on schedule to be installed in over 30,000 passengers and cargo aircraft

worldwide and US Navy’s fleets [6].

Unfortunately, despite our increasing reliance on neural networks, they remain susceptible

to incorrect corner-case behaviors: adversarial examples [7], with small, human-imperceptible

perturbations of test inputs, unexpectedly and arbitrarily changing a neural network’s predictions.

In a security-critical system like ACAS Xu, an attacker can easily exploit an incorrectly handled

corner case to cause significant damage costing thousands of lives. Existing methods to test neural

networks against corner cases focus on finding adversarial examples [8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 7], but they fail to provide any formal guarantees about the non-existence of adversarial

inputs even within very small input ranges.

Neural network verification thus becomes a crucial topic. It involves formally checking that

a neural network never violates a security property (e.g., no collision) for any malicious input

provided by an attacker within a given input range (e.g., for attacker aircraft’s speeds between

0 and 500 mph). We focus on complete verification: the neural network verifier should give a

definite “yes/no” answer given sufficient time. On the other hand, incomplete verifiers are usually

faster and massively used in complete verifiers, but they alone will have limited usage on regular

neural networks in practice. Due to non-linear activation functions like ReLU, the general function

1

computed by a neural network is highly non-linear and non-convex. Thus it is difficult to analyze

the neural network behavior accurately and provide formal guarantees. Early works on the formal

analysis of neural networks [19, 20, 21, 22, 23] relied on different types of Satisfiability Modulo

Theories (SMT) or Mixed Integer Programming (MIP) solvers, but their performance was severely

limited by the efficiency and scalability of the solvers.

In this dissertation, we focus on an efficient and scalable complete neural network verification

framework using branch and bound (BaB). Traditionally, BaB is a well-developed and widely-used

method for solving discrete and combinatorial optimization problems [24], and people have shown

great success in customizing the traditional BaB for the task of neural network verification. Since

the BaB framework for neural network verification can well exploit the properties and architectures

of neural networks, it can improve verification efficiency over several orders of magnitude. Neural

network verification using BaB has two main steps: (1) branching the original verification problem

into several independent easier subproblems (e.g., by splitting a ReLU neuron into positive/negative

linear regions), and (2) bounding each subproblem with specialized and efficient incomplete verifiers.

Our work ReluVal [25] and Neurify [26] were two of the first works proposing BaB based complete

verifiers, which were unified as a standard framework in [27] and widely used in almost all of the

existing complete verifiers so far. Section 2.3 and 4.1 provide a comprehensive background on BaB

based complete verifier.

In Chapter 3, we first introduce these two efficient neural network verifiers ReluVal [25]

and Neurify [26] representing two different categories of basic BaB frameworks: (1) input split

refinements proposed in ReluVal and (2) hidden neuron split refinements proposed in Neurify.

Both of them rely on a novel and efficient sound bound propagation method called symbolic

interval analysis based on interval arithmetic [28]. We have demonstrated over three orders of

magnitude verification efficiency improvement over previously state-of-the-art formal analysis

system Reluplex [19] on standard datasets like ACAS Xu [29]. Since the performance of BaB using

input split refinements suffers from large input dimensions of the verification tasks [26, 27], people

more commonly adopt BaB using hidden neuron split refinements in recent verifiers.

2

On the other hand, BaB based complete verifiers like Neurify [26, 20, 30, 27], which use

hidden neuron split refinements, usually need to call Linear Programming (LP) solver as a costly

incomplete verifier to handle neuron split constraints introduced during BaB procedure in each split

subproblem. We call such an LP solver based incomplete verifier LP verifier. Specifically, in one

step of BaB in Neurify, we will select one ReLU neuron 𝐴 to split, and the split will introduce two

easier subproblems from the original verification problem with the neuron split constraints 𝐴 > 0

and 𝐴 < 0. Neurify and its variances have to solve each subproblem with costly LP verifiers as the

incomplete verifier, which greatly limits their overall verification efficiency. Meanwhile, people

propose various bound propagation methods for efficient incomplete verification, mostly can further

enjoy the speedup on GPUs [26, 31, 32, 33, 34]. However, they cannot handle the neuron split

constraints introduced in BaB commonly handled by LP solvers, leading to loose bounds and worse

overall verification efficiency when applied in BaB procedure. CROWN [31] is the representative

of such bound propagation methods. More background discussions on bound propagation methods,

CROWN algorithms, and the LP verifier in BaB can be found in Section 2.3 and 4.1.

In Chapter 4, we introduce our BaB based complete verifier 𝛼, 𝛽-CROWN with GPU accelera-

tion that can well solve the aforementioned challenge, achieving the state-of-the-art verification

performance. Specifically, we propose a fast bound propagation method 𝛼-CROWN [35] in Sec-

tion 4.2 and its improved variance 𝛽-CROWN [36] that can well handle neuron split constraints

in BaB in Section 4.3. For each split subproblem in BaB using hidden neuron split refinements,

our methods solve an optimization problem with optimizable Lagrangian multipliers 𝜶 and 𝜷,

equivalent to the original LP problem solved by the traditional expensive LP verifiers. Unlike

traditional LP verifiers, 𝛼-CROWN and 𝛽-CROWN can be efficiently implemented with an auto-

matic differentiation framework on GPUs to fully exploit the power of modern accelerators [37].

Optimizable parameters 𝜶 come from the propagation of Lagrangian multiplies of convex linear

relaxation, and they can optimize the bound tightness for all the hidden neurons. Optimizable

parameters 𝜷 come from the propagation of Lagrangian multipliers of neuron split constraints,

optimizing the output approximation tightness under constraints. Optimizing 𝜷 can also eliminate

3

many infeasible subdomains and avoid further useless branching. Any valid settings of 𝜶 and 𝜷

parameters yield valid bounds for verification. These parameters are optimized using a few steps

of gradient ascent to achieve bounds as tight as possible. Furthermore, we can jointly optimize

intermediate layer bounds of hidden neurons due to tightened previous layer bounds in each step

of 𝜶, 𝜷 update, allowing tighter relaxations than typical LP verifiers with fixed intermediate layer

bounds. The combination of our incomplete verifier 𝛼-CROWN, 𝛽-CROWN and BaB empowered

the complete verifier with GPU acceleration 𝛼,𝛽-CROWN (alpha-beta-CROWN). It reduces the

verification time of traditional LP based BaB verifiers [27] by up to three orders of magnitudes

on a commonly used benchmark suite on CIFAR-10 [38, 39]. Compared to all state-of-the-art

GPU-based complete verifiers [40, 35, 39, 30, 38, 41], our approach is noticeably faster with lower

timeout rates as shown in Section 4.4. 𝛼,𝛽-CROWN won the second International Verification of

Neural Networks Competition [42] (VNN-COMP 2021) with the highest total score and verified the

most number of problem instances in eight benchmarks.

However, we noticed even the state-of-the-art complete verifiers like 𝛼, 𝛽-CROWN struggle

to verify large neural networks with difficult robustness properties even though they are efficient

enough in verifying the existing benchmarks [36, 39, 35, 38]. We observed a very interesting

but counter-intuitive observation: BaB refinements using bound propagation based approaches to

bound each split subproblem may not always improve but even cause worse bounds sometimes.

This is because these methods cannot optimize intermediate layer bounds of all hidden neurons

under neuron split constraints introduced in BaB. As an intuitive solution, we can use LP verifiers

to optimize every hidden neuron intermediate bounds to avoid this issue. However, this optimal

LP based solution will lead to extremely high costs, impossible to be repeatedly used in the BaB

procedure. Motivated by this challenge, we generalize 𝛽-CROWN and propose an efficient method

to refine all the intermediate layer bounds under neuron split constraints without LP solvers in

Section 4.5. Consider verification on a small MNIST model as an example, the optimal LP solver

based approach requires over 300 hours for one verification instance on average while our approach

only needs 8 seconds to achieve almost the same bound tightness. Further, this efficient procedure

4

allows us to conduct effective bound refinements for complete BaB verifiers with thousands of

subproblems to solve in parallel. Our empirical results in Section 4.5.4 show that our new approach

can noticeably improve the performance of 𝛼, 𝛽-CROWN, especially on challenging benchmarks.

In Chapter 5, we study how to incorporate verification techniques into neural network training

procedures to enhance verifiable robustness of the trained models to further scale verification to

larger models and datasets. We call such enhanced training schemes verifiable training. Recently,

people have proposed various variable training methods [43, 44, 45, 46]. Still, they face up with

two main challenges: (1) Many of them rely on tight incomplete verifiers in training and are

significantly slower than regular training process, preventing the verifiable training from being

applied in real datasets and models; (2) Most of the verifiably trained models have poor accuracy

performance despite the gain of the verifiable robustness. We first propose MixTrain [47] in

Section 5.2, aiming to improve training efficiency and scalability on large datasets and networks.

Then in Section 5.3, we propose adaptive verifiable training [48] to further improve verifiable

training performance accounting for label similarity by prioritizing verifiable robustness between

different labels. We implement and evaluate these two frameworks with incomplete verifiers

symbolic interval analysis [26] and CROWN-IBP [45] in Section 5.2.4 and 5.3.4, and we show

significant improvements of training efficiency and trained verified accuracy over state-of-the-art

approaches. Note that these two frameworks are general. They can incorporate other verifiable

training methods and gain improvements. The combination of verifiable training and BaB based

verifiers opens promising directions for more efficient and scalable neural network verification.

Lastly, in Chapter 6, we conclude this dissertation and summarize several open challenges

remaining under the topic of neural network verification using branch and bound.

5

Chapter 2: Background and Related Work

In this chapter, we give the background of this dissertation. First in Section 2.1, we will

provide basic concepts and simple notations of neural networks used in the dissertation. Then we

describe the definition of adversarial robustness in Section 2.2 including the definition of adversarial

examples, common adversarial attack algorithms, and robustness properties we want to verify with

neural network verifiers. We then provide a brief overview of neural network verification and related

works in Section 2.3. Detailed background regarding notations and formulations for the neural

network verification algorithms can be found in Section 4.1. Lastly in in Section 2.4, we provide the

threat model along with a simple example for simple illustration to better understand the usefulness

of neural network verification in practice.

2.1 Basic Concepts of Neural Networks

We consider multi-class neural network function in this dissertation. We define the input of a

neural network as 𝑥 ∈ R𝑑0 , and we define the weights and biases of an 𝐿-layer neural network as

W(𝑖) ∈ R𝑑𝑖×𝑑𝑖−1 and b(𝑖) ∈ R𝑑𝑖 (𝑖 ∈ {1, · · · , 𝐿}) respectively. 𝑑0 denotes the input dimension and

𝑑𝐿 denotes the total number of output classes. The neural network function 𝑓 : R𝑑0 → R𝑑𝐿 is

defined as 𝑓 (𝑥) = 𝑧(𝐿)(𝑥), where 𝑧(𝑖)(𝑥) = W(𝑖)𝑧(𝑖−1)(𝑥) + b(𝑖), 𝑧(𝑖)(𝑥) = 𝜎(𝑧(𝑖)(𝑥)) and 𝑧(0)(𝑥) = 𝑥. 𝜎

is the activation function. The activation functions commonly perform non-linearity. ReLU function

𝑅𝑒𝐿𝑈(𝑧) := 𝑚𝑎𝑥(0, 𝑧) is one of the most popular activation functions. When the context is clear,

we omit ·(𝑥) and use 𝑧
(𝑖)
𝑗

and 𝑧
(𝑖)
𝑗

to represent the pre-activation and post-activation values of the

𝑗-th neuron in the 𝑖-th layer. We say the neural network predicts correctly on input sample 𝑥 if the

prediction based on 𝑓 (𝑥) is the same as the ground-truth label 𝑦.

The regular neural network training process involves the objective function as shown in Equa-

6

tion 2.1, which optimizes the weights \ = {(W(𝑖), b(𝑖))|𝑖 = 1, ..., 𝐿} to minimize the expected risk

of the loss value E(𝑥,𝑦)∼D(𝐿(\, 𝑥, 𝑦)). The loss function 𝐿(\, 𝑥, 𝑦) is used to measure the errors

of the network on a specific input (𝑥, 𝑦). The cross-entropy loss function is commonly used to

train the network. Since the underlying input distribution D is unknown, the standard Empirical

Risk Minimization (ERM) [49, 50] method uses the empirical distribution D0, represented by the

training dataset of size 𝑁 , to minimize the loss value E(𝑥,𝑦)∼D0(𝐿(\, 𝑥, 𝑦)) = 1
𝑁

∑
𝐿(\, 𝑥, 𝑦). Instead

of updating the neural network weights \ for each training data sample separately, we use batch

training to make the training process more computationally efficient in practice. The training data

is split into batches of fixed size (batch size 𝑚), and for each batch of training data points we

have 𝑋 = {𝑥1, ..., 𝑥𝑚} and labels 𝑌 = {𝑦1, ..., 𝑦𝑚}. In each batch training step, we compute the

corresponding loss value, perform a backward propagation to get weight gradients, and update

the weights with optimizers using gradients (e.g., Adam [51, 52], SGD [53]) to minimize the loss

value. For the regularly trained neural networks, we can evaluate its performance by calculating its

accuracy on the unknown test set sampled from the same distribution D.

Regular Training Objective: min
\
E(𝑥,𝑦)∼D(𝐿(\, 𝑥, 𝑦)) (2.1)

2.2 Adversarial Robustness

Recent works show that adversary can easily find imperceptible perturbations on correctly

classified images and cause mis-predictions [7, 54]. Formally, given an input example 𝑥, an

adversarial example 𝑥𝑎𝑑𝑣 for 𝑥 is defined as: 𝑥𝑎𝑑𝑣 ∈ C where 𝑓 (𝑥𝑎𝑑𝑣) ̸= 𝑓 (𝑥). The robustness region

C defines the allowed input region around the input 𝑥. Commonly we consider C as an ℓ𝑝-norm ball

around 𝑥: C = {𝑥′ | ∥𝑥′ − 𝑥∥𝑝≤ 𝜖}. Here the robustness region C defines the power of the adversary

and the threat model under consideration. If the neural network always performs correctly within

the robustness region C, we say the network is verified to be robust and safe for this property around

input 𝑥. Otherwise, adversarial examples 𝑥𝑎𝑑𝑣 can be located, showing this neural network is unsafe

and non-robust for this property.

7

To fool the neural networks, there are various adversarial attacks proposed to craft the perturba-

tions and find adversarial examples. Essentially, they are solving the optimization problem Equa-

tion 2.2 where 𝑔 is the attack loss function. Many attacks use the same attack loss 𝑔 as cross-entropy

loss function 𝐿 used in training. However, solving 2.2 is challenging due to the non-convexity and

non-linearity of neural networks. Early works propose to use efficient single step Fast Gradient

Sign Method (FGSM) [9] to fool the neural networks successfully. Many adversarial attacks are

then proposed based on efficient FGSM to enhance the attack strength with multiple steps gradient

ascent including Basic Iterative Method (BIM) [13], Projected Gradient Descent (PGD) [18], and

CW [11] attacks.

arg max
𝑥𝑎𝑑𝑣∈C

𝑔(𝑥𝑎𝑑𝑣) (2.2)

As a representative, we introduce the popular multi-step gradient based adversarial attack, PGD

attack. For 𝑖-th step of PGD attack, it will update input instance 𝑥𝑖 according to the sign of its

gradient with respect to the attack loss 𝑥𝑖+1 = 𝑥𝑖 + 𝛼 · 𝑠𝑖𝑔𝑛(∇𝑥𝑖𝑔(𝑥𝑖))). We will then project 𝑥𝑖+1

within the robustness region C to satisfy the robustness properties and use it as the initial point of

the next (𝑖 + 1)-th step gradient ascent. Initially, we can take the original input 𝑥0 = 𝑥 as the starting

point. Later, people noticed that we can further apply multiple randomized perturbations within C

to 𝑥 to diversify the starting points 𝑥0 = 𝑥 + 𝛿, 𝛿 ∈ C, perform PGD attack on each of random start,

and report the perturbed samples with the worst attack loss. Multiple random starts can effectively

mitigate the overfitting problem of the optimization in Equation 2.2 [55, 56]. Commonly, we will

have three hyperparameters: (1) 𝛼 denotes the step size for each update; (2) maximal step 𝑇 ; and

(3) the number of random starts for initial points of PGD attack. The attack process will stop

when either an adversarial example is located at 𝑓 (𝑥𝑖) ̸= 𝑓 (𝑥), 𝑖 ≤ 𝑇 and the attack succeeds or

the maximal step 𝑇 is reached and the attack fails. The cost of gradient based adversarial attacks

increases linearly to the maximal steps and the number of random starts. Compared to the neural

network verifiers which we focus on in this dissertation, adversarial attacks are mostly considered

as efficient methods for empirical robustness evaluation without formal guarantee.

However, people noticed that purely gradient-based methods can fail due to gradient masking

8

and obfuscated gradients [55, 57, 56]. Even popular attacks like PGD [18] or CW [11] can lead to

overestimation of robustness [58, 59] despite their empirically good performance and efficiency. A

large body of white-box adversarial attacks have been proposed to strengthen adversarial attacks;

many of them are variants of PGD based attacks [60, 61, 62, 63, 64]. Due to non-convexity of the

adversarial attack objective, gradient-free methods and black-box attacks are also widely explored

but mostly result in similar or worse performance compared to gradient-based ones [65, 66, 67,

68, 69, 70]. Recently, [17] proposed a stronger attack ensemble AutoAttack including both the

state-of-the-art white-box and black-box attacks to reliable evaluate the performance of neural

networks. AutoAttack is considered the standard adversarial robustness evaluation method [71].

Interestingly, [72] also develops strong but more expensive adversarial attacks using verification

techniques like branch and bound and 𝛼, 𝛽-CROWN [36] (introduced in Chapter 4), opens new

direction for strengthening adversarial attacks.

2.3 Neural Network Verification

Different from the adversarial attacks described in Section 2.2, neural network verification seeks

for a sound formal guarantee to the robustness of the neural network within the robustness region C,

i.e., there is no adversary can possibly find any adversarial examples and fool the neural networks if

the robustness region is verified.

In practical settings, besides the robustness input region defined by the desired properties, we

typically have “specifications” to verify, which are (usually linear) functions of neural network

outputs describing the desired behavior of neural networks. For example, we will investigate

the margin between logits to guarantee robustness for neural network classifiers. Because the

specification can also be seen as an output layer of neural network and merged into neural network

output 𝑓 (𝑥) under verification, we can then simplify the formalization of neural network verification

to only consider the canonical specification 𝑓 (𝑥) > 0: if we can prove that 𝑓 (𝑥) > 0, ∀𝑥 ∈ C, we

say 𝑓 (𝑥) is verified. To verify the ground-truth output 𝑓 (𝑦) is always the largest for multi-class neural

networks (𝑑𝐿 > 1), we can simplify the verification to check the output of each target label 𝑦𝑡 and

9

ground-truth label 𝑦, i.e., 𝑓 (𝑦) − 𝑓 (𝑦𝑡) ≥ 0. Therefore, we can assume the output dimension 𝑑𝐿 = 1

so W(𝐿) is a vector and b(𝐿) is a scalar throughout this dissertation. The neural network function

can be then written as 𝑓 : R𝑑0 → R. Formally, neural network verification seeks the solution of the

following optimization problem in Equation 2.3:

min 𝑓 (𝑥) := 𝑧(𝐿)(𝑥) s.t. 𝑧(𝑖) = W(𝑖)𝑧(𝑖−1) + b(𝑖), 𝑧(𝑖) = 𝜎(𝑧(𝑖)), 𝑥 ∈ C, 𝑖 ∈ {1, · · · , 𝐿 − 1} (2.3)

When C is a convex set, Equation 2.3 is still a non-convex problem because the constraints

𝑧(𝑖) = 𝜎(𝑧(𝑖)) are non-convex. Given unlimited time, complete verifiers can solve Equation 2.3

exactly: 𝑓 ∗ = min 𝑓 (𝑥), ∀𝑥 ∈ C, so we can always conclude if the specification holds or not for any

problem instance given sufficien time. On the other hand, incomplete verifiers usually relax the

non-convexity of neural networks to obtain a tractable sound lower bound of the solution 𝑓 ≤ 𝑓 ∗. If

𝑓 ≥ 0, then 𝑓 ∗ > 0 so 𝑓 (𝑥) can be verified; when 𝑓 < 0, we are not able to infer the sign of 𝑓 ∗ so

cannot conclude if the specification holds or not.

Many early complete verifiers for neural networks relied on existing solvers such as Mixed

Integer Programming (MIP) or Satisfiability Modulo Theories (SMT) solvers [19, 20, 21, 73, 23,

74] and were limited to very small problem instances. Branch and bound (BaB) based method

was proposed to better exploit the network architectures and accelerate the verification. Early BaB

based complete verifiers mainly used incomplete verifier using expensive Linear Programming (LP)

solvers for bounding and ReLU neuron split refinements for branching [27, 26, 30, 75, 76, 77, 78].

Besides branching on ReLU neurons, input domain branching was also considered in [25, 79, 80]

but limited by input dimensions [27]. The insights of BaB based complete verifier and incomplete

verifiers used in BaB also enable stronger solver based verifiers [81, 82, 83, 84, 85, 86, 87]. Our

ReluVal [25] and Neurify [26] are two of the first verifiers proposing to do BaB with input split

refinements and hidden neuron split refinements, achieving previously state-of-the-art performance.

We will introduce these two important verifiers for BaB based complete verification in Chapter 3.

Recently, people have proposed a few approaches using efficient iterative solvers or bound

10

propagation methods on GPUs without relying on expensive LP solvers in BaB [38, 39, 88, 89, 41,

90]. GPU based verifiers can achieve significantly better verification efficiency and scalability. Our

work 𝛼, 𝛽-CROWN [36, 35] introduced in Chapter 4 is the representative of such type of BaB based

neural network verifiers running on GPUs.

Incomplete verifier is widely used as a key component of BaB based complete verifiers. People

commonly use bound propagation methods with linear relaxation [32, 25, 26, 91, 92, 31, 34, 93, 94,

95, 96, 97, 98]. Specifically, they will linearly relax non-linearity introduced by activation functions

in neural networks and then approximate the network output behaviors within the desired robustness

region. The symbolic interval analysis proposed in ReluVal and Neurify in Chapter 3 is one of

the typical bound propagation methods with linear relaxation. [99, 100, 101, 102, 103, 104, 105,

106] also use local or global Lipschitz constants of neural networks to approximate the network

outputs, but commonly leading to loose approximation and high computation cost. [107] shows

the inherent limitation of using per-neuron convex relaxations for verification problems with linear

relaxation. Therefore, [108, 109, 89, 80, 110] try to break this barrier by considering constraints

involving multiple ReLU neurons. However, these constraints require high computation cost to

generate and can only be solved with expensive LP or MIP solvers. [111, 112, 113, 114, 112]

also use Semi-definite (SDP) relaxation, typically producing tighter bounds than linear relaxation

for ReLU neurons but with significantly higher cost. For instance, the most recent GPU based

SDP verifier [114] is still relatively slow and can take 2 hours to verify a single image where our

𝛼, 𝛽-CROWN only needs a few seconds to verify.

There is another line of work for neural network verification based on probabilistic. It was first

proposed in PixelDP [115] using differential privacy [116, 117, 118] and then was successfully

extended to a popular method called randomized smoothing [119]. There are many other follow-up

works to further improve the verified accuracy [120, 121, 122, 123, 124, 125, 126, 127, 128, 129,

130, 131, 132, 133]. However, in this dissertation, we mainly focus on complete verifiers that can

provide firm formal guarantees for the desired robustness properties without probabilistic.

For more comprehensive background, we provide the detailed algorithms for state-of-the-art

11

complete verifiers using branch and bound in Section 4.1.2 and the state-of-the-art incomplete

verifiers in Section 4.1.3. We refer readers to [134, 135, 107] for a comprehensive introduction and

survey for neural network verification.

2.4 Threat Model for Neural Network Verification

To understand the usefulness of neural network verifiers discussed in this dissertation, we

provide the threat model that our neural network verification system aims to solve in practice,

including the targeted systems, robustness properties, threat model descriptions, and a simple

example of the threat model.

Target system. In this dissertation, we consider all types of safety-/security-critical systems,

e.g., airborne collision avoidance system for unmanned aircraft like ACAS Xu [5], which use

neural networks for decision making in the presence of an adversary/intruder. Neural networks

are becoming increasingly popular in such systems due to better accuracy and less performance

overhead than traditional rule-based systems [136]. For example, an aircraft collision avoidance

system’s decision-making process can use neural networks to predict the best action based on sensor

data of the current speed and course of the aircraft, those of the adversary, and distances between

the aircraft and nearby intruders.

Robustness properties. For the robustness properties, we focus on input-output-based robustness

properties of neural network-based systems that ensure the correct actions in the presence of

adversarial inputs within a given range. Input-output properties are well suited for neural network

based systems as their decision logic is often opaque even to their designers. Therefore, unlike

traditional programs, writing complete specifications involving internal states is often challenging.

For example, consider a security property that tries to ensure that a neural network-based car

crash avoidance system predicts the correct steering angle in the presence of an approaching attacker

vehicle: it should steer left if the attacker approaches it from the right. In this setting, even though

12

the final decision is easy to predict for humans, the correct outputs for the internal neurons are hard

to predict even for the designer of the neural network.

Threat model. We assume that the inputs an adversary can provide are bounded within a robust-

ness region specified by a robustness property. For example, an attacker aircraft has a maximum

speed (e.g., it can only move between 0 and 500 mph). Therefore, the attacker is free to choose any

value within that range. This attacker model is, in essence, similar to the ones used for adversarial

attacks on vision-based neural networks where the attacker aims to search for visually imperceptible

perturbations (within certain bound) that, when applied on the original image, makes the neural

network predict incorrectly. Note that, in this setting, the imperceptibility is measured using a

𝐿𝑝 norm. Formally, given a computer vision neural network 𝑓 , the attacker solves following

optimization problem: 𝑚𝑖𝑛(𝐿𝑝(𝑥′ − 𝑥)) such that 𝑓 (𝑥) ̸= 𝑓 (𝑥′), where 𝐿𝑝(·) denotes the 𝐿𝑝 norm

and 𝑥′ − 𝑥 is the perturbation applied to original input 𝑥. In other words, the security property of a

vision neural network being robust against adversarial perturbations can be defined as: for any 𝑥′

within a 𝐿-distance ball of 𝑥 in the input space, 𝑓 (𝑥) = 𝑓 (𝑥′).

Unlike the adversarial images, we extend the attacker model to allow different amounts of

perturbations to different features. Specifically, instead of requiring overall perturbations on input

features to be bounded by 𝐿𝑝 norm, our security properties allow different input features to be

transformed within different intervals. Moreover, for neural networks where the outputs are not

explicit labels, unlike adversarial images, we do not require the predicted label to remain the same.

We support properties specifying arbitrary output intervals.

An example. As shown in Figure 2.1, normally, when the distance (one feature of the neural

network) between the victim ship (ownship) and the intruder is large, the victim ship advisory

system will advise left to avoid the collision and then advise right to get back to the original track.

However, if the neural network is not verified, there may exist one specific situation where the

advisory system, for certain approaching angles of the attacker ship, advises the ship incorrectly to

take a right turn instead of left, leading to a fatal collision. If an attacker knows about the presence

13

Figure 2.1: The neural network in the victim aircraft (ownship) should predict a left turn (upper
figure) but unexpectedly advises to turn right and collides with the intruder (lower figure) due to the
presence of adversarial inputs (e.g., if the attacker approaches at certain angles).

of such an adversarial case, he can specifically approach the ship at the adversarial angle to cause a

collision.

14

Chapter 3: Neural Network Verification with Basic Branch and Bound

In this chapter, we will introduce two popular neural network verifiers ReluVal [25] and

Neurify [26], representing two different categories of basic Branch and Bound (BaB) frameworks

for complete neural network verifiers: (1) input split refinements used in ReluVal and (2) hidden

neuron split refinements used in Neurify. Also, they both rely on a novel and efficient sound bound

propagation method based on interval arithmetic [28] and convex linear relaxation as an incomplete

verifier. We call it symbolic interval analysis. In this chapter, we will first introduce ReluVal using

basic symbolic interval propagation and branch and bound with iterative input split refinement.

In the second part of this chapter, we will describe the algorithms in Neurify leading to generally

better scalability and efficiency of verification. Specifically, it introduces an improved variance of

symbolic interval analysis using symbolic linear relaxation as well as a branch and bound approach

with hidden neuron split refinement. Lastly, we demonstrate the performance of ReluVal and

Neurify with comprehensive experimental evaluation compared to the previously state of the arts.

3.1 ReluVal: Branch and Bound with Iterative Input Split Refinement

We introduce ReluVal for efficient neural network verification in this section. ReluVal is

developed based on interval arithmetic, consisting of two key components, symbolic interval

analysis and branch and bound with iterative input split refinements. We will first provide an

overview of ReluVal including (1) why interval analysis is a natural fit for verification, (2) what is

causing the dependency problem of interval analysis, and (3) how we mitigate this problem with the

proposed methods on a working example. Then we describe the detailed algorithms and provide a

general correctness proof for verification with interval analysis.

15

3.1.1 Overview of ReluVal: A Working Example

Naive interval analysis for verification. Interval arithmetic studies the arithmetic operations

on intervals rather than concrete values. As discussed in Chapter 2, since (1) the neural networks

safety property checking requires setting input features within certain ranges and checking the

output ranges for violations, and (2) the neural networks computations only include additions and

multiplications (linear transformations) and simple nonlinear operations (e.g., ReLUs), interval

analysis is a natural fit to our neural network verification problem. We provide detailed proof for

the correctness using interval analysis for neural network verification in Section 3.1.4.

Applying interval analysis for neural networks are straightforward. Naively, by setting input

features as intervals, we could follow the same arithmetic performed in the neural networks to

compute the output intervals. Based on the output intervals, we can verify if the input perturbations

will finally lead to violations or not (e.g., output intervals go beyond a certain bound). Note that,

lack of violations indicates the safety property is verified to be safe due to over-approximations. We

refer to such a verification procedure using regular interval analysis as naive interval analysis.

However, naively computing output intervals in this way suffers from high errors as it computes

extremely loose bounds due to the dependency problem. In particular, it can only get a highly

conservative estimation of the output range, which is too wide to be useful for checking any safety

property. In this section, we first demonstrate the dependency problem with a motivating example

using naive interval analysis. Next, based on the same example, we describe how the proposed

techniques can mitigate this problem.

A working example. We use a small motivating example shown in Figure 3.1 to illustrate the

inter-dependency problem and our techniques in dealing with this problem in Figure 3.2.

Let us assume that the sample neural networks is deployed in an unmanned aerial vehicle taking

two inputs (1) distance from the intruder and (2) intruder approaching angle, while producing the

steering angle as output. The neural networks has five neurons arranged in three layers. The weights

attached to each edge is also shown in Figure 3.2.

16

32

Steering angle

Intruder
approaching

angle

1 1

1 1

Distance from
intruder

Figure 3.1: A running example for illustrating ReluVal

Assume that we aim to verify if the predicted steering angle is safe by checking a property that

the steering angle should be less than 20 if the distance from the intruder is in [4, 6] and the possible

angle of approaching intruder is in [1, 5].

Let 𝑥 denote the distance from an intruder and 𝑦 denote the approaching angle of the intruder.

Essentially, given 𝑥 ∈ [4, 6] and 𝑦 ∈ [1, 5], we aim to assert that 𝑓 (𝑥, 𝑦) ∈ [−∞, 20]. Figure 3.2a

illustrates the naive interval propagation in this neural networks. By performing the interval

multiplications and additions, along with applying the ReLU activation functions, we get the output

interval to be [0, 22]. Note that this is an overestimation because the upper bound 22 cannot be

achieved: it can only appear when the left hidden neuron outputs 27 and the right one outputs

5. However, for the left hidden neuron to output 27, the conditions 𝑥 = 6 and 𝑦 = 5 have to

be satisfied. Similarly, for the right hidden neuron to output 5, the conditions 𝑥 = 4 and 𝑦 = 1

have to be satisfied. These two conditions are contradictory and therefore cannot be satisfied

simultaneously and therefore the final output 22 can never appear. This effect is known as the

dependency problem [28].

As we have defined that a safe steering angle must be less than or equal to 20, we cannot

guarantee non-existence of violations, as the steering angle can have a value as high as 22 according

to the naive interval propagation described above.

17

[4,6] [1,5]

12 13

1 1

[5,11][11,27]

[11,27] [5,11]

[0,22] [2,16]U[6,20]=[2,20]

[4,6] [1,5]

12 13

1 1

[5,11][11,27]

[11,27] [5,11]

[6,16]

[2x+3y, 2x+3y] [x+y,x+y]

[x+2y,x+2y]

x y

[4,6]

12 13

1 1

[1,3][3,5]

[11,21]
[17,27]

[5,9]
[7,11]

(a) Naive interval propagation (b) Symbolic interval propagation (c) Iterative bisection and refinement

Figure 3.2: Examples showing (a) naive interval analysis where the output interval is very loose as
it ignores the inter-dependency of the input variables, (b) using symbolic interval analysis to keep
track of some dependencies, (c) using input split refinements to reduce over-approximation error.

Overview: Symbolic interval propagation. Figure 3.2b demonstrates how we maintain the

symbolic intervals to preserve as much dependency information as we can while propagating the

bounds through the neural networks layers. In this section for ReluVal, we only keep track of linear

symbolic bounds and concretize the bounds when it is not possible to maintain accurate linear

bounds. We compute the final output intervals using the corresponding symbolic equations. Our

approach helps in significantly cutting down the over-approximation errors.

For example, in the current example, the intermediate neurons update their symbolic lower and

upper bounds to be 2𝑥 + 3𝑦 and 𝑥 + 𝑦, denoting the operations performed by the previous linear

transformations (taking the dot product of the input and weight parameters). As we also know

2𝑥 +3𝑦 > 0 and 𝑥 + 𝑦 > 0 for the given input range 𝑥 ∈ [4, 6] and 𝑦 ∈ [1, 5], we can safely propagate

the symbolic intervals through the ReLU activation functions.

In the final layer, the propagated bound will be [𝑥 + 2𝑦, 𝑥 + 2𝑦], where we can finally compute

the concrete interval [6, 16]. This is tighter than the naive baseline interval [0, 22] and can be used

to verify the property that the steering angle will be less than 20.

In summary, symbolic interval propagation explicitly represents the intermediate computations

of each neuron in terms of the symbolic intervals that encode the inter-dependency of the inputs to

minimize overestimation. However, in more complex cases, there might be intermediate neurons

with symbolic bounds whose possible values can potentially be negative. For such cases, we can no

18

Bounding:
Symbolic interval

propaga�on

Branching:
Input split

refinements

Split
target
input

False pos�vie

Input
intervals

SafeDesired
property

Verified

Violated

NN
Check

Property

Timeout Unsafe

Symbolic intervals

Figure 3.3: Workflow of ReluVal

longer keep the symbolic interval using a linear equation while passing it through a ReLU. Therefore,

we concretize their upper and lower bounds and ignore their dependencies. To minimize the errors

caused by such cases, we introduce another optimization, iterative refinement, as described below.

As shown in Section 3.3, we can achieve very tight bounds by combining these two techniques.

Overview: Iterative input split refinement. Figure 3.2c illustrates another optimization that we

introduce for mitigating the dependency problem. Here, we leverage the fact that the dependency

error for Lipschitz continuous functions decreases as the width of intervals decreases (any neural

networks with a finite number of layers is Lipschitz continuous as shown in Section 3.1.4). Therefore,

we can bisect the input interval by evenly dividing the interval into the union of two consecutive

sub-intervals and reduce the overestimation. The output bound can thus be tightened as shown

in the example. The interval becomes [2, 20], which proves the non-existence of the violation.

Note that we can iteratively refine the output interval by repeated splitting of the input intervals.

Such operations are highly parallelizable as the split sub-intervals can be checked independently

(Section 3.1.3). In Section 3.1.4, we provide a proof that the iterative refinement can effectively

reduces the width of the output range to an arbitrary precision within finite steps for any Lipschitz

continuous neural networks.

Workflow of ReluVal. Figure 3.3 shows the main workflow along with the different components

of ReluVal. Specifically, ReluVal uses symbolic interval analysis to get a tight estimation of the

19

output ranges based on the input ranges. It declares a security property as verified if the estimated

output interval is tight enough to satisfy the property. If the output interval shows potential existence

of violations, ReluVal randomly samples a few points from the interval and check for violations. If

any adversarial case is detected, i.e., a concrete input violating the security property, it outputs this

as a counterexample. Otherwise, ReluVal uses iterative interval refinement to further tighten the

output interval to approach the theoretically tightest bound and repeats the same process described

above. Once the number of iterations reaches a preset threshold, ReluVal outputs timeout denoting

it cannot verify the security property. As discussed above, simple interval extension only obtains

loose/conservative intervals due to input dependency problem. Below, we describe the details of the

optimizations we propose to further tighten the bounds.

3.1.2 Bounding with Symbolic Interval Analysis

Symbolic Interval propagation is one of our core contributions to mitigate the input dependency

problem and tighten the output interval estimation. If a neural network would only consist of linear

transformations, keeping symbolic equation throughout the intermediate computations of a neural

network can perfectly eliminate the input dependency errors.

However, as shown in Section 3.1.1, passing an equation through a ReLU node essentially

involves dropping the equation and replacing it with 0 if the equation can evaluate to a negative value

for the given input range. Therefore, we keep the lower and upper bound equations (𝐸𝑞𝑢𝑝, 𝐸𝑞𝑙𝑜𝑤)

for as many neurons as we can and only concretize as needed.

Algorithm 1 elaborates the procedure of propagating symbolic intervals/equations during the

interval computation of a neural network. We describe the core components and the details of this

technique below.

Constructing symbolic intervals. Given a particular neuron 𝐴, (1) If 𝐴 is in the first layer, we can

compute the symbolic bounds as:

𝐸𝑞𝐴
𝑢𝑝(𝑋) = 𝐸𝑞𝐴

𝑙𝑜𝑤(𝑋) = 𝑤1𝑥1 + ... + 𝑤𝑑𝑥𝑑

20

Algorithm 1 Symbolic Interval Analysis
Inputs: network← tested neural network

input← input interval
1: Initialize 𝑒𝑞 = (𝑒𝑞𝑢𝑝, 𝑒𝑞𝑙𝑜𝑤);
2: // cache mask matrix needed in backward propagation
3: 𝑅[numLayer][layerSize];
4: // loops for each layer
5: for layer = 1 to numlayer do
6: // matmal equations with weights as interval;
7: 𝑒𝑞= weight

⊗
𝑒𝑞;

8: // update the output ranges for each node
9: if layer != lastLayer then

10: for i = 1 to layerSize[layer] do
11: if 𝑒𝑞𝑢𝑝[𝑖] ≤ 0 then
12: // Update to 0
13: R[layer][i]=[0,0]; ⊲

𝑑(𝑟𝑒𝑙𝑢(𝑥))
𝑑𝑥

= [0, 0]
14: 𝑒𝑞𝑢𝑝[𝑖] = 𝑒𝑞𝑙𝑜𝑤[𝑖] = 0;
15: else if 𝑒𝑞𝑙𝑜𝑤[𝑖] ≥0 then
16: // Keep dependency
17: R[layer][i]=[1,1]; ⊲

𝑑(𝑟𝑒𝑙𝑢(𝑥))
𝑑𝑥

= [1, 1]
18: else
19: // Concretization
20: R[layer][i]=[0,1]; ⊲

𝑑(𝑟𝑒𝑙𝑢(𝑥))
𝑑𝑥

= [0, 1]
21: 𝑒𝑞𝑙𝑜𝑤[𝑖] = 0
22: if 𝑒𝑞𝑢𝑝[𝑖] ≤ 0 then
23: 𝑒𝑞𝑢𝑝[𝑖] = 𝑒𝑞𝑢𝑝[𝑖];
24: else
25: output = {lower, upper};
26: return R, output;

where 𝑥1, ..., 𝑥𝑑 are the inputs and 𝑤1, ..., 𝑤𝑑 are the weights of the corresponding edges. (2) If 𝐴

belongs to the intermediate layer, we initialize the symbolic intervals of 𝐴’s output as:

𝐸𝑞𝐴
𝑢𝑝(𝑋) = 𝑊+𝐸𝑞

𝐴𝑝𝑟𝑒𝑣

𝑢𝑝 (𝑋) + 𝑊−𝐸𝑞
𝐴𝑝𝑟𝑒𝑣

𝑙𝑜𝑤
(𝑋)

𝐸𝑞𝐴
𝑙𝑜𝑤(𝑋) = 𝑊+𝐸𝑞

𝐴𝑝𝑟𝑒𝑣

𝑙𝑜𝑤
(𝑋) + 𝑊−𝐸𝑞

𝐴𝑝𝑟𝑒𝑣

𝑢𝑝 (𝑋)

where 𝐸𝑞
𝐴𝑝𝑟𝑒𝑣

𝑢𝑝 and 𝐸𝑞
𝐴𝑝𝑟𝑒𝑣

𝑙𝑜𝑤
are the equations from last layer. 𝑊+ and 𝑊− denote the positive and

negative weights of current layer respectively. The output will be [𝑤+𝑎, 𝑤+𝑏] for multiplying

positive weight parameters 𝑤+ with an interval [𝑎, 𝑏]. For the negative weight parameters, the

21

output will be flipped in terms of 𝑎 and 𝑏, i.e., [𝑤−𝑏, 𝑤−𝑎].

Concretization. While passing a symbolic equation through the ReLU nodes, we evaluate the

concrete value of the equation’s upper and lower bounds 𝐸𝑞𝑢𝑝(𝑋) and 𝐸𝑞𝑙𝑜𝑤(𝑋). If 𝐸𝑞𝑙𝑜𝑤(𝑋) > 0,

then we pass the lower equation on to the next layer. Otherwise, we concretize it to be 0. Similarly,

if 𝐸𝑞𝑢𝑝(𝑋) > 0, we pass the upper equation on to the next layer. Otherwise, we concretize it as

𝐸𝑞𝑢𝑝(𝑋).

Correctness. We first clarify three different output intervals: (1) theoretically tightest bound 𝑓 (𝑋),

(2) naive interval extension bound 𝐹(𝑋), and (3) symbolic bound [𝐸𝑞𝑙𝑜𝑤(𝑋), 𝐸𝑞𝑢𝑝(𝑋)]. We prove

that the symbolic bound is a superset of theoretically tightest bound and a subset of naive interval

extension bound:

𝑓 (𝑋) ⊆ [𝐸𝑞𝑙𝑜𝑤(𝑋), 𝐸𝑞𝑢𝑝(𝑋)] ⊆ 𝐹(𝑋) (3.1)

For a given input range propagated to the output layer, it will involve both computing linear

transformations and applying ReLUs. Symbolic interval analysis keeps the accurate bounds for

linear transformations and uses concretization to handle non-linearity. Compared to theoretically

tightest bound, the only approximation introduced during the symbolic propagation process is due to

concretization while handling ReLU nodes, which is an over-approximation as shown before. Naive

interval extension, on the other hand, is a degenerate version of symbolic interval analysis where it

does not keep any symbolic constraints. Therefore, symbolic interval analysis over-approximates

the theoretically tightest bound and, in turn, is over-approximated by naive interval extension as

shown in Equation 3.1.

3.1.3 Branching with Iterative Input Split Refinement

While symbolic interval analysis helps in computing relatively tight bounds, the estimated output

intervals for complex networks may still not be tight enough for verifying properties, especially when

the input intervals are comparably large and thus resulting in many concretizations. As discussed

above in Section 3.1.2, for such cases, we resort to another technique, iterative interval refinement.

In addition, we also propose two other optimizations, influence analysis and monotonicity, which

22

further refine the estimated output ranges based on iterative interval refinement.

Basic iterative refinement. Theoretically, we can approach the tightest bound by repeatedly

splitting the input intervals and have complete verification with BaB using input split refinements.

We provide detailed proof in Section 3.1.4. Therefore, we design our main BaB algorithm to

perform iterative bisections on each input interval 𝑋1, ..., 𝑋𝑛 until the output interval is tight enough

to meet the security property, or time out, as shown in Figure 3.3.

The iterative bisection process can be represented as a bisection tree as shown in Figure 3.4.

Each bisection on one input yields two children denoting two consecutive sub-intervals, the union of

which computes the output bound for their parent. Here, 𝑋 (𝑖) 𝑗 means the 𝑗-th input interval with split

depth 𝑖. After one bisection on 𝑋 (𝑖) 𝑗 , it creates two children: 𝑋 (𝑖+1)2 𝑗−1 = {𝑋1, ..., [𝑋𝑖,
𝑋𝑖+𝑋𝑖

2], ..., 𝑋𝑑}

and 𝑋 (𝑖+1)2 𝑗 = {𝑋1, ..., [
𝑋𝑖+𝑋𝑖

2 , 𝑋𝑖], ..., 𝑋𝑑}.

X

X(1)1

Split depth

X(1)2

0

1

X(2)1 X(2)2 X(2)4X(2)32

Split on X1

Split on X2

n X(n)1 X(n)2

X(3)1 X(3)1 X(3)3 X(3)4

Figure 3.4: A BaB search tree where each node represents a bisected sub-interval in input space

To identify the existence of any adversarial example in the bisected input ranges, we sample a

few input points (the current default is the middle point of each range) and verify if the concrete

output leads to any property violation. If so, we output the adversarial example, mark this sub-

interval as definitely containing adversarial examples, and conclude the analysis for this specific

sub-interval. Otherwise, we repeat the symbolic interval analysis process for the sub-intervals. This

default configuration is tailored towards deriving a conclusive answer of “secure” or “insecure” for

the entire input intervals. Users of ReluVal can configure it to further split an insecure interval to

23

potentially discover secure sub-intervals within the insecure interval.

Optimizing iterative refinement. We develop two other optimizations, namely influence analysis

and monotonicity, to further cut the average bisection depths.

(1) Influence analysis. When deciding which input intervals to bisect first, instead of following

a random strategy, we compute the gradient or Jacobian of the output with respect to each input

feature and pick the largest one as the first to bisect. The high-level intuition is that the gradient

approximates the influence of the input on the output, which essentially measures the sensitivity of

the output to each input feature. We use intervals to track and propagate the bounds on the gradients

of the ReLU nodes during backward propagation where a ReLU node’s gradient can either be 0 for

negative input or 1 for positive input. We further use the estimated gradient interval to compute the

smear function for an input feature [137, 138]: 𝑆𝑖(𝑋) = 𝑚𝑎𝑥1≤ 𝑗≤𝑑 |𝐽𝑖 𝑗 |𝑤(𝑋 𝑗), where 𝐽𝑖 𝑗 denotes the

gradient of input 𝑋 𝑗 for output 𝑌𝑖. For each refinement step, we bisect the 𝑋 𝑗 with the highest smear

value to reduce the over-approximation error as shown in Algorithm 2.

Algorithm 2 Using influence analysis to choose the most influential feature to split
Inputs: network← tested neural network

input← input interval
g← gradient interval calculated by backward propagation

1: for i = 1 to input.length do
2: // r is the range of each input interval
3: 𝑟 = 𝑤(𝑖𝑛𝑝𝑢𝑡[𝑖]);
4: // e is the influence from each input to output
5: e = 𝑔𝑢𝑝[𝑖] ∗ 𝑟;
6: if e > largest then ⊲ most effective feature
7: largest = e;
8: splitFeature = i;
9: return splitFeature;

(2) Monotonicity. Computing the Jacobian matrix also helps us to reason about the monotonicity

property of the output for a given input interval. In particular, for the cases where the partial

derivative of 𝜕𝐹𝑖
𝜕𝑋 𝑗

is always positive or negative for the given input interval 𝑋 , we can simply replace

the interval 𝑋 𝑗 with two concrete values 𝑋 𝑗 and 𝑋 𝑗 . Because, as the DNN output is monotonic in

that input interval, it is impossible for any intermediate value to cause a violation without either

24

𝑋 𝑗 or 𝑋 𝑗 causing one. Our empirical results in Section 3.3 also indicate that such monotonicity

checking can help decrease the number of splits required for checking different security properties.

3.1.4 Proof of Correctness

In this section, we give the detailed proof about the correctness of interval analysis/estimation

on neural networks, also known as interval extension estimation, and the convergence of iterative

refinement. The proofs are based on two properties of neural networks: inclusion isotonicity and

Lipschitz continuity. In general, the correctness guarantee of interval extension holds for most finite

neural networks while the convergence guarantee requires Lipschitz continuity. In the following,

we give the proof of correctness for two most important techniques we use throughout the section,

but the proof is generic and works for our other optimizations such as symbolic interval analysis,

influence analysis and monotonicity as described in Section 3.1.3.

Formally, let 𝑥 denote a concrete real value and 𝑋 := [𝑋, 𝑋] denote an interval, where 𝑋 is the

lower bound, and 𝑋 is the upper bound. An interval extension of a function 𝑓 (𝑥) is a function of

intervals 𝐹 such that, for any 𝑥 ∈ 𝑋 , 𝐹([𝑥, 𝑥]) = 𝑓 (𝑥). The ideal interval extension 𝐹(𝑋) approaches

the image of 𝑓 , 𝑓 (𝑋) := { 𝑓 (𝑥) : 𝑥 ∈ 𝑋}.

Let 𝑓 (𝑋1, 𝑋2, ..., 𝑋𝑑) := { 𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑑)|𝑥1 ∈ 𝑋1, 𝑥2 ∈ 𝑋2, ..., 𝑥𝑑 ∈ 𝑋𝑑} where d is the number

of input dimensions. An interval valued function 𝐹(𝑋1, 𝑋2, ..., 𝑋𝑑) is inclusion isotonic if, when

𝑌𝑖 ⊆ 𝑋𝑖 for 𝑖 = 1, ..., 𝑑, we have

𝐹(𝑌1, 𝑌2, ..., 𝑌𝑑) ⊆ 𝐹(𝑋1, 𝑋2, ..., 𝑋𝑑)

An interval extension function 𝐹(𝑋) that is defined on an interval 𝑋0 is said to be Lipschitz

continuous if there is some number 𝐿 such that:

∀𝑋 ⊆ 𝑋0, 𝑤(𝐹(𝑋)) ≤ 𝐿 · 𝑤(𝑋)

where 𝑤(𝑋) is the width of interval 𝑋 , and 𝑋 here denotes 𝑋 = (𝑋1, 𝑋2, ..., 𝑋𝑑), a vector of

25

intervals [28].

Let 𝑓 denote an neural network and 𝐹 denote its naive interval extension. We define the naive

interval extension as a function 𝐹(𝑋) that (1) satisfies for all 𝑥 ∈ 𝑋, 𝐹([𝑥, 𝑥]) = 𝑓 (𝑥) and (2) that

only involves naive interval operations during interval variable representations. For all the other

types of interval extensions, they can be easily analyzed based on the following proof.

Correctness of Overestimation We are going to demonstrate that, for the naive interval extension

of 𝑓 , 𝐹 always overestimates the theoretically tightest output range 𝑓 . According to our definition

of inclusion isotonicity, it suffices to prove that the naive interval extension of an neural network is

inclusion isotonic. Note that we only consider neural networks with ReLUs as activation functions

for the following proof, but the proof can be easily extended to other popular activation functions like

tanh or sigmoid. The proof is based on the following two basic properties of interval arithmetic [28].

Let 𝑓 (𝑋1, 𝑋2, ..., 𝑋𝑑) := { 𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑑) : 𝑥1 ∈ 𝑋1, 𝑥2 ∈ 𝑋2, ..., 𝑥𝑑 ∈ 𝑋𝑑} where d is the

number of input dimensions. An interval valued function 𝐹(𝑋1, 𝑋2, ..., 𝑋𝑑) is inclusion isotonic if,

when 𝑌𝑖 ⊆ 𝑋𝑖 for 𝑖 = 1, ..., 𝑑, we have

𝐹(𝑌1, 𝑌2, ..., 𝑌𝑑) ⊆ 𝐹(𝑋1, 𝑋2, ..., 𝑋𝑑)

An interval extension function 𝐹(𝑋) that is defined on an interval 𝑋0 is said to be Lipschitz

continuous if there is some number 𝐿 such that:

∀𝑋 ⊆ 𝑋0, 𝑤(𝐹(𝑋)) ≤ 𝐿 · 𝑤(𝑋)

where 𝑤(𝑋) is the width of interval 𝑋 , and 𝑋 here denotes 𝑋 = (𝑋1, 𝑋2, ..., 𝑋𝑑), a vector of intervals.

First, we need to demonstrate that 𝐹 is inclusion isotonic. Because ReLU is monotonic, so we

can simply consider its interval extension to be 𝑅𝑒𝑙𝑢𝐼(𝑋) := [𝑚𝑎𝑥(0, 𝑋), 𝑚𝑎𝑥(0, 𝑋)]. Therefore,

∀𝑌 ⊂ 𝑋 , we have 𝑚𝑎𝑥(0, 𝑋) ≤ 𝑚𝑎𝑥(0, 𝑌) and 𝑚𝑎𝑥(0, 𝑋) ≥ 𝑚𝑎𝑥(0, 𝑌) so that its interval extension

𝑅𝑒𝑙𝑢(𝑌) ⊆ 𝑅𝑒𝑙𝑢(𝑋). Most common activation functions are inclusion isotonic. We refer interested

26

readers to [28] for a list of common functions that are inclusion isotonic.

We note that 𝑓 (𝑋) is a composition of activation functions and linear functions. And we also see

that linear functions, as well as common activation functions, are inclusion isotonic[28]. Because

any combinations of inclusion isotonic functions are still inclusion isotonic, thus, we have that the

interval representation 𝐹(𝑋) of 𝑓 (𝑋) is inclusion isotonic.

Next, we show for arbitrary 𝑋 = (𝑋1, . . . , 𝑋𝑑), that:

𝑓 (𝑋) ⊆ 𝐹(𝑋)

Applying the previously shown inclusion isotonicity properties of 𝐹(𝑋), we get:

𝑓 (𝑋1, . . . , 𝑋𝑑) =
⋃

(𝑥1,...,𝑥𝑑)∈𝑋
{ 𝑓 (𝑥1, . . . , 𝑥𝑑)} =

⋃
(𝑥1,...,𝑥𝑑)∈𝑋

𝐹([𝑥1, 𝑥1], . . . , [𝑥𝑑 , 𝑥𝑑])

Now, for any such (𝑥1, . . . , 𝑥𝑑) ∈ 𝑋 , we have 𝐹([𝑥1, 𝑥1], . . . , [𝑥𝑑 , 𝑥𝑑]) ⊆ 𝐹(𝑋1, . . . , 𝑋𝑑), since

([𝑥1, 𝑥1], . . . , [𝑥𝑑 , 𝑥𝑑]) ⊆ (𝑋1, . . . , 𝑋𝑑), and 𝐹(𝑋) is inclusion isotonic. We thus get:

⋃
(𝑥1,...,𝑥𝑑)∈𝑋

𝐹([𝑥1, 𝑥1], . . . , [𝑥𝑑 , 𝑥𝑑]) ⊆ 𝐹(𝑋1, . . . , 𝑋𝑑) (3.2)

Now, we get the result shown in Equation 3.2 that for all input 𝑋 , the interval extension of 𝑓 ,

𝐹(𝑋), always contains the true codomain (theoretically tightest bound) for 𝑓 (𝑋).

Convergence in Finite Number of Splits Now we see that the naive interval extension of 𝑓 is an

overestimation of true output. Next, we show that iteratively splitting input is an effective way to

refine and reduce such overestimated error. Empirically, we can see finite number of splits allow us

to approximate 𝑓 with 𝐹 with arbitrary accuracy, this is guaranteed by Lipschitz continuity property

of neural networks.

First, we need to prove 𝐹 is Lipschitz continuous. It is straightforward to show that many

common activation functions are Lipschitz continuous [28]. Here, we show the natural interval

27

extension Relu𝐼 is Lipschitz continuous, with a Lipschitz constant 𝐿 := 1. We see, for any input

interval 𝑋:

𝑤(Relu𝐼(𝑋)) = 𝑚𝑎𝑥(𝑋, 0) − 𝑚𝑎𝑥(𝑋, 0) ≤ 𝑚𝑎𝑥(𝑋, 0) − 𝑋 ≤ 𝑋 − 𝑋 = 𝑤(𝑋)

Thus, the interval extension Relu𝐼 of ReLU is Lipschitz continuous. As the neural network is

a finite composition of Lipschitz continuous functions, its interval extension 𝐹 is still Lipschitz

continuous as well [28]. Now we demonstrate that by splitting input 𝑋 into 𝑁 smaller pieces and

taking the union of their corresponding outputs, we can achieve a refined output estimation with

at least 𝑁 times smaller overestimation error. We define an 𝑁-split uniform subdivision of input

𝑋 = (𝑋1, ..., 𝑋𝑑) as a collection of sets 𝑋𝑖, 𝑗 :

𝑋𝑖, 𝑗 := [𝑋𝑖 + (𝑗 − 1)
𝑤(𝑋𝑖)
𝑁

, 𝑋𝑖 + 𝑗
𝑤(𝑋𝑖)
𝑁

]

where 𝑖 ∈ 1, . . . , 𝑑 and 𝑗 ∈ 1, . . . 𝑁 . We note that this is exactly a partition of each 𝑋𝑖 into 𝑁

pieces of equivalent width such that ∀𝑖, 𝑗 , 𝑤(𝑋𝑖, 𝑗) = 𝑤(𝑋𝑖)/𝑁 and 𝑋𝑖 = ⋃𝑁
𝑗=1 𝑋𝑖, 𝑗 . We then define a

refinement of 𝐹 over 𝑋 with 𝑁 splits as:

𝐹(𝑁)(𝑋) :=
𝑁⋃
𝑗𝑖=1

𝐹(𝑋1, 𝑗1 , . . . , 𝑋𝑑, 𝑗𝑑)

Finally, we define the range of overestimated error created by naive interval extension on an

neural network after 𝑁-split refinement as 𝑤(𝐸 (𝑁)(𝑋)):

𝑤(𝐸 (𝑁)(𝑋)) := 𝑤(𝐹(𝑁)(𝑋)) − 𝑤(𝑓 (𝑋))

Because 𝐹 is Lipschitz continuous, Theorem 6.1 in [28] gives us the following result:

𝑤(𝐸 (𝑁)(𝑋)) ≤ 2𝐿 · 𝑤(𝑋)/𝑁 (3.3)

28

Equation 3.3 shows the error width of the 𝑁-split refinement 𝑤(𝐸 (𝑁)(𝑋)) converges to 0 linearly

as we increase 𝑁 . That is, we can achieve arbitrary accuracy when using 𝑁-split refinement to

approximate 𝑓 (𝑋) with sufficiently large 𝑁 .

3.2 Neurify: Branch and Bound with ReLU Neuron Split Refinement Using

Linear Solver

Previously in Section 3.1, we have described the methodologies of ReluVal. While BaB with

input split refinement can achieve strong performance for low input dimension tasks, its performance

can be greatly limited by high input dimensions. We describe such limitations in Section 3.2.1. In

this section, we introduce our efficient neural network verifier Neurify [26], an improved variance

developed based on ReluVal [25]. We present a comprehensive experimental evaluation for both

ReluVal and Neurify in Section 3.3.

Neurify has two main contributions to scale formal safety analysis to neural networks signifi-

cantly larger than those evaluated in prior works [19, 20, 139, 25]. First, we use symbolic linear

relaxation that combines symbolic interval analysis and linear relaxation to compute tighter bounds

on the network outputs by keeping track of more relaxed dependencies across inputs during interval

propagation when the actual dependencies become too complex to track. Second, we introduce a

novel branch and bound with ReLU neuron split refinement to iteratively minimize the errors intro-

duced during the relaxation process until either a safety property is satisfied or a counterexample is

found. To make the refinement process efficient, we identify the potentially unstable ReLU neurons,

i.e., the neurons where inaccuracies introduced during relaxation can potentially affect the checking

of a given safety property, and use off-the-shelf solvers to focus only on those neurons to further

tighten their output ranges.

In the following section, we will first introduce the limitations of ReluVal and the intuitions

on how we solve the limitations on a working example by Neurify. After an overall workflow for

Neurify, we will describe the two key algorithms in detail, followed by the proof for the verification

29

correctness of Neurify.

3.2.1 Overview of Neurify

Limitations of ReluVal. As introduced in Section 3.1, ReluVal relies on branch and bound with

input split refinement. However, such refinement method heavily depends on the total number of

input dimensions. If the verification properties have very high input dimension (e.g., standard image

dataset ImageNet [140, 2] has 150,528 dimensions), selecting one dimension and split will introduce

very limited effect of refining overestimation error. Note that the verification cost is exponential to

the number of splits in branch and bound tree as illustrated in Section 3.1.3. Therefore, ReluVal can

only have strong performance on low-dimension tasks while it cannot scale to high-dimension ones.

In Neurify, we proposed novel branch and bound with ReLU neuron split refinement that can well

mitigate this problem.

Furthermore, we noticed symbolic interval analysis in ReluVal will simply throw away the

dependencies if one ReLU neuron is unstable. We propose to use a better relaxation for each

unstable ReLU neuron called symbolic linear relaxation. The improved symbolic interval analysis

with symbolic linear relaxation can produce tighter approximations and accelerate the overall

verification efficiency and scalability. Neurify combined the benefits of these two components and

we have shown extensive experimental results comparing Neurify with ReluVal and previously

state-of-the-art approaches in Section 3.3.

Intuitions on a working example. To understand the intuitions of Neurify, we illustrate the two

components of Neurify on a similar working example as the one in Section 3.1.1. We keep the

same goal as verifying output to be always less than 20 but we slightly change the weights of right

ReLU neuron such that the regular symbolic interval analysis proposed in ReluVal will produce

poor approximation. The poor approximation is mainly because the intermediate bounds of right

ReLU neuron becomes crossing 0 ([−1, 21]) and thus we need to relax and approximate its output

bounds due to its nonlinearity. We define such ReLU neurons with crossing-0 intermediate bounds

30

[2x+3y,
2x+3y]

[2x+3y, 2x+3y]
(-x+5y<0)

x y

f

3 52

1 -1

-1

[1,5][4,6]

[11, 15.6]

[11,27]

[11,27]

[-1,21]

(-x+5y<0)

x y

[0,0] [2x+3y,
2x+3y]

[3x-2y, 3x-2y]
(-x+5y>0)

x y

f

3 52

1 -1

-1

[1,5][4,6]

[2, 15.6]

[11,27]

[11,27]

[-1,21]

(-x+5y>0)

x y

[-x+5y,
-x+5y]

LP Solver LP Solver

[2x+3y,
2x+3y]

[2x+3y-21,
2x+3y]

x y

f

3 52

1 -1

-1

[1,5][4,6]

[-10, 27]

[11,27]

[11,27]

[-1,21]

x y

[2x+3y,
2x+3y]

[2.95x-1.75y-0.95,
2.95x-1.75y]

x y

f

3 52

1 -1

-1

[1,5][4,6]

[2, 17]

[11,27]

[11,27]

[-1,21]

[0, 21]

x y

0.95[-x+5y,
-x+5y+1]

(a) Symbolic interval analysis
in ReluVal

(b) Symbolic linear relaxation
in Neurify

(c) ReLU neuron split refinements in Neurify

[0, 21]

Figure 3.5: Another working example showing (a) symbolic interval analysis in ReluVal, (b)
symbolic linear relaxation proposed in Neurify, (c) branch and bound with ReLU neuron split
refinements with linear solvers proposed in Neurify.

as unstable ReLU neurons. The proposed branch and bound with ReLU neuron split refinements

will mainly focus on these special neurons (see Section 3.2.3 for details).

As shown in Figure 3.5a, original symbolic interval analysis in ReluVal will concretize right

unstable ReLU neuron to [0, 21] and throw away the input dependencies. We noticed that we can

still keep linear upper and lower equations for that neuron’s output which allows us to partially

keep as many dependencies as we can, leading to an improved relaxation called symbolic linear

relaxation. Specifically, we can find symbolic linear upper and lower bounds for right unstable ReLU

[0.95(−𝑥 + 5𝑦), 0.95(−𝑥 + 5𝑦 + 1)] (Figure 3.5b). The detailed procedure to produce these sound

linear relaxations with optimism proof are described in Section 3.2.2. When we propagate these

effective symbolic upper and lower bounds to the output layers, we can obtain tighter approximation

on the target output [2, 17].

Note that the improved symbolic interval analysis with symbolic linear relaxation is efficient but

still an incomplete approach. To enable complete verification while mitigate the input dimension

limitation, we further propose the novel ReLU neuron split refinements as show in Figure 3.5c.

First, we need to select one important unstable ReLU neuron (e.g., here right ReLU is the only

option). We can then split it into two cases by manually applying constraints −𝑥 + 5𝑦 > 0 and

−𝑥 +5𝑦 < 0. For each split case, we can do symbolic interval propagate till the output and obtain the

eventual symbolic intervals. For instance, to get the concretized lower bound for case −𝑥 + 5𝑦 < 0,

31

Bounding:
Symbolic linear

relaxa�on

Branching:
ReLU split

refinements

Split constraints

Concrete
Sample

Split
target
ReLU

False pos�vie

Input
intervals Safe

Desired
property

Verified

Violated

NN

Check for
viola�on

Linear solver

Timeout Unsafe

Symbolic intervals

Figure 3.6: Workflow of Neurify

we need to solve a constrained linear optimization problem by minimizing 2𝑥 + 3𝑦 under split

constraint −𝑥 + 5𝑦 < 0 and we can simply solve it by calling a generic linear programming (LP)

solver. After one step of branch and bound refinement, we can fully eliminate the nonlinearity of

the split unstable ReLU neuron and produce tighter approximation [11, 15.6]⋃[2, 15.6] = [2, 15.6].

Since the left ReLU neuron is not unstable and only performs linearity, we can conclude this bound

as the ground-truth solution 𝑓 ∗ = [2, 15.6] and verify the desired property.

Workflow of Neurify. Figure 3.6 illustrates the high-level workflow of Neurify. Neurify takes

in a range of inputs 𝑋 and then determines using linear solver whether the output estimation

generated by symbolic linear relaxation satisfies the safety proprieties. A property is proven to be

safe if the solver find the relaxed constraints unsatisfiable. Otherwise, the solver returns potential

counterexamples. Note that the returned counterexamples found by the solver might be false

positives due to the inaccuracies introduced by the relaxation process. Thus Neurify will check

whether a counterexample is a false positive. If so, Neurify will use directed constraint refinement

guided by symbolic linear relaxation to obtain a tighter output bound and recheck the property with

the solver.

3.2.2 Bounding with Symbolic Linear Relaxation

The symbolic linear relaxation of each ReLU 𝑧 = 𝑅𝑒𝑙𝑢(𝑧′) leverages the bounds on 𝑧′, 𝐸𝑞𝑙𝑜𝑤

and 𝐸𝑞𝑢𝑝 (𝐸𝑞𝑙𝑜𝑤 ≤ 𝐸𝑞∗(𝑥) ≤ 𝐸𝑞𝑢𝑝). Here 𝐸𝑞∗ denotes the closed-form representation of 𝑧′.

32

z

z′
u

(a) Naive concretizaion

z

z′ 0l

z ≤ u

z ≥ 0

l u
0

z ≥
u
u l

Eq

z ≤
u
u l

(Eq l)

(b) Symbolic linear relaxation

Figure 3.7: An illustration of symbolic linear relaxation for an unstable ReLU neuron. (a) Original
symbolic interval analysis in ReluVal [25] used naive concretization. (b) Symbolic linear relaxation
leverages the knowledge of concrete bounds for 𝑧′ and computes relaxed symbolic interval. 𝐸𝑞 is
the symbolic representation of 𝑧′.

Specifically, Equation 3.4 shows the symbolic linear relaxation where ↦→ denotes “relax to”.

In addition, [𝑙𝑙𝑜𝑤, 𝑢𝑙𝑜𝑤] and [𝑙𝑢𝑝, 𝑢𝑢𝑝] denote the concrete lower and upper bounds for 𝐸𝑞𝑙𝑜𝑤 and

𝐸𝑞𝑢𝑝, respectively. In Property 3.2.2, we have shown that such relaxation has the least maximal

distance and thus can overall produce tight approximation. In the following discussion, we simplify

𝐸𝑞𝑙𝑜𝑤 and 𝐸𝑞𝑢𝑝 as 𝐸𝑞 and the corresponding lower and upper bounds as [𝑙, 𝑢]. Figure 3.7 shows

the difference between our symbolic relaxation process and the naive concretizations used by [25]

in relaxing one intermediate ReLU neuron.

𝑅𝑒𝑙𝑢(𝐸𝑞𝑙𝑜𝑤) ↦→ 𝑢𝑙𝑜𝑤

𝑢𝑙𝑜𝑤 − 𝑙𝑙𝑜𝑤
(𝐸𝑞𝑙𝑜𝑤) 𝑅𝑒𝑙𝑢(𝐸𝑞𝑢𝑝) ↦→

𝑢𝑢𝑝

𝑢𝑢𝑝 − 𝑙𝑢𝑝
(𝐸𝑞𝑢𝑝 − 𝑙𝑢𝑝) (3.4)

In practice, symbolic linear relaxation can cut (on average) 59.64% more overestimation error

than symbolic interval analysis used in ReluVal and saves the time needed to prove a property by

several orders of magnitude (cf. Section 3.3). There are three key reasons behind such significant

performance improvement. First, the maximum possible error after introducing relaxations is
−𝑙𝑢𝑝∗𝑢𝑢𝑝
𝑢𝑢𝑝−𝑙𝑢𝑝 for upper bound and −𝑙𝑙𝑜𝑤∗𝑢𝑙𝑜𝑤

𝑢𝑙𝑜𝑤−𝑙𝑙𝑜𝑤 for lower bound in Figure 3.7(b) and we provide detailed

proof in Lemma 3.2.1. These relaxations are considerably tighter than naive concretizations

shown in Figure 3.7(a), which introduces a larger error 𝑢𝑢𝑝. Second, symbolic linear relaxation,

unlike naive concretization, partially keeps the input dependencies during interval propagation

([𝑢
𝑢−𝑙𝐸𝑞,

𝑢
𝑢−𝑙 (𝐸𝑞 − 𝑙)] by maintaining symbolic equations. Third, as the final output error is

exponential to the error introduced at each node, tighter bounds on earlier nodes produced by

33

symbolic relaxation significantly reduce the final output error.

In the following Lemma and Property, we show the maximal possible error on each approximated

ReLU neuron and prove that this relaxation can generally produce tight approximation with least

maximum distance from 𝐸𝑞∗.

Lemma 3.2.1. The maximum distances between the approximation given in symbolic linear relax-

ation as Equation 3.5 are −𝑢𝑢𝑝 𝑙𝑢𝑝
𝑢𝑢𝑝−𝑙𝑢𝑝 for upper bound and −𝑢𝑙𝑜𝑤 𝑙𝑙𝑜𝑤

𝑢𝑙𝑜𝑤−𝑙𝑙𝑜𝑤 for lower bound.

𝑅𝑒𝑙𝑢(𝐸𝑞𝑙𝑜𝑤) ↦→ 𝑢𝑙𝑜𝑤

𝑢𝑙𝑜𝑤 − 𝑙𝑙𝑜𝑤
(𝐸𝑞𝑙𝑜𝑤) 𝑅𝑒𝑙𝑢(𝐸𝑞𝑢𝑝) ↦→

𝑢𝑢𝑝

𝑢𝑢𝑝 − 𝑙𝑢𝑝
(𝐸𝑞𝑢𝑝 − 𝑙𝑢𝑝) (3.5)

Proof. The distance for upper bound in Equation 3.5 is:

𝑑𝑢𝑝 =
𝑢𝑢𝑝

𝑢𝑢𝑝 − 𝑙𝑢𝑝
(𝐸𝑞𝑢𝑝 − 𝑙𝑢𝑝) − 𝑅𝑒𝑙𝑢(𝐸𝑞𝑢𝑝)

=

𝑢𝑢𝑝

𝑢𝑢𝑝−𝑙𝑢𝑝 (𝐸𝑞𝑢𝑝 − 𝑙𝑢𝑝) − 𝐸𝑞𝑢𝑝 (𝑖 𝑓 0 ≤ 𝐸𝑞𝑢𝑝 ≤ 𝑢𝑢𝑝)

𝑢𝑢𝑝
𝑢𝑢𝑝−𝑙𝑢𝑝 (𝐸𝑞𝑢𝑝 − 𝑙𝑢𝑝) (𝑖 𝑓 𝑙𝑢𝑝 ≤ 𝐸𝑞𝑢𝑝 < 0)

≤
−𝑢𝑢𝑝𝑙𝑢𝑝
𝑢𝑢𝑝 − 𝑙𝑢𝑝

(𝑤ℎ𝑒𝑛 𝐸𝑞𝑢𝑝 = 0)

(3.6)

The distance for lower bound in Equation 3.5 is:

𝑑𝑙𝑜𝑤 = 𝑅𝑒𝑙𝑢(𝐸𝑞𝑙𝑜𝑤) − 𝑢𝑙𝑜𝑤

𝑢𝑙𝑜𝑤 − 𝑙𝑙𝑜𝑤
(𝐸𝑞𝑙𝑜𝑤)

=

𝐸𝑞𝑙𝑜𝑤 − 𝑢𝑙𝑜𝑤

𝑢𝑙𝑜𝑤−𝑙𝑙𝑜𝑤 (𝐸𝑞𝑙𝑜𝑤) (𝑖 𝑓 0 ≤ 𝐸𝑞𝑙𝑜𝑤 ≤ 𝑢𝑙𝑜𝑤)

− 𝑢𝑙𝑜𝑤
𝑢𝑙𝑜𝑤−𝑙𝑙𝑜𝑤 (𝐸𝑞𝑙𝑜𝑤) (𝑖 𝑓 𝑙𝑙𝑜𝑤 ≤ 𝐸𝑞𝑙𝑜𝑤 < 0)

≤ − 𝑢𝑙𝑜𝑤𝑙𝑙𝑜𝑤

𝑢𝑙𝑜𝑤 − 𝑙𝑙𝑜𝑤
(𝑤ℎ𝑒𝑛 𝐸𝑞𝑙𝑜𝑤 = 𝑙𝑙𝑜𝑤/𝐸𝑞𝑙𝑜𝑤 = 𝑢𝑙𝑜𝑤)

(3.7)

Property 3.2.2. The approximation produced by symbolic linear relaxation 𝐸𝑞𝑢𝑝 and 𝐸𝑞𝑙𝑜𝑤

as Equation 3.5 has the least maximum distance from the actual output 𝐸𝑞∗.

34

proof: We give the proof for upper and lower symbolic linear relaxation respectively.

(1) Upper symbolic linear relaxation: The maximum distance for upper bound in Equation 3.5 is

𝑚 = −𝑢𝑙
𝑢−𝑙 when 𝐸𝑞(𝑥) = 0 shown in Lemma 3.2.1. If another symbolic linear relaxation that has

maximum distance 𝑚′ < 𝑚, then it can be written as 𝑅𝑒𝑙𝑢(𝐸𝑞𝑢𝑝) ↦→ 𝑘(𝐸𝑞𝑢𝑝(𝑥)) + 𝑚′ due to its

linearity. To overestimate two points 𝑅𝑒𝑙𝑢(𝑢) ↦→ 𝑘 · 𝑢 + 𝑚′ ≥ 𝑢 and 𝑅𝑒𝑙𝑢(𝑙) ↦→ 𝑘 · 𝑙 ≥ 0, we arrive

at the inequality 𝑢−𝑚′
𝑢
≤ 𝑘 ≤ −𝑚′

𝑙
. Consequently, we get 𝑚′ ≥ −𝑢𝑙

𝑢−𝑙 , which conflicts with assumption

𝑚′ < 𝑚.

(2) Lower symbolic linear relaxation: Also shown in Lemma 3.2.1, the maximum distance 𝑚 = −𝑢𝑙
𝑢−𝑙

for lower bound equation can be achieved when 𝐸𝑞 = 𝑙 or 𝐸𝑞 = 𝑢. Assume there is another

lower symbolic linear relaxation has the maximum distance 𝑚′ < 𝑚, it can be similarly written as

𝑅𝑒𝑙𝑢(𝐸𝑞(𝑥)) ↦→ 𝑢+𝑚′1−𝑚
′
2

𝑢−𝑙 𝑥 − 𝑢𝑙+𝑢𝑚′1−𝑙𝑚
′
2

𝑢−𝑙 , where 𝑅𝑒𝑙𝑢(𝑙) ↦→ 𝑚′1 < 𝑚 and 𝑅𝑒𝑙𝑢(𝑢) ↦→ 𝑚′2 < 𝑚. To

ensure 𝑅𝑒𝑙𝑢(0) ↦→ −𝑢𝑙+𝑢𝑚′1−𝑙𝑚
′
2

𝑢−𝑙 ≤ 0, we see 𝑢𝑙 + 𝑢𝑚′1 − 𝑙𝑚
′
2 ≥ 0, which conflicts with 𝑚′1 < 𝑚 and

𝑚′2 < 𝑚. Thus, we have shown the claim.

3.2.3 Branching with ReLU Neuron Split Refinement

Besides symbolic linear relaxation, we also develop another generic branch and bound verifica-

tion approach, ReLU neuron split refinement, to further improve the overall performance of property

checking by doing refinements with ReLU neuron splits. Our empirical results in Section 3.3 shows

the substantial improvement from using this approach combined with symbolic linear relaxation.

In the following, we first define unstable ReLU neurons before describing the directed constraint

refinement process in detail.

Unstable ReLU neurons. We note that, for most networks, only a small proportion of intermediate

ReLU neurons operate in the non-linear region for a given input range 𝑋 . Specifically, their lower

and upper bounds 𝑙, 𝑢 satisfy 𝑙 < 0 < 𝑢. These are the only neurons that need to be relaxed. We call

these neurons unstable as its linearity is not fixed and they introduce overestimation error during

relaxation. We include other useful properties and proofs regarding unstable ReLU neurons below:

Property 3.2.3. Given input range 𝑋 , an unstable ReLU neuron’s (𝑧 = 𝑅𝑒𝑙𝑢(𝐸𝑞)) concrete upper

35

and lower bounds satisfy 𝑢 = 𝑚𝑎𝑥𝑥∈𝑋𝐸𝑞(𝑥) > 0 and 𝑙 = 𝑚𝑖𝑛𝑥∈𝑋𝐸𝑞(𝑥) < 0.

Proof. It suffices to show that ∃𝑥1, 𝑥2 ∈ 𝑋 such that 𝐸𝑞(𝑥1) > 0 and 𝐸𝑞(𝑥2) < 0. If 𝐸𝑞 are

strictly non-negative on 𝑋 , then, for any 𝑥1 ∈ 𝑋 , we have 𝑅𝑒𝑙𝑢(𝐸𝑞(𝑥1)) = 𝐸𝑞(𝑥1) and we do not

perform any relaxations. Likewise, if 𝐸𝑞 are strictly non-positive, then for any 𝑥2 ∈ 𝑋 , we have

𝑅𝑒𝑙𝑢(𝐸𝑞(𝑥2)) = 0, so we also do not need to apply any relaxations. But, we assumed that the node

was unstable and overestimated, so that there must be ∃𝑥1 ∈ 𝑋 such that 𝐸𝑞(𝑥1) > 0, and ∃𝑥2 ∈ 𝑋

such that 𝐸𝑞(𝑥2) < 0. Therefore, since 𝑢 = 𝑚𝑎𝑥𝑥∈𝑋𝐸𝑞(𝑥) ≥ 𝐸𝑞(𝑥1), and 𝑙 = 𝑚𝑖𝑛𝑥∈𝑋𝐸𝑞(𝑥) ≤

𝐸𝑞(𝑥2), we have 𝑙 < 0 and 𝑢 > 0, which is the desired result.

Property 3.2.4. The symbolic input interval [𝐸𝑞𝑙𝑜𝑤, 𝐸𝑞𝑢𝑝] to a node of the 𝑖-th layer satisfies

𝐸𝑞𝑙𝑜𝑤 = 𝐸𝑞𝑢𝑝 = 𝐸𝑞∗ if there are no unstable ReLU neuron in the earlier layers.

Proof. We prove this inductively over the number of layers in a network. For the base case, we

consider the first layer, which is the input layer. The assumption that there is no unstable ReLU

neuron in all previous layers, in this case, is always true, as we define unstable ReLU neurons to

occur only when we apply the activation function ReLU. Thus, we have 𝐸𝑞𝑙𝑜𝑤 = 𝐸𝑞∗ = 𝐸𝑞𝑢𝑝

in this case. Now, suppose that the property holds for inputs up to the 𝑖-th layer. We show it

consequently holds for inputs to the (𝑖 + 1)-th layer. We know, for the 𝑗-th node in the 𝑖-th layer,

that its input is [𝐸𝑞∗
𝑗
, 𝐸𝑞∗

𝑗
]. Since we now assume that no nodes in the 𝑖-th layer are unstable ReLU

neurons, we know that 𝑅𝑒𝑙𝑢(𝐸𝑞∗
𝑗
) = 𝐸𝑞∗

𝑗
or 0. Let 𝑦 𝑗 denote its output and let 𝑦 denote the vector

of outputs in this layer. Then, the output of the 𝑗-th node is [𝑦 𝑗 , 𝑦 𝑗]. Considering the weights 𝑊 ,

one can see that the input for the 𝑘-th node of the (𝑖 +1)-th layer is [𝐸𝑞𝑙𝑜𝑤, 𝐸𝑞𝑢𝑝] = [(𝑊𝑦)𝑘 , (𝑊𝑦)𝑘].

Thus, we have 𝐸𝑞𝑙𝑜𝑤 = 𝐸𝑞𝑢𝑝 = 𝐸𝑞∗ which is exactly the same as the claim.

Corollary 3.2.4.1. In a neural network that contains no unstable ReLU neuron, there is no error in

the output layer.

Proof. This follows from Property 3.2.4, as it tells us that, for each node, say node 𝑗 , in the output

layer, 𝐸𝑞𝑙𝑜𝑤 = 𝐸𝑞∗ = 𝐸𝑞𝑢𝑝. Since this holds for all nodes, there is zero error.

36

Steps. Based on the definition of unstable ReLU neurons, we define one step of branch and bound

with ReLU neuron split as computing the refined 𝐹′(𝑋):

𝐹′(𝑋) = 𝐹(𝑥 ∈ 𝑋 |𝐸𝑞(𝑥) ≤ 0) ∪ 𝐹(𝑥 ∈ 𝑋 |𝐸𝑞(𝑥) > 0) (3.8)

where 𝑋 denotes the input intervals to the network, 𝐹 is the corresponding network, and 𝐸𝑞 is the

input equation of an unstable ReLU neuron. Note that here we are showing the input of a node as a

single equation for simplicity instead of the upper and lower bounds shown in Section 3.2.2. We

iteratively refine the bounds by invoking a linear solver, allowing us to make Neurify more scalable

for difficult safety properties. The convergence analysis is given in Section 3.2.5. The refinement

includes the following three steps:

Locating unstable ReLU neuron. From symbolic linear relaxations, we can get the set of unstable

ReLU neurons within the network. We then prioritize the unstable ReLU neurons with larger output

gradient and refine these influential unstable ReLU neurons first. We borrow the idea from [25] of

computing the gradient of network output with respect to the input interval of the unstable ReLU

neuron. A larger gradient value of a node signifies that the input of that node has a greater influence

towards changing the output than than the inputs of other neurons.

Splitting. After locating the target unstable ReLU neuron, we split its input ranges into two

independent cases, 𝐸𝑞𝑡 > 0 and 𝐸𝑞𝑡 ≤ 0 where 𝐸𝑞𝑡 denotes the input of the target unstable ReLU

neuron. Now, unlike symbolic linear relaxation where 𝑅𝑒𝑙𝑢([𝐸𝑞𝑡 , 𝐸𝑞𝑡]) ↦→ [𝑢
𝑢−𝑙𝐸𝑞𝑡 ,

𝑢
𝑢−𝑙 (𝐸𝑞𝑡 − 𝑙)],

neither of the two split cases requires any relaxation as the input interval no longer includes 0.

Therefore, splitting creates two tighter approximations of the output 𝐹(𝑥 ∈ 𝑋 |𝐸𝑞𝑡(𝑥) > 0) and

𝐹(𝑥 ∈ 𝑋 |𝐸𝑞𝑡(𝑥) ≤ 0).

Solving. We solve the resulting linear constraints, along with the constraints defined in safety

properties, by instantiating an underlying linear solver. In particular, we define safety properties

37

that check that the confidence value of a target output class 𝐹 𝑡 is always greater than the outputs of

other classes 𝐹𝑜 (e.g., outputs other than 7 for an image of a hand-written 7). We thus define the

constraints for safety properties as 𝐸𝑞𝑡
𝑙𝑜𝑤
− 𝐸𝑞𝑜𝑢𝑝 < 0. Here, 𝐸𝑞𝑡

𝑙𝑜𝑤
and 𝐸𝑞𝑜𝑢𝑝 are the lower bound

equations for 𝐹 𝑡 and the upper bound equations for 𝐹𝑜 derived using symbolic linear relaxation.

Each step of directed constraint refinement of an unstable ReLU neuron results in two independent

problems as shown in Equation 3.9 that can be checked with a linear solver.

Check Satifiability: 𝐸𝑞𝑡𝑙𝑜𝑤1 − 𝐸𝑞𝑜𝑢𝑝1 < 0; 𝐸𝑞𝑡 ≤ 0; 𝑥𝑖 − 𝜖 ≤ 𝑥𝑖 ≤ 𝑥𝑖 + 𝜖 (𝑖 = 1 . . . 𝑑)

Check Satifiability: 𝐸𝑞𝑡𝑙𝑜𝑤2 − 𝐸𝑞𝑜𝑢𝑝2 < 0; 𝐸𝑞𝑡 > 0; 𝑥𝑖 − 𝜖 ≤ 𝑥𝑖 ≤ 𝑥𝑖 + 𝜖 (𝑖 = 1 . . . 𝑑)
(3.9)

In this process, we invoke the solver in two ways. (1) If the solver tells that both cases are

unsatisfiable, then the property is formally proved safe. Otherwise, further iterative refinement

steps can be applied. (2) If either case is satisfiable, we treat the solutions returned by the linear

solver as potential adversarial examples. Note that these solutions might be false positives due to

the inaccuracies introduced during the relaxation process. We thus resort to directly executing the

target network with the solutions returned from the solver as input. If the solution does not violate

the property, we repeat the above process for another unstable ReLU neuron (cf. Figure 3.6).

In the following lemma, we prove that branch and bound with ReLU neuron split refinements is

a complete verification process. In other words, Neurify can always either verify the properties safe

or find counterexamples given sufficient verification time.

Lemma 3.2.5. If there are 𝑛 unstable neurons in a neural network, then after applying directed

constraint refinement to each of the 𝑛 nodes, that is, considering 2𝑛 cases after splitting, we achieve

a function 𝐹′ satisfying 𝐹′ = 𝐹∗, where 𝐹∗ is the actual function.

Proof. After splitting all the 𝑛 unstable ReLU neurons, for each split cases, all the nodes are

constrained to be linear and thus there is no unstable ReLU neuron. According to Corollary 3.2.4.1,

we can see there is no error in the output layer for each case. The output union 𝐹′ of these 2𝑛 cases

is an approximation of the network without any overestimation error, which is exactly the same as

38

the actual function 𝐹∗.

Safety Properties. Neurify supports checking diverse safety properties of networks including five

different classes of properties based on the input constraints. Particularly, we specify the safety

properties of neural network based on defining constraints on its input-output. For example, as

briefly mentioned in Section 3.2.2, we specify that the output of the network on input 𝑥 should

not change (i.e., remain invariant) when 𝑥 is allowed to vary within a certain range 𝑋 . For

output constraints, taking an arbitrary classifier as an example, we define the output invariance by

specifying the difference greater than 0 between lower and upper bound of confidence value of the

original class of the input and other classes. For specifying input constraints, we consider three

popular bounds, i.e., 𝐿∞, 𝐿1, and 𝐿2, which are widely used in the literature of adversarial machine

learning [9]. These three bounds allow for arbitrary perturbations of the input features as long as

the corresponding norms of the overall perturbation are within a certain threshold. In addition to

these arbitrary perturbations, we consider two specific perturbations that change brightness and

contrast of the input images as discussed in [141]. Properties specified using 𝐿∞ naturally fit into

our symbolic linear relaxation process where each input features are bounded by an interval. For

properties specified in 𝐿1 ≤ 𝜖 or 𝐿2 ≤ 𝜖 , we need to add more constraints, i.e.,
∑𝑑

𝑖=1 |𝑥𝑖 |≤ 𝜖 for

𝐿1, or
∑𝑑

𝑖=1 𝑥𝑖
2 ≤ 𝜖 for 𝐿2, which are no longer linear. We handle such cases by using solvers

that support quadratic constraints (see details in Section 3.2.4). The safety properties involving

changes in brightness and contrast can be efficiently checked by iteratively bisecting the input

neurons simultaneously as 𝑚𝑖𝑛𝑥∈[𝑥−𝜖,𝑥+𝜖](𝐹(𝑥)) = 𝑚𝑖𝑛(𝑚𝑖𝑛𝑥∈[𝑥,𝑥+𝜖](𝐹(𝑥)), 𝑚𝑖𝑛𝑥∈[𝑥−𝜖,𝑥](𝐹(𝑥))) where

𝐹 represents the computation performed by the target network .

3.2.4 Implementation Details

We implement both ReluVal and Neurify in C. In Neurify, we use the highly optimized

OpenBLAS1 library for matrix multiplications and lp_solve 5.52 for solving the linear constraints

1https://www.openblas.net/
2http://lpsolve.sourceforge.net/5.5/

39

generated during the directed constraint refinement process. We further use Gurobi 8.0.0 solver

for 𝐿2-bounded safety properties. All our evaluations were performed on a Linux server running

Ubuntu 16.04 with 8 CPU cores and 256GB memory. We release the code at:

• ReluVal Code: https://github.com/tcwangshiqi-columbia/ReluVal

• Neurify Code: https://github.com/tcwangshiqi-columbia/Neurify

Besides, both ReluVal and Neurify use optimization like thread rebalancing for parallelization

and outward rounding to avoid incorrect results due to floating point imprecision. We list the details

of such techniques below.

Parallelization. Our directed constraint refinement process is highly parallelizable as it creates

an independent set of linear programs that can be solved in parallel. For facilitating this process,

Neurify creates a thread pool where each thread solves one set of linear constraints with its own

lp_solve instances. However, as the refinement process might be highly uneven for different

overestimated nodes, we periodically rebalance the queues of different threads to minimize idle

CPU time.

Outward rounding. One of the side effects of floating point computations is that even minor

precision drops on one hidden node can be amplified significantly during propagations. To avoid

such issues, we perform outward rounding after every floating point computation, i.e., we always

round [𝑥, 𝑥] to [⌊𝑥⌋, ⌈𝑥⌉]. Our current prototype uses 32-bit float arithmetic that can support

all of our current safety properties with outward rounding. If needed, the analysis can be easily

switched to 64-bit double precision.

Supporting convolutional layers. Models with convolutional layers are often used in computer

vision applications. They usually perform matrix multiplications with a convolution kernel as

shown in the dash boxes of Figure 3.8. To allow a symbolic interval to propagate through various

40

https://github.com/tcwangshiqi-columbia/ReluVal
https://github.com/tcwangshiqi-columbia/Neurify

[5x,2x] [0,3x]

[5x,2x] [0,3x]

1 0

0 1

0 1

0 1

[x,x] [2x,x] [x,2x]

[x,x]

[0,x] [x,2x]

[4x,0] [3x,0]

[x,2x] [2x,x]

[x,3x] [3x,x]

[2x,x]

Figure 3.8: Element-wise matrix multiplications to allow symbolic intervals to propagate through
convolutional kernels.

convolutional layers, we simply multiply the symbolic interval inputs with the concrete kernels as

shown in Figure 3.8.

3.3 Experimental Results for Neurify and ReluVal

Dataset Models
of

ReLUs
Architecture

Safety
Properties

Safe Violated Timeout

ACAS
Xu [136]

ACAS Xu 300
<5, 50, 50, 50,
50, 50, 50, 5>#

C.P.∗

in [25]
141 37 0

MNIST [142]

MNIST_FC1 48 <784, 24, 24, 10># 𝐿∞ 267 233 0
MNIST_FC2 100 <784, 50, 50, 10># 𝐿∞ 271 194 35
MNIST_FC3 1024 <784, 512, 512, 10># 𝐿∞ 322 41 137

MNIST_CN 4804
<784, k:16*4*4 s:2,

k:32*4*4 s:2, 100, 10>+ 𝐿∞ 91 476 233

Drebin [143]
Drebin_FC1 100 <545334, 50, 50, 2>#

C.P.∗

in [8]

458 21 21
Drebin_FC2 210 <545334, 200, 10, 2># 437 22 41
Drebin_FC3 400 <545334, 200, 200, 2># 297 27 176

Car [144] DAVE 10276
<30000, k:24*5*5 s:5,

k:36*5*5 s:5, 100, 10>+

𝐿∞,𝐿1,
Brightness,

Contrast
80 82 58

* Customized properties.
<𝑥, 𝑦, ...> denotes hidden layers with x neurons in first layer, y neurons in second layer, etc.
+ 𝑘:𝑐*𝑤*ℎ 𝑠:𝑠𝑡𝑟𝑖𝑑𝑒 denotes the output channel (𝑐), kernel width (𝑤), height (ℎ) and stride (𝑠𝑡𝑟𝑖𝑑𝑒).

Table 3.1: Details of the evaluated networks and corresponding safety properties. The last three
columns summarize the number of safety properties that are satisfied, violated, and timed out,
respectively as found by Neurify with a timeout threshold of 1 hour.

41

2 4 6 8 10 12 14
L

0

20

40

60

80

100
Ca

se
s P

ro
ve

d
an

d
Di

sp
ro

ve
d(

%
)

MNIST_FC1(48 nodes)

Neurify
ReluVal
Reluplex

2 4 6 8 10 12 14
L

0

20

40

60

80

100

Ca
se

s P
ro

ve
d

an
d

Di
sp

ro
ve

d(
%

)

MNIST_FC2(100 nodes)
Neurify
ReluVal
Reluplex

2 4 6 8 10 12 14
L

0

20

40

60

80

100

Ca
se

s P
ro

ve
d

an
d

Di
sp

ro
ve

d(
%

)

MNIST_FC3(1024 nodes)
Neurify
ReluVal
Reluplex

Figure 3.9: As we increase the 𝐿∞ bounds of the safety properties, the number of cases ReluVal
and Reluplex can verify quickly decreases while Neurify clearly outperforms both of them. We use
50 randomly selected imaged for each property and set the timeout to 1,200 seconds.

3.3.1 Experimental Setup and Summary

To evaluate the performance of Neurify, we test it on nine models trained over five datasets for

different tasks where each type of model includes multiple architectures. Specifically, we evaluate

on fully connected ACAS Xu models [136], three fully connected Drebin models [143], three fully

connected MNIST models [142], one convolutional MNIST model [139], and one convolutional

self-driving car model [144]. Table 3.1 summarizes the detailed structures of these models. All the

networks closely follow the publicly-known settings and are either pre-trained or trained offline to

achieve comparable performance to the real-world models on these datasets.

We also summarize the safety properties checked by Neurify in Table 3.1 with timeout threshold

set to 3,600 seconds. Here we report the result of the self-driving care model (DAVE) to illustrate

how we define the safety properties and the numbers of safe and violated properties found by

Neurify. In the following sections, we show the performance of our ReluVal and Neurify compared

to previously state-of-the-art verifier Reluplex [19] on each verification task.

3.3.2 ReluVal and Neurify on Standard Verification Benchmarks

In this section, we present a detailed comparison of ReluVal, Neurify, and previously the

state-of-the-art Reluplex [19] in terms of the verification performance on two standard verification

benchmarks, ACAS Xu [29] and MNIST [142].

42

Source Properties Reluplex (sec) ReluVal (sec) Neurify (sec) 𝑅𝑒𝑙𝑢𝑝𝑙𝑒𝑥

𝑁𝑒𝑢𝑟𝑖 𝑓 𝑦
(×) 𝑅𝑒𝑙𝑢𝑉𝑎𝑙

𝑁𝑒𝑢𝑟𝑖 𝑓 𝑦
(×)

Security
Properties
from [19]

𝜙1 >443,560.73* 14,603.27 458.75 > 967× 31.83×
𝜙∗∗2 123,420.40 117,243.26 16491.83 >8× 7.11×
𝜙3 35,040.28 19,018.90 600.64 58.33× 31.66×
𝜙4 13,919.51 441.97 54.56 255× 8.10×
𝜙5 23,212.52 216.88 21.378 1086× 10.15×
𝜙6 220,330.82 46.59 1.48 148872× 31.48×
𝜙7 >86400.00* 9,240.29 563.55 >154× 16.40×
𝜙8 43,200.01 40.41 33.17 1302× 1.22×
𝜙9 116,441.97 15,639.52 921.06 126.42× 16.98×
𝜙10 23,683.07 10.94 1.16 20416.38× 9.43×

Additional
Security

Properties

𝜙11 4,394.91 27.89 0.62 7089× 44.98×
𝜙12 2,556.28 0.104 0.13 19664× 0.80×
𝜙13 >172,800.00* 148.21 38.11 >4534× 3.89×
𝜙14 >172,810.86* 288.98 22.87 >7556× 12.64×
𝜙15 31,328.26 876.8 91.71 342× 9.56×

* Reluplex uses different timeout thresholds for different properties.
** Reluplex returns spurious counterexamples on two safe networks due to a rounding bug and ends prematurely

Table 3.2: Performance comparisons of Neurify, Reluplex, and ReluVal while checking different
safety properties of ACAS Xu. 𝜙1 to 𝜙10 are the properties tested in [19]. 𝜙11 to 𝜙15 are the
additional properties tested in [25].

ACAS Xu. Unmanned aircraft alert systems (ACAS Xu) [29] are networks advising steering

decisions for aircrafts, which is on schedule to be installed in over 30,000 passengers and cargo

aircraft worldwide [6] and US Navy’s fleets. It is comparably small and only has five input features

so that ReluVal [25] can efficiently check different safety properties. However, its performance still

suffers from the over-approximation of output ranges due to the concretizations introduced during

symbolic interval analysis. Neurify leverages symbolic linear relaxation and achieves on average

20× better performance than ReluVal [25] and up to 5,000× better performance than Reluplex [19].

In Table 3.2, we summarize the time and speedup of Neurify compared to ReluVal and Reluplex for

all the properties tested in [19, 25]. Here 𝜙1 to 𝜙10 are the properties tested in [19]. 𝜙11 to 𝜙15 are

the additional properties tested in [25].

MNIST_FC. The MNIST networks have significantly more inputs than ACAS Xu. It has 784 input

features and ReluVal always times out when the analyzed input ranges become larger (𝐿∞ ≥ 5). We

measure the performance of Neurify on fully connected MNIST models MNIST_FC1, MNIST_FC2

43

and MNIST_FC3 and compare the cases that can be verified to be safe or a counterexample can be

found by ReluVal and Reluplex in Figure 3.9 on randomly selected 50 images for each property.

The timeout threshold is 1,200 seconds. The results show that Neurify constantly outperforms

the other two. Especially when increasing the 𝐿∞ bound, the percentages of properties that the

other two can verify quickly decrease. Note that the increase in the middle Figure 3.9 is caused

by the more unsafe cases detected by Neurify. Initially, when the bounds are small, Neurify can

easily check the properties to be safe. But as the bounds get larger, the number of verified safe

cases drop drastically because (i) the underlying model tends to have real violations and (ii) Neurify

suffers from relatively higher overestimation errors. However, as the bounds increase further,

the counterexamples become frequent enough to be easily found by Neurify. Therefore, such

phenomenon indicates that Neurify can find counterexamples more effectively than ReluVal and

Reluplex due to its tighter approximation.

3.3.3 Neurify on Properties with High Input Dimensions

Due to the restrictions of input split iterative refinement in ReluVal as discussed in Section 3.2.1,

it cannot well handle the verification instances that have large input dimensions. In this section, we

show that Neurify relying on ReLU neuron split refinements will not suffer from the dimensions of

input and can verify much harder instances. ReluVal can verify none of the following instances.

𝜖 1 2 5 8 10
Safe(%) 50 10 0 0 0
Violated(%) 0 20 70 100 100
Timeout(%) 50 70 30 0 0

(a) | |𝑋 ′ − 𝑋 | |∞≤ 𝜖

𝜖 100 200 300 500 700
Safe(%) 100 100 10 10 0
Violated(%) 0 0 40 50 60
Timeout(%) 0 0 50 40 40

(b) | |𝑋 ′ − 𝑋 | |1≤ 𝜖

𝜖 10 70 80 90 100
Safe(%) 100 30 20 10 10
Violated(%) 0 30 50 60 70
Timeout(%) 0 40 30 30 20

(c) Brightness: 𝑋 − 𝜖 ≤ 𝑋 ′ ≤ 𝑋 + 𝜖

𝜖 0.2 0.5 0.99 1.01 2.5
Safe(%) 0 10 100 100 0
Violated(%) 70 20 0 0 50
Timeout(%) 30 70 0 0 50

(d) Contrast: 𝜖𝑋 ≤ 𝑋 ′ ≤ 𝑋 or 𝑋 ≤ 𝑋 ′ ≤ 𝜖𝑋

Table 3.3: Safety properties checked by Neurify out of 10 random images on Dave within 3,600
seconds.

44

Models Cases(%) 10 50 100 150 200

Drebin_FC1
Safe 0 1 3 5 12

Violated 100 98 97 86 77
Total 100 99 100 91 89

Drebin_FC2
Safe 0 4 4 6 8

Violated 100 96 90 81 70
Total 100 100 94 87 78

Drebin_FC3
Safe 0 4 4 4 15

Violated 100 89 74 23 11
Total 100 93 78 33 26

Table 3.4: Total cases that can be verified by Neurify on three Drebin models out of 100 random
malware apps. The timeout setting here is 3,600 seconds.

Dave. We show that Neurify is the first formal analysis tool that can systematically check different

safety properties for a large (over 10,000 ReLUs) convolutional self-driving car network, Dave [144].

We use the dataset from Udacity self-driving car challenge containing 101,396 training and 5,614

testing samples3. Our model’s architecture is similar to the DAVE-2 self-driving car architecture

from NVIDIA [144] and it achieves similar 1-MSE as models used in [8]. We formally analyze

the network with inputs bounded by 𝐿∞, 𝐿1, brightness, and contrast. We define the safe range of

deviation of the output steering direction from the original steering angle to be less than 30 degrees.

The total number of cases Neurify can verify are shown in Table 3.3 out of 10 random images. The

timeout threshold is 3,600 seconds.

DREBIN. We also evaluate Neurify on three different Drebin models containing 545,334 input

features. The safety property is that simply adding app permissions without changing any function-

ality will not cause the models to misclassify malware apps as benign. In Table 3.4 we show that

Neurify can formally verify safe and unsafe cases for most of the apps within 3,600 seconds out of

100 random malware apps.

45

SIA∗ SLR∗∗ Improve(%)
MNIST_FC1 111.87 52.22 114.23
MNIST_FC2 230.27 101.72 126.38
MNIST_FC3 1271.19 624.27 103.63
* Symbolic Interval Analysis in ReluVal
** Symbolic Linear Relaxation in Neurify

Table 3.5: The average widths of output ranges of three MNIST models for 100 random images
where each has five different 𝐿∞ ≤ {1, 5, 10, 15, 25}.

3.3.4 Ablation Studies for Each Technique

Symbolic linear relaxation. We compare the widths of estimated output ranges computed by

symbolic interval analysis in ReluVal (SIA) [25] and the improved variance of symbolic inter-

val analysis using symbolic linear relaxation (SLR) in Neurify on MNIST_FC1, MNIST_FC2,

MNIST_FC3. We summarize the average output widths in Table 3.5. The experiments are based

on 100 images each bounded by 𝐿∞ ≤ 𝜖 (𝜖 = 1, ..., 25). The results indicate that symbolic linear

relaxation in Neurify can tighten the output intervals by at least 100%, which significantly speeds

up its performance.

Properties 𝜖 = 1 𝜖 = 2 𝜖 = 3 𝜖 = 4 𝜖 = 5 𝜖 = 10 𝜖 = 15 𝜖 = 25
SLR alone 100 98 94 82 42 0 0 0

Neurify (SLR+refine) 100 99 100 95 88 10 20 55
Improve 0 +1 +6 +13 +46 +10 +20 +55

Table 3.6: The verified cases out of 100 random images using symbolic linear relaxation alone (SLR)
and together using branch and bound with ReLU neuron split refinement (Neurify) on MNIST_CN.

Branch and bound with ReLU neuron split refinements. To illustrate how ReLU neuron split

refinement can improve the overall performance when combined with symbolic linear relaxation, we

evaluate Neurify on MNIST_CN with 𝐿∞ ≤ 𝜖 (𝜖 = 1, ..., 25). We measure the number of verified

cases out of 100 randomly selected input images when using symbolic linear relaxation alone and

combining it with ReLU neuron split refinements. Table 3.6 shows that Neurify using symbolic

linear relaxation combined with ReLU neuron split refinements can verify 18.88% more cases on

average than those using symbolic linear relaxation alone.

3https://github.com/udacity/self-driving-car

46

2 4 6 8 10
L

0

20

40

60

80

100

Ca
se

s P
ro

ve
d

an
d

Di
sp

ro
ve

d(
%

)
MNIST_FC1(48 nodes)

Neurify
ReluVal + SLR
ReluVal

2 4 6 8 10
L

0

20

40

60

80

100

Ca
se

s P
ro

ve
d

an
d

Di
sp

ro
ve

d(
%

)

MNIST_FC2(100 nodes)
Neurify
ReluVal + SLR
ReluVal

2 4 6 8 10
L

0

20

40

60

80

100

Ca
se

s P
ro

ve
d

an
d

Di
sp

ro
ve

d(
%

)

MNIST_FC3(1024 nodes)
Neurify
ReluVal + SLR
ReluVal

Figure 3.10: Showing the cases out of 100 randomly selected images that can be verified by Neurify,
new ReluVal+SLR and original ReluVal. Here ReluVal+SLR denotes the new ReluVal improved
with our symbolic linear relaxation for showing the performance of ReLU neuron split refinements.
The timeout setting is 600 seconds.

Overall improvements evaluated on MNIST. We evaluate how symbolic linear relaxation

and branch and bound with ReLU neuron split refinements each can improve the performance

compared with ReluVal on three fully connected MNIST models, MNIST_FC1, MNIST_FC2, and

MNIST_FC3. For measuring the improvement made by symbolic linear relaxation, we integrate

it into ReluVal denoted as ReluVal+SLR (input split refinements + symbolic linear relaxation in

Neurify) and we compare with the number of original ReluVal(input split refinements + symbolic

interval analysis in ReluVal). As for the performance of ReLU neuron split refinements, we make

comparisons between ReluVal+SLR (input split refinements + symbolic linear relaxation) and

Neurify(ReLU neuron split refinements + symbolic linear relaxation). We summarize the total

cases that can be verified by Neurify, original ReluVal, and ReluVal+SLR out of 100 random

MNIST images within 600 seconds in Figure 3.10. The safety properties are defined as whether the

models will misclassify the images within allowable perturbed input ranges bounded by 𝐿∞ ≤ 𝜖

(𝜖 = 1, ..., 10). The experimental results demonstrate that our symbolic linear relaxation can

help ReluVal find 15% more cases on average. However, the input split refinements used by

ReluVal+SLR still suffers from larger number of input features and thus usually times out when 𝜖 is

large. Neurify’s ReLU neuron split refinements approach mitigated that problem and additionally

verify up to 65% more cases on average compared to ReluVal.

47

3.4 Conclusion and Future Work

In this section, we have described detailed designs and implementations of ReluVal and Neurify,

two basic neural network verification using branch and bound. We propose symbolic interval

analysis and its improved version using symbolic linear relaxation to efficiently compute a tight

over-approximation of a network’s output for a given input range. ReluVal uses iterative input split

refinements as a branch and bound framework, able to obtain complete verification for modern

size neural networks. Due to its limitations to high input dimension dataset, we further propose

ReLU neuron split refinements, a new branch and bound framework. It allows Neurify to scale the

complete verification for safety properties of real-world neural networks and providing concrete

counterexamples. Our extensive empirical results demonstrate that both ReluVal and Neurify

outperform state-of-the-art verifier by several orders of magnitude and can easily scale to networks

with more than 10,000 ReLU nodes.

As one main limitations, Neurify has to call expensive linear solvers for each split subproblem,

greatly limiting the performance of the overall complete verification. As a straightforward extension,

we show novel algorithms 𝛼-CROWN [35] and 𝛽-CROWN [36] in improving the design of branch

and bound verification framework without using any linear solvers in Chapter 4. Such efficient

designs allow us to massively parallelize the branch and bound searching process on GPUs, leading

to several orders of magnitude verification acceleration.

48

Chapter 4: Branch and Bound with GPU Acceleration for Neural Network

Verification

In this chapter, we will mainly focus on our state-of-the-art complete neural network verifier

𝛼, 𝛽-CROWN and its improved variance which won the second International Neural Network

Verification (VNN-COMP 2021) [42]. Early complete verifiers like ReluVal [25] and Neurify [26]

introduced in Chapter 3 proposed promising directions towards efficient complete verification with

Branch and Bound (BaB) and efficient bound propagation like symbolic interval analysis. However,

most of their branch and bound procedure relies on expensive Linear Programming (LP) solvers for

incomplete verification, significantly limiting the verification efficiency and scalability.

On the contrary, our 𝛼, 𝛽-CROWN significantly accelerates the complete verification process

with a general and optimizable formulation for branch and bound without calling expensive LP

solvers. It contains optimizable parameters 𝜶 and 𝜷, and any valid settings of these parameters

yield sound bounds for verification. These parameters are optimized using a few steps of gradient

ascent to achieve bounds as tight or even tighter bounds than traditional LP verifiers. Optimizing 𝜷

can also eliminate many infeasible subdomains and avoid further useless branching. Its efficient

implementation with an automatic differentiation framework on GPUs can fully exploit the power

of modern accelerators. 𝛼, 𝛽-CROWN with branch and bound (𝛼, 𝛽-CROWN BaB) produces a

complete verifier with GPU acceleration, reducing the verification time of traditional LP based BaB

verifiers [27, 26] by up to three orders of magnitudes on a commonly used benchmark suite on

CIFAR-10 [38, 39]. Compared to all other state-of-the-art GPU-based complete verifiers [40, 35,

39, 30, 38, 41], our approach is noticeably faster with lower timeout rates.

In Section 4.1, we will first give an overview of a unified BaB framework for neural network

verification, including the detailed notations and background of complete neural network verification

49

in Section 4.1.2 and a commonly used incomplete verifier CROWN [31, 37] in Section 4.1.3. In

Section 4.2, we will see how we design an incomplete verifier 𝛼-CROWN based on CROWN

to achieve tighter bound approximation with additional optimizable parameter 𝜶. Its improved

variance 𝛽-CROWN is then proposed in Section 4.3 and solves the BaB performance limitations

in traditional LP solver based verifiers like Neurify [26] with optimizable Lagrangian multipliers

𝜷. The combination of 𝛼-CROWN, 𝛽-CROWN and BaB empowers the state-of-the-art complete

verifier 𝛼, 𝛽-CROWN verifier. We comprehensively evaluate its performance in Section 4.4. Finally,

Section 4.5 introduces our latest work on how to further improve state-of-the-art performance of

𝛼, 𝛽-CROWN based on intriguing observations especially on challenging verification instances. We

have demonstrated the effectiveness of this new approach with promising results.

4.1 Background: A Unified Branch and Bound Framework for Verification

4.1.1 Notations for Neural Network Verification

Notations of NN. We define the input of a neural network as 𝑥 ∈ R𝑑0 , and define the weights and

biases of an 𝐿-layer neural network as W(𝑖) ∈ R𝑑𝑖×𝑑𝑖−1 and b(𝑖) ∈ R𝑑𝑖 (𝑖 ∈ {1, · · · , 𝐿}) respectively.

The neural network function 𝑓 : R𝑑0 → R is defined as 𝑓 (𝑥) = 𝑧(𝐿)(𝑥), where 𝑧(𝑖)(𝑥) = W(𝑖)𝑧(𝑖−1)(𝑥)+

b(𝑖), 𝑧(𝑖)(𝑥) = 𝜎(𝑧(𝑖)(𝑥)) and 𝑧(0)(𝑥) = 𝑥. 𝜎 is the activation function and we use ReLU throughout this

chapter. When the context is clear, we omit ·(𝑥) and use 𝑧
(𝑖)
𝑗

and 𝑧
(𝑖)
𝑗

to represent the pre-activation

and post-activation values of the 𝑗-th neuron in the 𝑖-th layer. For simplicity we assume that 𝑑𝐿 = 1

so W(𝐿) is a vector and b(𝐿) is a scalar.

NN Verification Problem. Neural network verification seeks the solution of the optimization

problem in Equation 4.1:

min 𝑓 (𝑥) := 𝑧(𝐿)(𝑥) s.t. 𝑧(𝑖) = W(𝑖)𝑧(𝑖−1) + b(𝑖), 𝑧(𝑖) = 𝜎(𝑧(𝑖)), 𝑥 ∈ C, 𝑖 ∈ {1, · · · , 𝐿 − 1} (4.1)

50

The set C defines the allowed input region and our aim is to find the minimum of 𝑓 (𝑥) for 𝑥 ∈ C, and

throughout this chapter we consider C as an ℓ∞ ball around a data example 𝑥0: C = {𝑥 | ∥𝑥 − 𝑥0∥∞≤

𝜖} but other ℓ𝑝 norms can also be supported. In practical settings, we typically have “specifications”

to verify, which are (usually linear) functions of neural network outputs describing the desired

behavior of neural networks. For example, to guarantee robustness we typically investigate the

margin between logits. Because the specification can also be seen as an output layer of NN and

merged into 𝑓 (𝑥) under verification, we do not discuss it in detail in this work. We consider the

canonical specification 𝑓 (𝑥) > 0: if we can prove that 𝑓 (𝑥) > 0, ∀𝑥 ∈ C, we say 𝑓 (𝑥) is verified.

When C is a convex set, Equation 4.1 is still a non-convex problem because the constraints

𝑧(𝑖) = 𝜎(𝑧(𝑖)) are non-convex. Given unlimited time, complete verifiers can solve Equation 4.1

exactly: 𝑓 ∗ = min 𝑓 (𝑥), ∀𝑥 ∈ C, so we can always conclude if the specification holds or not for

any problem instance. On the other hand, incomplete verifiers usually relax the non-convexity of

neural networks to obtain a tractable lower bound of the solution 𝑓 ≤ 𝑓 ∗. If 𝑓 ≥ 0, then 𝑓 ∗ > 0 so

𝑓 (𝑥) can be verified; when 𝑓 < 0, we are not able to infer the sign of 𝑓 ∗ so cannot conclude if the

specification holds or not.

4.1.2 Branch and Bound for Complete Verification

As described in Section 3.1.3 and 3.2.3, input split refinements and ReLU neuron split re-

finements proposed in ReluVal and Neurify are two of the first efficient branch and bound based

methods for neural network verification. Using different bounding and branching strategies under

the branch and bound framework lead to different variances. [27] first formally unifies the branch

and bound framework for neural network verification. Due to the input dimension limitations of

input split refinements described in Section 3.2.1, ReLU neuron refinements are mostly considered.

Here we describe the detailed branch and bound algorithm for neural network verification below.

Overview of BaB verification procedure. For each step, BaB based method will select one

targeted ReLU neuron 𝑧
(𝑖)
𝑗

and split the verification domain C into two subdomains C1 = {𝑥 ∈

51

C, 𝑧(𝑖)
𝑗
≥ 0} and C2 = {𝑥 ∈ C, 𝑧(𝑖)

𝑗
< 0}. An incomplete verifier will then be used for bounding each

split subdomain C𝑖, providing a sound lower bound 𝑓
C𝑖

. We call the attached split constraints in split

subdomain 𝑧
(𝑖)
𝑗
≥ 0 and 𝑧

(𝑖)
𝑗
< 0, the neuron split constraints. Within each subdomain, the targeted

ReLU neuron 𝑧
(𝑖)
𝑗

now becomes a linear piece, making it an easier domain to verify for the incomplete

verifier. Consequently, a more accurate lower bound 𝑓 ′ for the original verification problem can

be obtained by taking the minimum of the lower bounds of all subdomains 𝑓 ′ = min𝑖 𝑓 C𝑖 ≥ 𝑓 .

The refined 𝑓 ′ will gradually approach the optimal solution 𝑓 ∗ as the recursive ReLU neuron

split branching and subdomain bounding procedure continues. This recursive branch and bound

procedure will terminate either (1) the global lower bound 𝑓 becomes larger than 0 and prove the

property safe or (2) a violation (e.g., adversarial example) is located in a subdomain to disprove the

property. Essentially, we build a search tree where each leaf is a subdomain, and the property P can

be proven only when it is valid on all leaves.

Soundness of BaB. We say the verification process is sound if we can always trust the “yes”

(P is verified) answer given by the verifier. It is straightforward to see that the whole BaB based

verification process is sound as long as the bounding method used for each subdomain C𝑖 is sound.

Completeness of BaB. The completeness of the BaB-based NN verification process, which

was usually assumed true in some previous works [40, 27], in fact, is not always true even if all

possible subdomains are considered with a sound bounding method. Additional requirements for the

bounding method are required - we point out that a key factor for completeness involves feasibility

checking in the bounding method which we will discuss in Section 4.2.4. The feasibility checking for

leaf subdomain in the BaB search tree can guarantee the completeness of the whole BaB verification

process. In practice, splitting all ReLU neurons is mostly unaffordable. A timeout instead of

proved/disproved will be returned if the BaB process exceeds a timeout threshold. In Section 4.4,

we also show that our proposed complete verifier 𝛽-CROWN BaB can also be terminated early with

a timeout threshold to perform as a strong incomplete verifier, achieving state-of-the-art incomplete

verification performance.

52

Branching strategies in BaB. Since the branching step determines the shape of the search tree, it

becomes a main challenge to efficiently choose a good ReLU neuron to split, which can significantly

reduce the total number of branches and running time. Branching strategies (selecting which ReLU

neuron to split) are generally agnostic to the incomplete verifier used in BaB but do affect the overall

BaB performance. BaBSR [40] is a widely used strategy in complete verifiers, which is based on

fast estimates on objective improvements after splitting each neuron. The neuron with the greatest

estimated improvement is selected for branching. Recently, Filtered Smart Branching (FSB) [41]

improves BaBSR by mimicking strong branching - it utilizes bound propagation methods to evaluate

the best a few candidates proposed by BaBSR and chooses the one with the largest improvement.

Graph neural network (GNN) based branching was also proposed [30]. In this chapter, we mainly

focus on improving the incomplete verifier used for bounding each split subdomain in complete BaB

verification, agnostic to the branching heuristic used, and thus our improvement can be generalized

to any branching heuristics. For experimental evaluation, we mainly use state-of-the-art branching

strategies BaBSR and FSB in Section 4.4.

Bounding with LP verifier. A commonly used incomplete verification technique relaxes non-

convex ReLU constraints with linear constraints and turns the verification problem into a linear

programming (LP) problem. We can can then solve the LP problem with linear solvers. We refer

to it as LP verifier. Specifically, given ReLU(𝑧(𝑖)
𝑗

) := max(0, 𝑧(𝑖)
𝑗

) and its intermediate layer bounds

l(𝑖)
𝑗
≤ 𝑧

(𝑖)
𝑗
≤ u(𝑖)

𝑗
, each ReLU can be categorized into three cases: (1) if l(𝑖)

𝑗
≥ 0 (ReLU in linear

region) then 𝑧
(𝑖)
𝑗

= 𝑧
(𝑖)
𝑗

; (2) if u(𝑖)
𝑗
≤ 0 (ReLU in inactive region) then 𝑧

(𝑖)
𝑗

= 0; (3) if l(𝑖)
𝑗
≤ 0 ≤ u(𝑖)

𝑗

(ReLU is unstable) then three linear bounds are used: 𝑧(𝑖)
𝑗
≥ 0, 𝑧(𝑖)

𝑗
≥ 𝑧

(𝑖)
𝑗

, and 𝑧
(𝑖)
𝑗
≤ u(𝑖)

𝑗

u(𝑖)
𝑗
−l(𝑖)

𝑗

(
𝑧

(𝑖)
𝑗
− l(𝑖)

𝑗

)
;

they are often referred to as the triangle relaxation [20] as shown in Figure 4.1a. The unstable

ReLU neurons determine the approximation of incomplete verifiers as described in Section 3.2.3.

The intermediate layer bounds l(𝑖) and u(𝑖) are usually obtained from a cheaper bound propagation

method (see the following subsection). LP verifiers can provide relatively tight bounds, but linear

solvers are still expensive, especially when large networks are large. Also, unlike our proposed

53

approaches like 𝛼-CROWN (Section 4.2) and 𝛽-CROWN (Section 4.3), they have to use fixed

intermediate bounds and cannot use the joint optimization of intermediate layer bounds (discussed

in Section 4.2.2 and 4.3.3) to tighten relaxation.

The LP verifier can well fit the branch and bound with ReLU neuron split refinements since

it can well handle the neuron split constraints introduced in each step of BaB. Essentially, when

we split the 𝑗-th ReLU in layer 𝑖, we can simply add 𝑧
(𝑖)
𝑗
≥ 0 or 𝑧

(𝑖)
𝑗

< 0 to Equation 4.1 and

get a linearly relaxed lower bound to each subdomain. We denote the Z+(𝑖) and Z−(𝑖) as the

set of neuron indices with positive and negative split constraints in layer 𝑖. We define the split

constraints at layer 𝑖 as Z(𝑖) := {𝑧(𝑖) | 𝑧(𝑖)
𝑗1
≥ 0, 𝑧(𝑖)

𝑗2
< 0,∀ 𝑗1 ∈ Z+(𝑖),∀ 𝑗2 ∈ Z−(𝑖)}. We denote the

vector of all pre-ReLU neurons as 𝑧, and we define a setZ to represent the split constraints on 𝑧:

Z = Z(1)∩Z(2)∩· · ·∩Z(𝐿−1). For convenience, we also use the shorthand Z̃(𝑖) := Z(1)∩· · ·∩Z(𝑖)

and 𝑧(𝑖) := {𝑧(1), 𝑧(2), · · · , 𝑧(𝑖)}. LP verifiers can easily handle these neuron split constraints but are

more expensive than bound propagation methods like CROWN [31] and cannot be accelerated

on GPUs. On the other hand, efficient bound propagation methods cannot handle neuron split

constraints causing loose approximations for split subdomains in BaB. Our 𝛽-CROWN (Section 4.3)

can enjoy the efficiency of bound propagation methods on GPUs while still can solve the subdomain

LP problem as well as LP verifiers, leading to state-of-the-art verification performance.

4.1.3 CROWN: An Efficient Incomplete Verifier Using Linear Relaxation

Besides the LP verifier, sound bound propagations is another cheaper incomplete verifier to give

a lower bound for the objective in Equation 4.1 and also able to perform bounding for produced

subdomains in BaB. Symbolic interval analysis proposed in ReluVal and Neurify (Section 3.1, 3.2)

is one typical method. A generalized bound propagation with linear relaxation CROWN [31]

is a representative, which can further support most neural network architectures and activation

functions [37].

In specific, CROWN propagates a linear bound of 𝑓 (𝑥) w.r.t. every intermediate layer in a

backward manner until reaching the input 𝑥. CROWN uses two linear constraints to relax unstable

54

l(i)
j u(i)

j

x(i)
j

h(i)
j

l(i)j u(i)
j

h(i)
j

l(i)j u(i)
j

h(i)
j

l(i)j u(i)
j

h(i)
j

l(i)j u(i)
j

h(i)
j

(a) (b) (c) (d)

Figure 4.1: Relaxations of a ReLU: (a) “triangle” relaxation in LP; (b)(c) No relaxation when
u(𝑖)
𝑗
≤ 0 (always inactive) or l(𝑖)

𝑗
≥ 0 (always active); (d) linear relaxation in CROWN when

l(𝑖)
𝑗
< 0, u(𝑖)

𝑗
> 0 (unstable).

ReLU neurons: a linear upper bound 𝑧
(𝑖)
𝑗
≤

u(𝑖)
𝑗

u(𝑖)
𝑗
−l(𝑖)

𝑗

(
𝑧

(𝑖)
𝑗
− l(𝑖)

𝑗

)
and a linear lower bound 𝑧

(𝑖)
𝑗
≥ 𝜶(𝑖)

𝑗
𝑧

(𝑖)
𝑗

(0 ≤ 𝜶(𝑖)
𝑗
≤ 1) as illustrated in Figure 4.1d. CROWN replies on a simple heuristic to take 𝛼

(𝑖)
𝑗

as

either 0 or 1 according to the positiveness of the sum of pre-ReLU intermediate bounds u and l. In

Section 4.2, we propose 𝛼-CROWN that can optimize 𝛼 variable with gradient ascent and obtain

much more precise approximation than CROWN. We describe detailed algorithms and some useful

properties of CROWN below.

Bound propagation in CROWN. CROWN can produce bounds in BaB to get linear upper and

lower bounds of NN output w.r.t input 𝑥 ∈ C:

A𝑥 + b ≤ 𝑓 (𝑥) ≤ A𝑥 + b, 𝑥 ∈ C (4.2)

A lower bound 𝑓 can then be simply obtained by taking the lower bound of the linear equation

A𝑥 + b w.r.t input 𝑥 ∈ C, which can be obtained via Hölder’s inequality when C is a ℓ𝑝 norm ball.

To get the coefficients A, A, b, b, CROWN propagates bounds of 𝑓 (𝑥) as a linear function to

the output of each layer, in a backward manner. At the output layer 𝑧(𝐿)(𝑥) we simply have:

I𝑧(𝐿)(𝑥) ≤ 𝑓 (𝑥) ≤ I𝑧(𝐿)(𝑥), 𝑥 ∈ C (4.3)

Then, the next step is to backward propagate the identity linear relationship through a linear layer

55

𝑧(𝐿)(𝑥) = W(𝐿)𝑧(𝐿−1)(𝑥) to get the linear bounds of 𝑓 (𝑥) w.r.t 𝑧(𝐿−1):

W(𝐿)𝑧(𝐿−1)(𝑥) ≤ 𝑓 (𝑥) ≤ W(𝐿)𝑧(𝐿−1)(𝑥), 𝑥 ∈ C (4.4)

To get the linear relationship of 𝑧(𝐿−1) w.r.t 𝑓 (𝑥), we need to backward propagate through ReLU layer

𝑧(𝐿−1)(𝑥) = ReLU(𝑧(𝐿−1)(𝑥)). Since it is nonlinear, we perform linear relaxations. For illustration,

considering the 𝑗-th ReLU neuron at 𝑖-th layer, 𝑧(𝑖)
𝑗

(𝑥) = ReLU(𝑧(𝑖)
𝑗

(𝑥)), we can linearly upper and

lower bound it by 𝑎
(𝑖)
𝑗
𝑧

(𝑖)
𝑗

(𝑥) + 𝑏
(𝑖)
𝑗
≤ 𝑧

(𝑖)
𝑗

(𝑥) ≤ 𝑎
(𝑖)
𝑗
𝑧

(𝑖)
𝑗

(𝑥) + 𝑏
(𝑖)
𝑗 , where 𝑎

(𝑖)
𝑗
, 𝑎

(𝑖)
𝑗
, 𝑏

(𝑖)
𝑗
, 𝑏

(𝑖)
𝑗 are:

𝑎
(𝑖)
𝑗

= 𝑎
(𝑖)
𝑗

= 0, 𝑏(𝑖)
𝑗

= 𝑏
(𝑖)
𝑗 = 0 u(𝑖)

𝑗
≤ 0 (always inactive for 𝑥 ∈ C)

𝑎
(𝑖)
𝑗

= 𝑎
(𝑖)
𝑗

= 1, 𝑏(𝑖)
𝑗

= 𝑏
(𝑖)
𝑗 = 0 l(𝑖)

𝑗
≥ 0 (always active for 𝑥 ∈ C)

𝑎
(𝑖)
𝑗

= 𝛼
(𝑖)
𝑗
, 𝑎

(𝑖)
𝑗

=
u(𝑖)
𝑗

u(𝑖)
𝑗
−l(𝑖)

𝑗

, 𝑏
(𝑖)
𝑗

= 0, 𝑏
(𝑖)
𝑗 = −

u(𝑖)
𝑗

l(𝑖)
𝑗

u(𝑖)
𝑗
−l(𝑖)

𝑗

l(𝑖)
𝑗
< 0, u(𝑖)

𝑗
> 0 (unstable for 𝑥 ∈ C)

(4.5)

Here l(𝑖)
𝑗
≤ 𝑧

(𝑖)
𝑗

(𝑥) ≤ u(𝑖)
𝑗

are intermediate pre-activation bounds for 𝑥 ∈ C, and 𝛼
(𝑖)
𝑗

is an arbitrary

value between 0 and 1. CROWN relies on a simple heuristic by taking 𝛼
(𝑖)
𝑗

as binary values either

0 or 1 according to the indicator of I(u(i)
j + l(i)j ≥ 0). The pre-activation bounds l(𝑖)

𝑗
and u(𝑖)

𝑗
can

be computed by treating 𝑧
(𝑖)
𝑗

(𝑥) as the output neuron with CROWN. In Section 4.2, we propose

𝛼-CROWN that can optimize 𝛼 variable with gradient descent and obtain much more precise

approximation than CROWN.

Figure 4.1(b,c,d) illustrate the relaxation for each state of ReLU neuron. With these linear

relaxations, we can get the linear equation of 𝑧(𝐿−1) w.r.t output 𝑓 (𝑥):

W(𝐿)D(𝐿−1)
𝛼 𝑧(𝐿−1)(𝑥) + b(𝐿) ≤ 𝑓 (𝑥) ≤ W(𝐿)D(𝐿−1)

𝛼 𝑧(𝐿−1)(𝑥) + b(𝐿)
, 𝑥 ∈ C

D(𝐿)
𝛼,(𝑗 , 𝑗) =

𝑎

(𝐿)
𝑗
, W(𝐿)

𝑗
≥ 0

𝑎
(𝐿)
𝑗
, W(𝐿)

𝑗
< 0

, b(𝐿) = b′(𝐿)⊤W(𝐿), where b′(𝐿)
𝑗

=

𝑏

(𝐿)
𝑗
, W(𝐿)

𝑗
≥ 0

𝑏
(𝐿)
𝑗 , W(𝐿)

𝑗
< 0

(4.6)

The diagonal matrices D(𝐿−1)
𝛼 , D(𝐿−1)

𝛼 and biases reflects the linear relaxations and also considers

56

the signs in W(𝐿) to maintain the lower and upper bounds. The definitions for 𝑗-th diagonal element

D(𝐿)
𝛼,(𝑗 , 𝑗) and bias b(𝐿)

are similar, with the conditions for checking the signs of W(𝐿)
𝑗

swapped.

Importantly, D(𝐿−1)
𝛼 has free variables 𝛼(𝑖)

𝑗
∈ [0, 1] which do not affect correctness of the bounds.

We can continue backward propagating these bounds layer by layer (e.g., 𝑧(𝐿−2)(𝑥), 𝑧(𝐿−2)(𝑥), etc)

until reaching 𝑧(0)(𝑥) = 𝑥, getting the eventual linear equations of 𝑓 (𝑥) in terms of input 𝑥:

L(𝑥,𝜶) ≤ 𝑓 (𝑥) ≤ U(𝑥,𝜶), ∀𝑥 ∈ C, where

L(𝑥,𝜶) = W(𝐿)D(𝐿−1)
𝛼 · · ·D(1)

𝛼 W(1)𝑥 + b, U(𝑥,𝜶) = W(𝐿)D(𝐿−1)
𝛼 · · ·D(1)

𝛼 W(1)𝑥 + b
(4.7)

Here 𝜶 denotes 𝛼(𝑖)
𝑗

for all unstable ReLU neurons in NN. The obtained bounds (L(𝑥,𝜶),U(𝑥,𝜶))

of 𝑓 (𝑥) are linear functions in terms of 𝑥. Beyond the simple feedforward NN presented here,

CROWN can support more complicated NN architectures like DenseNet and Transformers by

computing L and U automatically and efficiently on general computational graphs [37].

We summarized some useful lemmas for CROWN propagation below which will be used for

the important proofs for our 𝛽-CROWN theories in Section 4.3:

Lemma 4.1.1 (ReLU relaxation in CROWN). Given 𝑤, 𝑣 ∈ R𝑑 , l ≤ 𝑣 ≤ u (element-wise), we have

𝑤⊤ReLU(𝑣) ≥ 𝑤⊤D𝑣 + 𝑏′,

where D is a diagonal matrix containing free variables 0 ≤ 𝜶 𝑗 ≤ 1 only when u 𝑗 > 0 > l 𝑗 and

𝑤 𝑗 ≥ 0, while its rest values as well as constant 𝑏′ are determined by l, u, 𝑤.

Detailed forms of each term are listed in Section 4.3.5. Lemma 4.1.1 can be repeatedly applied,

resulting in an efficient back-substitution procedure to derive a linear lower bound of NN output

w.r.t. 𝑥:

Lemma 4.1.2 (CROWN bound [31]). Given an 𝐿-layer ReLU NN 𝑓 (𝑥) : R𝑑0 → R with weights

57

W(𝑖), biases b(𝑖), pre-ReLU bounds l(𝑖) ≤ 𝑧(𝑖) ≤ u(𝑖) (1 ≤ 𝑖 ≤ 𝐿), input constraint 𝑥 ∈ C. We have

min
𝑥∈C

𝑓 (𝑥) ≥ min
𝑥∈C

𝒂⊤CROWN𝑥 + 𝑐CROWN

where 𝒂CROWN and 𝑐CROWN can be computed using W(𝑖), b(𝑖), l(𝑖), u(𝑖) in polynomial time.

When C is an ℓ𝑝 norm ball, minimization over the linear function can be easily solved using

Hölder’s inequality. The main benefit of CROWN is its efficiency: CROWN can be efficiently

implemented on machine learning accelerators such as GPUs [37] and TPUs [45], and it can be

a few magnitudes faster than an LP verifier which is hard to parallelize on GPUs. CROWN was

generalized to general architectures [37, 145] while we only demonstrate it for feedforward ReLU

networks for simplicity. In Section 4.2, we will show that it is possible to optimize the slope of

the lower bound, 𝜶, using gradient ascent, to further tighten the bound. We refer to such CROWN

variance with optimizable parameter 𝜶 as 𝛼-CROWN. 𝛼-CROWN can further be efficiently used in

BaB (𝛼-CROWN BaB) and achieve state-of-the-art complete verification performance running on

GPUs.

Soundness of CROWN. The above backward bound propagation process guarantees that L(𝑥, 𝛼)

and U(𝑥, 𝛼) soundly bound 𝑓 (𝑥) for all 𝑥 ∈ C. Detailed proofs can be found in [31, 95] for

feedforward NNs and [37] for general networks.

4.2 Complete Verification with 𝛼-CROWN BaB

4.2.1 Overview of 𝛼-CROWN BaB

In this section, we will introduce a tighter incomplete verifier 𝛼-CROWN which is an improved

variance of CROWN [31]. We aim to use this fast incomplete verifier in branch and bound (BaB)

for efficient complete neural network verification on GPUs. Unlike other bound propagation

methods [31, 26, 32, 95] which are generally considered too loose to be useful compared to

traditional LP verifiers in the complete verification settings with BaB, 𝛼-CROWN is solving an

58

Figure 4.2: Illustration of our 𝛼-CROWN and the BaB process on a two-layer neural network.

equal formulation to LP verifier and can produce equal or even tighter approximation on many

cases. More importantly, compared to expensive LP verifiers, 𝛼-CROWN exhibits high parallelism

as the bound propagation methods and can fully exploit machine learning accelerators (e.g., GPUs

and TPUs). On a few standard and representative benchmarks, our proposed 𝛼-CROWN BaB

framework can outperform previous baselines significantly, with a speedup of around 30X compared

to basic BaB baselines using LP verifiers [26, 27, 30, 40, 20], and up to 3X compared to recent

state-of-the-art GPU-based complete BaB verifiers [38].

In Figure 4.2, we provide a two-layer NN example to illustrate how our incomplete verifier

𝛼-CROWN can improve the performance of branch and bound complete verification. Given a

two-layer neural network and desired input ranges for 𝑥, we aim to verify output 𝑓 (𝑥) ≥ 0. For each

ReLU neuron, 𝛼-CROWN chooses optimized slopes for its lower bound, allowing to tighten the

intermediate layer bounds 𝒍(𝑖)
𝑗

and 𝒖(𝑖)
𝑗

. The tightened intermediate bounds will contribute to a much

tighter output layer lower bound 𝑓 . Branch and bound procedure will first split unstable ReLU

neuron 𝑧
(2)
2 and then 𝑧

(2)
1 to improve 𝑓 . Using our incomplete verifier 𝛼-CROWN to bound each

split subdomain allowing us to verify all sub-domains (𝑓 ≥ 0). Branch and bound using weaker

incomplete verifiers like CROWN or symbolic interval analysis will require more branch and bound

steps and much more verification time.

In Section 4.2.2, we will first introduce our proposed efficient optimization of CROWN bounds,

𝛼-CROWN. 𝛼-CROWN can allow us to achieve tight approximation on par with LP or even tighter

59

for some cases but in a much faster manner on GPUs. In Section 4.2.3, we propose a batch

split design by solving a batch of sub-domains in a massively parallel manner on GPUs to fully

leverage the benefits of cheap and parallelizable 𝛼-CROWN. However, we noticed that directly

using CROWN variances in branch and bound cannot guarantee the completeness. Therefore, we

design our algorithm with minimal usage of LP for checking feasibility of splits in Section 4.2.4.

Finally in Section 4.2.5, we describe the detailed algorithm for our complete BaB based verification

using 𝛼-CROWN, which is also known as Fast-and-Complete [35]. We provide comprehensive

experimental evaluations for 𝛼-CROWN BaB together with its improved variance 𝛽-CROWN BaB

in Section 4.4.

4.2.2 𝛼-CROWN: An Optimized Linear Relaxation Bound

Concrete outer bounds with optimizable parameters. We propose to use 𝛼-CROWN as the

bounding step in BaB. A pair of sound and concrete lower bound and upper bound (𝑓 , 𝑓) to 𝑓 (𝑥)

can be obtained according to Eq. 4.7 given fixed 𝜶 = 𝜶0:

𝑓 (𝜶0) = min
𝑥∈C

L(𝑥,𝜶0), 𝑓 (𝜶0) = max
𝑥∈C

U(𝑥,𝜶0) (4.8)

Because L, U are linear functions w.r.t 𝑥 when 𝜶0 is fixed, it is easy to solve Eq. 4.8 using Hölder’s

inequality when C is a ℓ𝑝 norm ball [37]. In incomplete verification settings, 𝜶 can be set via certain

heuristics [31]. [107] showed that, the variable 𝜶 is equivalent to dual variables in the LP relaxed

verification problem [32]. Thus, an optimal selection of 𝜶 given the same pre-activation bounds l(𝑖)
𝑗

and u(𝑖)
𝑗

can in fact, lead to the the same optimal solution for 𝑓 and 𝑓 as in LP.

Previous complete verifiers typically use bound propagation methods like CROWN variants [26,

31] to obtain intermediate layer bounds to construct an LP problem ([27, 30]) and solve the LP to

obtain bounds at output layer. The main reason for using LP is that it typically produces much tighter

bounds than CROWN when 𝜶 is not optimized. We use 𝛼-CROWN, which is fast, accelerator-

friendly, and can produce tighter bounds, well outperforming LP for complete verification:

60

𝑓 = min
𝜶

min
𝑥∈C

L(𝑥,𝜶), 𝑓 = max
𝜶

max
𝑥∈C

U(𝑥,𝜶), 𝛼
(𝑖)
𝑗
∈ [0, 1] (4.9)

The inner minimization or maximization has closed form solutions [37] based on Hölder’s inequality,

so we only need to optimize on 𝜶. Since we use a differentiable framework [37] to compute the

𝛼-CROWN bound functions L and U, the gradients 𝜕L
𝜕𝜶 and 𝜕U

𝜕𝜶 can be obtained easily. Optimization

over 𝜶 can be done via projected gradient descent (each coordinate of 𝜶 is constrained in [0, 1]).

Since the gradient computation and optimization are done on GPUs, the bounding process is still

very fast and can be one or two magnitudes faster than solving an LP.

𝛼-CROWN bounds can be tighter than LP verifier. Solving Eq. 4.9 using gradient descent

cannot guarantee to converge to the global optima, so it seems the bounds must be looser than

LP. Counter-intuitively, by optimizing 𝜶, we can potentially obtain tighter bounds than LP. When

a “triangle” relaxation is constructed for LP, intermediate pre-activation bounds l(𝑖)
𝑗

, u(𝑖)
𝑗

must be

fixed for the 𝑗-th ReLU in layer 𝑖. During the LP optimization process, only the output bounds are

optimized; intermediate bounds stay unchanged. However, in the CROWN formulation, L(𝑥,𝜶) and

U(𝑥,𝜶) are complex functions of 𝜶: since intermediate bounds are also computed by CROWN, they

depend on all 𝛼(𝑖′)
𝑗 ′ (0 < 𝑖′ < 𝑖) in previous layers. Thus, the gradients 𝜕L

𝜕𝜶 and 𝜕U
𝜕𝜶 can tighten output

layer bounds 𝑓 and 𝑓 indirectly by tightening intermediate layer bounds, forming a tighter convex

relaxation for the next iteration. An LP solver cannot achieve this because adding l(𝑖)
𝑗

and u(𝑖)
𝑗

as

optimization variables makes the problem non-linear. This is the key to our success of applying

CROWN based bounds for the complete verification setting, where tighter bounds are essential.

In Figure 4.3, we illustrate our 𝛼-CROWN bounds and the LP solution. Initially, we use

CROWN with 𝜶 set via a fast heuristic to compute intermediate layer bounds l(𝑖)
𝑗

and u(𝑖)
𝑗

, and

then use them to build a relaxed LP problem. The solution to this initial LP problem (red line) is

much tighter than the CROWN solution with the heuristically set 𝜶 (the left-most point of the blue

line). Then, we optimize 𝜶 with gradient decent, and CROWN quickly outperforms this initial

LP solution due to optimized tighter intermediate layer bounds. We can create a new LP with

61

0 50 100 150 200
iteration

12

10

8

6

4

2

lo
we

r b
ou

nd

LP initial bound
optimized LiRPA bound
LP optimized bound

Figure 4.3: 𝛼-CROWN bound (0 to 200 iterations) vs LP bounds.

optimized intermediate bounds (light blue line), producing a slightly tighter bound than CROWN

with optimized 𝜶. 𝛼-CROWN can converge to the light blue line when we take the optimal 𝜶 values.

The LP bounds in most existing complete verifiers all use intermediate layer bounds obtained from

CROWN bounds or even weaker methods like interval arithmetic, ending up to the solutions much

lower than the red line in Figure 4.3. Instead, our 𝛼-CROWN bounds can produce tight bounds, and

also exploit parallel acceleration from machine learning accelerators, leading to huge improvements

in verification time compared to existing baselines.

ReLU Split Constraints. In the BaB process, when a ReLU ℎ
(𝑖)
𝑗

is split into two sub-domains

(ℎ(𝑖)
𝑗
≥ 0 and ℎ

(𝑖)
𝑗
< 0), we simply set 𝒍(𝑖)

𝑗
≥ 0 and 𝒖(𝑖)

𝑗
< 0 in bounding step. It tighten the CROWN

bounds by forcing the split ReLU linear, reducing relaxation errors. However, when splits are added,

CROWN and LP are not equivalent even under fixed l(𝑖)
𝑗

, u(𝑖)
𝑗

and optimal 𝜶. After splits, CROWN

cannot check certain constraints where LP is capable to, as we will discuss in the next section.

4.2.3 Batch Splits

SOTA BaB methods [40, 30] only split one sub-domain during each branching step. Since we

use cheap and GPU-friendly CROWN bounds, we can select a batch of sub-domains to split and

propagate their CROWN bounds in a batch. Such a batch splitting design can greatly improve

hardware efficiency on GPUs. Given a batch size 𝑛 that allows us to fully use the GPU memory

62

available, we can obtain 𝑛 bounds simultaneously. It grows the search tree on a single leaf by a

depth of log2 𝑛, or split 𝑛/2 leaf nodes at the same time, accelerating by up to 𝑛 times.

4.2.4 Completeness with Minimal Usage of LP Bounding Procedure

Even though our 𝛼-CROWN can bring us huge speed improvement over LP for BaB based

verification, we observe that it may end up to be incomplete due to the lack of feasibility checking:

it cannot detect some conflicting settings of ReLU splits. We state such an observation in the

following theorem:

Theorem 4.2.1 (Incompleteness without feasibility checking). When using CROWN variants

described in Section 4.1.3 as the bounding procedure, BaB based verification is incomplete.

Proof. We prove Theorem 4.2.1 by providing a simple counterexample, and we illustrate the

necessity of feasibility checking for the completeness of BaB based verification. Consider an NN

with only two ReLU units 𝑧(2)
1 = ReLU(𝑧(2)

1) and 𝑧
(2)
2 = ReLU(𝑧(2)

2) where they share the same one

dimension input 𝑧(2)
1 = 𝑧

(2)
2 = 𝑥. The final output function of NN is defined as 𝑓 = 𝑧

(2)
1 − 𝑧

(2)
2 . As a

verification problem, we want to verify the property 𝑓 ≥ 0 where 𝑥 = [−1, 1]. Since hidden nodes 𝑧1

and 𝑧2 are exactly the same, the ground-truth output range is 𝑓 ∗(𝑥) ∈ [0, 0]. A complete BaB based

verifier is expected to obtain that optimal bound and prove the property after splitting 𝑧1 and 𝑧2

together while BaB with only CROWN variances cannot guarantee that completeness. Specifically,

BaB with only CROWN variances will split the original domain 𝑥 ∈ [−1, 1] into four subdomains

and approximate the bound with CROWN respectively:

(1) (feasible) sub-domain 𝑥 ∈ [−1, 1], 𝑧(2)
1 ≥ 0, 𝑧(2)

2 ≥ 0 with output 𝑓 = [𝑥, 𝑥] − [𝑥, 𝑥] ∈ [0, 0]

(2) (feasible) sub-domain 𝑥 ∈ [−1, 1], 𝑧(2)
1 < 0, 𝑧(2)

2 < 0 with output 𝑓 = [0, 0] − [0, 0] ∈ [0, 0]

(3) (infeasible) sub-domain 𝑥 ∈ [−1, 1], 𝑧(2)
1 < 0, 𝑧(2)

2 ≥ 0 with output 𝑓 = [0, 0]−[𝑥, 𝑥] ∈ [−1, 1]

(4) (infeasible) sub-domain 𝑥 ∈ [−1, 1], 𝑧(2)
1 ≥ 0, 𝑧(2)

2 < 0 with output 𝑓 = [𝑥, 𝑥]−[0, 0] ∈ [−1, 1]

Only the first two split subdomains are feasible and therefore the ground-truth lower bound

0 can be obtained by taking the minimum of the estimated bounds from subdomains (1) and (2).

However, CROWN variances only are not able to tell the infeasibility of subdomains (3) and (4) and

63

thus it will report the minimum −1 got from all these four subdomains as the global lower bound

for the original input domain, ending up not being able to verify the property, i.e., incomplete.

We prove the Theorem 4.2.1 by giving a counter-example above where all ReLU neurons are

split and thus 𝛼-CROWN runs on a linear network for each sub-domain. As a result, 𝛼-CROWN

can still be indecisive for the verification problem. The main reason is that CROWN variants will

lose the feasibility information encoded by the sub-domain constraints. For illustration, consider a

sub-domain C𝑖 = 𝐶 ∩ (𝑧(𝑖1)
𝑗1

< 0) ∩ (𝑧(𝑖2)
𝑗2
≥ 0), CROWN variances will force 𝑧

(𝑖1)
𝑗1

(𝑥) = 0 (inactive

ReLU, a zero function) and 𝑧
(𝑖2)
𝑗2

(𝑥) = 𝑧
(𝑖2)
𝑗2

(𝑥) (active ReLU, an identity function) respectively and

propagate these bounds to get the approximated lower bound 𝑓
C𝑖

. However, the split feasibility

constraint (𝑧(𝑖1)
𝑗1

< 0) ∩ (𝑧(𝑖2)
𝑗2
≥ 0) is ignored, so two conflict splits may be conducted (e.g., when

𝑧
(𝑖1)
𝑗1

< 0, 𝑧(𝑖2)
𝑗2

cannot be ≥ 0). On the contrary, LP can fully preserve such feasibility information

due to the linear solver involved and detect the infeasible subdomains. Then, in Theorem 4.2.2 we

show that the minimal usage of feasibility checking with LP can guarantee the completeness of BaB

with CROWN variances including 𝛼-CROWN.

Theorem 4.2.2 (Minimal feasibility checking for completeness). When using CROWN variants

described in Section 4.1.3 as the bounding procedure, BaB based verification is complete if all infea-

sible leaf subdomains (i.e., subdomains cannot be further split) are detected by linear programming.

Proof. We prove Theorem 4.2.2 by considering the worst case where all unstable ReLU neurons are

split. Given a neural network function 𝑓 with input domain C, assume there are 𝑁 unstable ReLU

neurons {𝑧𝑖 = ReLU(𝑧𝑖)|𝑖 = 1, · · · , 𝑁} in total. In the worst case, we have 2𝑁 leaf subdomains

S = {C𝑖 |𝑖 = 1, · · · , 2𝑁 }, where each C𝑖 corresponds to one assignment of unstable ReLU neuron

64

splits. For example, we can have

C1 = C ∩ (𝑧1 ≥ 0) ∩ (𝑧2 ≥ 0) ∩ · · · ∩ (𝑧𝑁 ≥ 0)

C2 = C ∩ (𝑧1 < 0) ∩ (𝑧2 ≥ 0) ∩ · · · ∩ (𝑧𝑁 ≥ 0)

C3 = C ∩ (𝑧1 ≥ 0) ∩ (𝑧2 < 0) ∩ · · · ∩ (𝑧𝑁 ≥ 0)

C4 = C ∩ (𝑧1 < 0) ∩ (𝑧2 < 0) ∩ · · · ∩ (𝑧𝑁 ≥ 0)

· · ·

Note that by definition the original input domain C = ∪C′∈SC′; in other words, all the 2𝑁 split

subdomains combined will be the same as the original input domain.

Not all of the subdomains are actually feasible, due to the consistency requirements between

neurons. For example, in our proof for Theorem 4.2.1, 𝑧(2)
1 and 𝑧

(2)
2 cannot be both ≥ 0 or both < 0.

We can divide the subdomains S into two mutually exclusive sub-sets, Sfeas for all the feasible

subdomains, and Sinfeas for all the infeasible subdomains. We have C = ∪C′∈SfeasC′ since these

infeasible subdomains are empty sets.

We first show that linear programming (LP) can be used to effectively detect these infeasible

subdomains. For some C′ ∈ Sinfeas, because all the ReLU neurons are fixed to be positive or

negative, no relaxation is needed and the network is essentially linear; thus, the input value of every

hidden neuron 𝑧𝑖 can be written as a linear equation w.r.t. input 𝑥. We add all the Boolean predicates

on 𝑧𝑖 to a LP problem as linear constraints w.r.t 𝑥. If this LP is feasible, then we can find some input

𝑥0 that assigns compatible values to all 𝑧𝑖; otherwise, the LP is infeasible.

Due to the lack of feasibility checking in CROWN variances, the computed global lower bounds

from CROWN variances are 𝑓
CROWN

= minC′∈S 𝑓
C′

= min
(
minC′∈Sfeas 𝑓 C′

,minC′∈Sinfeas 𝑓 C′

)
.

With feasibility checking from LP, we can remove all infeasible subdomains from this min such

that they do not contribute to the global lower bound: 𝑓 = minC′∈Sfeas 𝑓 C′
. To prove the whole

BaB verification is complete, it is sufficient to prove this lower bound 𝑓 is the exact minimum of

𝑓 bounded in C. Since any sub-domain C′ ∈ Sfeas is a leaf sub-domain with no unstable ReLU

65

neurons, the neural network bounded within C′ is a linear function. CROWN variances can give an

exact minimum of 𝑓 within sub-domain C′ . Since C = ∪C′∈SfeasC′ (in other words, Sfeas covers

all the feasible subdomains within C), the minimal value for all of them 𝑓 = minC′∈Sfeas 𝑓 C′
forms

the exact minimum of 𝑓 within the input domain C. Thus, BaB with CROWN variances based

bounding procedure is complete when feasibility checking is applied.

We prove Theorem 4.2.2 above, where we show that by checking the feasibility of splits with LP,

we can eliminate the cases where incompatible splits are chosen in the CROWN BaB process. Since

LP is slow while 𝛼-CROWN is highly efficient, we propose to only use LP when the 𝛼-CROWN

based bounding process is stuck, either (1) when partitioning and bounding new subdomains with

𝛼-CROWN cannot further improve the bounds, or (2) when all unstable neurons have been split. In

this way, the infeasible subdomains can be eventually detected by occasional usage of LP while the

advantage of massive parallel 𝛼-CROWN on GPUs is fully enjoyed.

4.2.5 Complete Verification Framework 𝛼-CROWN BaB

Our CROWN based complete verification framework is presented in Alg. 3. The algorithm takes

a target NN function 𝑓 and a domain C as inputs. We run 𝛼-CROWN to get initial bounds (𝑓 , 𝑓)

for 𝑥 ∈ C (Line 2). Then we utilize the power of GPUs to split in parallel and maintain a global set

P storing all the sub-domains which cannot be verified with 𝛼-CROWN (Line 5-10). Specifically,

batch_pick_out improves BaBSR [27] in a parallel manner to select 𝑛 sub-domains in P and

determine the corresponding ReLU neuron to split for each of them. If the length of P is less than 𝑛,

then we reduce 𝑛 to the length of P. batch_split splits each selected C𝑖 to two sub-domains

C𝑙
𝑖

and C𝑢
𝑖

by forcing the selected unstable ReLU neuron to be positive and negative, respectively.

alpha_CROWN optimizes parameters 𝜶 for each subdomain, runs 𝛼-CROWN in parallel as a batch,

and returns the lower and upper bounds for 𝑛 selected sub-domains simultaneously. Dom_Filter

filters out verified sub-domains (proved with 𝑓
C𝑖
≥ 0) and we insert the remaining ones to P. The

loop breaks if the property is proved (𝑓 ≥ 0) or a counter-example is found in any sub-domain

(𝑓 < 0).

66

Algorithm 3 Parallel BaB with optimized 𝛼-CROWN bounding (we highlight the differences
between our algorithm and regular BaB [27] in blue. Comments are in brown.)

1: Inputs: 𝑓 , C, 𝑛 (batch size), [(threshold to switch to LP)
2: (𝑓 , 𝑓)← alpha_CROWN(𝑓 , [C])

3: P←
[
(𝑓 , 𝑓 , C)

]
⊲ P is the set of all unverified sub-domains

4: while 𝑓 < 0 and 𝑓 ≥ 0 do
5: (C1, . . . , C𝑛)← batch_pick_out(P, 𝑛) ⊲ Pick sub-domains to split and removed them from P
6:

[
C𝑙1, C

𝑢
1 , . . . , C

𝑙
𝑛, C𝑢𝑛

]
← batch_split(C1, . . . , C𝑛) ⊲ Each C𝑖 splits into two sub-domains C𝑙

𝑖
and

C𝑢
𝑖

7:

[
𝑓
C𝑙1
, 𝑓 C𝑙1

, 𝑓
C𝑢1
, 𝑓 C𝑢1

, . . . , 𝑓
C𝑙𝑛
, 𝑓 C𝑙𝑛 , 𝑓 C𝑢𝑛

, 𝑓 C𝑢𝑛

]
← alpha_CROWN(𝑓 ,

[
C𝑙1, C

𝑢
1 , . . . , C

𝑙
𝑛, C𝑢𝑛

]
) ⊲

Compute lower and upper bounds using 𝛼-CROWN for each sub-domain on GPUs in a batch

8: P← P⋃Dom_Filter
(
[𝑓
C𝑙1
, 𝑓 C𝑙1

, C𝑙1], [𝑓
C𝑢1
, 𝑓 C𝑢1

, C𝑢1], . . . , [𝑓
C𝑙𝑛
, 𝑓 C1

𝑛
, C𝑙𝑛], [𝑓

C𝑢𝑛
, 𝑓 C𝑢𝑛 , C

𝑢
𝑛]
)

⊲

Filter out verified sub-domains, insert the left domains back to P
9: 𝑓 ← min{ 𝑓

C𝑖
| (𝑓

C𝑖
, C𝑖) ∈ P}, 𝑖 = 1, . . . , 𝑛 ⊲ To ease notation, C𝑖 here indicates both C𝑢

𝑖
and C𝑙

𝑖

10: 𝑓 ← min{ 𝑓 C𝑖 | (𝑓 C𝑖 , C𝑖) ∈ P}, 𝑖 = 1, . . . , 𝑛
11: if length(P) > [then ⊲ Fall back to LP for completeness

12:

[
𝑓
C𝑙1
, 𝑓 C𝑙1

, 𝑓
C𝑢1
, 𝑓 C𝑢1

, . . . , 𝑓
C𝑙𝑛
, 𝑓 C𝑙𝑛 , 𝑓 C𝑢𝑛

, 𝑓 C𝑢𝑛

]
← LP_verifier(𝑓 ,

[
C𝑙1, C

𝑢
1 , . . . , C

𝑙
𝑛, C𝑢𝑛

]
)

13: P← P⋃Dom_Filter
(
[𝑓
C𝑙1
, 𝑓 C𝑙1

, C𝑙1], [𝑓
C𝑢1
, 𝑓 C𝑢1

, C𝑢1], . . . , [𝑓
C𝑙𝑛
, 𝑓 C1

𝑛
, C𝑙𝑛], [𝑓

C𝑢𝑛
, 𝑓 C𝑢𝑛 , C

𝑢
𝑛]
)

14: Outputs: 𝑓 , 𝑓

To avoid excessive splits, we set the maximum length of the sub-domains to [(Line 12). Once

the length of P reaches this threshold, LP_verifier will be called. It solves these [sub-domains

by LP (one by one in a loop, or in parallel if using multiple CPUs is allowed) with 𝛼-CROWN

computed intermediate layer bounds. If a sub-domain C𝑖 ∈ P (which previously cannot be verified

by CROWN) is proved or detected to be infeasible by LP, as an effective heuristic, we will backtrack

and prioritize to check its parent node with LP. If the parent sub-domain is also proved or infeasible,

we can prune all its child nodes to greatly reduce the size of the search tree.

Completeness of our framework. Our algorithm is complete, because we follow Theorem 4.2.2

and check feasibility of all split sub-domains that have deep BaB search tree depth (length of P

reaches threshold [), forming a superset of the worst case where all ReLU neurons are split.

67

4.3 Complete Verification with 𝛽-CROWN BaB

As introduced in Section 4.1.2, many complete verifiers rely on branch and bound (BaB)

method [27] involving (1) branching by recursively splitting the original verification problem into

subdomains (e.g., splitting a ReLU neuron into positive/negative linear regions by adding split

constraints) and (2) bounding each subdomain with specialized incomplete verifiers. Traditional

BaB-based verifiers use expensive linear programming (LP) solvers [20, 30, 40] as incomplete

verifiers which can fully encode neuron split constraints. Meanwhile, our recent verifier 𝛼-CROWN

BaB (also known as Fast-and-Complete) [35] introduced in Section 4.2 demonstrates that cheap

incomplete verifiers can significantly accelerate complete verification on GPUs over LP-based

ones thanks to their efficiency. Many cheap incomplete verifiers are based on bound propagation

methods [31, 32, 25, 96, 34, 95, 37, 33, 111, 92], i.e., maintaining and propagating tractable and

sound bounds through networks, and CROWN [31] is a representative which propagates a linear

bound as introduced in Section 4.1.3.

However, unlike LP based verifiers, existing bound propagation methods lack the power to

handle neuron split constraints introduced by BaB. For instance, given inputs 𝑥, 𝑦 ∈ [−1, 1], they can

bound a ReLU’s input 𝑥 + 𝑦 as [−2, 2] but they have no means to consider neuron split constraints

such as 𝑥 − 𝑦 ≥ 0 introduced by splitting another ReLU to the positive linear region. Such a

problem causes looser bounds and unnecessary branching, hurting the verification efficiency. Even

worse, without considering these split constraints, bound propagation methods cannot detect many

infeasible subdomains in BaB [35], leading to incompleteness unless costly checking is performed.

In this section, we propose a new, fast bound propagation based incomplete verifier, 𝛽-CROWN.

It solves an optimization problem equivalent to the expensive LP based methods with neuron split

constraints while still enjoying the efficiency of bound propagation methods. 𝛽-CROWN contains

optimizable parameters 𝜷 which come from propagation of Lagrangian multipliers, and any valid

settings of these parameters yield sound bounds for verification. These parameters are optimized

using a few steps of gradient ascent to achieve bounds as tight as possible. Optimizing 𝜷 can

68

also eliminate many infeasible subdomains and avoid further useless branching. Furthermore,

we can jointly optimize intermediate layer bounds similar to [37] but also with the additional

parameters 𝜷, allowing 𝛽-CROWN to tighten relaxations and outperform typical LP verifiers with

fixed intermediate layer bounds. Unlike traditional LP-based BaB methods, 𝛽-CROWN can be

efficiently implemented with an automatic differentiation framework on GPUs to fully exploit the

power of modern accelerators.

The combination of 𝛽-CROWN and BaB (𝛽-CROWN BaB) produces a complete verifier

with GPU acceleration, reducing the verification time of traditional LP based BaB verifiers [27]

by up to three orders of magnitudes on a commonly used benchmark suite on CIFAR-10 [38,

39]. Compared to all state-of-the-art GPU-based complete verifiers [40, 35, 39, 30, 38, 41, 90],

our approach is noticeably faster with lower timeout rates. Our algorithm empowered the tool

𝛼,𝛽-CROWN (alpha-beta-CROWN), which won the 2nd International Verification of Neural

Networks Competition [42] (VNN-COMP 2021) with the highest total score and verified the most

number of problem instances in 8 benchmarks.

Finally, by terminating our complete verifier 𝛽-CROWN BaB early, our approach can also

function as a more accurate incomplete verifier by returning an incomplete but sound lower bound

of all subdomains explored so far. We achieve better verified accuracy on a few benchmarking

models over powerful incomplete verifiers including those based on tight linear relaxations [108,

89, 109] and semidefinite relaxations [114]. Compared to the typically tightest but very costly

incomplete verifier SDP-FO [114] based on the semidefinite programming (SDP) relaxations [111,

113], our method obtains consistently higher verified accuracy while reducing verification time by

three orders of magnitudes.

In this section, we first formally state the main theorem of 𝛽-CROWN derived from primal

space, illustrating the intuitions on how 𝛽-CROWN handles neuron split constraints without costly

LP solvers in Section 4.3.1. Then we demonstrate that the same 𝛽-CROWN theorem can be derived

from dual space and how it is connected to the primal theorem in Section 4.3.2. In Section 4.3.3, we

discuss how to tighten the intermediate bounds using free parameters 𝜶, 𝜷, able to produce even more

69

accurate approximations than LP verifiers for subproblems in BaB under neuron split constraints.

Lastly in section 4.3.4, we formally propose 𝛽-CROWN BaB, a state-of-the-art complete verifier

that can also serve as a strong incomplete verifier when stopped early. Comprehensive experimental

results for our 𝛼-CROWN BaB (also known as Fast and Complete [35]) and 𝛽-CROWN BaB (also

known as 𝛼, 𝛽-CROWN [36]) are presented in Section 4.4.

4.3.1 𝛽-CROWN in Primal Space

As introduced in Section 4.1.2, the NN verification problem under neuron split constraints can

be seen as an optimization problem:

min
𝑥∈C,𝑧∈Z

𝑓 (𝑥). (4.10)

Bound propagation methods like CROWN can give a relatively tight lower bound for min𝑥∈C 𝑓 (𝑥)

but they cannot handle the neuron split constraints 𝑧 ∈ Z. Before we present our main theorem, we

first show the intuition on how to apply split constraints to the bound propagation process.

To encode the neuron splits, we first define diagonal matrix S(𝑖) ∈ R𝑑𝑖×𝑑𝑖 in Equation 4.11

where 𝑖 ∈ [1, · · · 𝐿 − 1], 𝑗 ∈ [1, · · · , 𝑑𝑖] are indices of layers and neurons, respectively:

S(𝑖)
𝑗 , 𝑗

= −1(if split 𝑧(𝑖)
𝑗
≥ 0); S(𝑖)

𝑗 , 𝑗
= +1(if split 𝑧(𝑖)

𝑗
< 0); S(𝑖)

𝑗 , 𝑗
= 0(if no split 𝑧(𝑖)

𝑗
) (4.11)

We start from the last layer and derive linear bounds for each intermediate layer 𝑧(𝑖) and 𝑧(𝑖) with

both constraints 𝑥 ∈ C and 𝑧 ∈ Z. We also assume that pre-ReLU bounds l(𝑖) ≤ 𝑧(𝑖) ≤ u(𝑖) for

each layer 𝑖 are available (see discussions in Section 4.3.3 on these intermediate layer bounds). We

initially have:

min
𝑥∈C,𝑧∈Z

𝑓 (𝑥) = min
𝑥∈C,𝑧∈Z

W(𝐿)𝑧(𝐿−1) + b(𝐿). (4.12)

Since 𝑧(𝐿−1) = ReLU(𝑧(𝐿−1)), we can apply Lemma 4.1.1 to relax the ReLU neuron at layer 𝐿 − 1,

70

and obtain a linear lower bound for 𝑓 (𝑥) w.r.t. 𝑧(𝐿−1) (we omit all constant terms to avoid clutter):

min
𝑥∈C,𝑧∈Z

𝑓 (𝑥) ≥ min
𝑥∈C,𝑧∈Z

W(𝐿)D(𝐿−1)𝑧(𝐿−1) + const.

To enforce the split neurons at layer 𝐿−1, we use a Lagrange function with 𝜷(𝐿−1)⊤S(𝐿−1) multiplied

on 𝑧(𝐿−1):

min
𝑥∈C,𝑧∈Z

𝑓 (𝑥) ≥ min
𝑥∈C

�̃�(𝐿−2)∈Z̃(𝐿−2)

max
𝜷(𝐿−1)≥0

W(𝐿)D(𝐿−1)𝑧(𝐿−1) + 𝜷(𝐿−1)⊤S(𝐿−1)𝑧(𝐿−1) + const

≥ max
𝜷(𝐿−1)≥0

min
𝑥∈C

�̃�(𝐿−2)∈Z̃(𝐿−2)

(
W(𝐿)D(𝐿−1) + 𝜷(𝐿−1)⊤S(𝐿−1)

)
𝑧(𝐿−1) + const

(4.13)

The first inequality is due to the definition of the Lagrange function: we remove the constraint

𝑧(𝐿−1) ∈ Z(𝐿−1) and use a multiplier to replace this constraint. The second inequality is due to

weak duality. Due to the design of S(𝐿−1), neuron split 𝑧(𝐿−1)
𝑗

≥ 0 has a negative multiplier −𝜷(𝐿−1)
𝑗

and split 𝑧(𝐿−1)
𝑗

< 0 has a positive multiplier 𝜷(𝐿−1)
𝑗

. Any 𝜷(𝐿−1) ≥ 0 yields a lower bound for the

constrained optimization problem. Then we substitute 𝑧(𝐿−1) with W(𝐿−1)𝑧(𝐿−2) + b(𝐿−1) for next

layer:

min
𝑥∈C,𝑧∈Z

𝑓 (𝑥) ≥ max
𝜷(𝐿−1)≥0

min
𝑥∈C

�̃�(𝐿−2)∈Z̃(𝐿−2)

(
W(𝐿)D(𝐿−1) + 𝜷(𝐿−1)⊤S(𝐿−1)

)
W(𝐿−1)𝑧(𝐿−2) + const (4.14)

We define a matrix A(𝑖) to represent the linear relationship between 𝑓 (𝑥) and 𝑧(𝑖), where A(𝐿−1) =

W(𝐿) according to Equation 4.12 and A(𝐿−2) = (A(𝐿−1)D(𝐿−1) + 𝜷(𝐿−1)⊤S(𝐿−1))W(𝐿−1) by Equa-

tion 4.14. Considering 1-dimension output 𝑓 (𝑥), A(𝑖) has only 1 row. With A(𝐿−2), Equation 4.14

becomes:

min
𝑥∈C,𝑧∈Z

𝑓 (𝑥) ≥ max
𝜷(𝐿−1)≥0

min
𝑥∈C

�̃�(𝐿−2)∈Z̃(𝐿−2)

A(𝐿−2)𝑧(𝐿−2) + const,

which is in a form similar to Equation 4.12 except for the outer maximization over 𝜷(𝐿−1). This

allows the back-substitution process (Equation 4.12, Equation 4.13, and Equation 4.14) to continue.

In each step, we swap max and min as in Equation 4.13, so every maximization over 𝜷(𝑖) is outside

of min𝑥∈C . Eventually, we have:

min
𝑥∈C,𝑧∈Z

𝑓 (𝑥) ≥ max
𝜷≥0

min
𝑥∈C

A(0)𝑥 + const,

71

where 𝜷 :=
[
𝜷(1)⊤ 𝜷(2)⊤ · · · 𝜷(𝐿−1)⊤]⊤ concatenates all 𝜷(𝑖) vectors. Following the above idea, we

present the main theorem in Theorem 4.3.1 (proof is given in Section 4.3.5).

Theorem 4.3.1 (𝛽-CROWN bound). Given an 𝐿-layer NN 𝑓 (𝑥) : R𝑑0 → R with weights W(𝑖),

biases b(𝑖), pre-ReLU bounds l(𝑖) ≤ 𝑧(𝑖) ≤ u(𝑖) (1 ≤ 𝑖 ≤ 𝐿), input bounds C, split constraintsZ. We

have:

min
𝑥∈C,𝑧∈Z

𝑓 (𝑥) ≥ max
𝜷≥0

min
𝑥∈C

(𝒂 + P𝜷)⊤𝑥 + q⊤𝜷 + 𝑐, (4.15)

where 𝒂 ∈ R𝑑0 ,P ∈ R𝑑0×(∑𝐿−1
𝑖=1 𝑑𝑖),q ∈ R

∑𝐿−1
𝑖=1 𝑑𝑖 and 𝑐 ∈ R are functions of W(𝑖), b(𝑖), l(𝑖), u(𝑖).

Detailed formulations for 𝒂, P, q and 𝑐 are given in Section 4.3.5. Theorem 4.3.1 shows that

when neuron split constraints exist, 𝑓 (𝑥) can still be bounded by a linear equation containing

optimizable multipliers 𝜷. Observing Equation 4.13, the main difference between CROWN and

𝛽-CROWN lies in the relaxation of each ReLU layer, where we need an extra term 𝜷(𝑖)⊤S(𝑖) in

the linear relationship matrix (for example, W(𝐿)D(𝐿−1) in Equation 4.13) between 𝑓 (𝑥) and 𝑧(𝑖) to

enforce neuron split constraints. This extra term in every ReLU layer yields P and q in Equation 4.15

after bound propagations.

To solve the optimization problem in Equation 4.15, we note that in the ℓ𝑝 norm robustness

setting (C = {𝑥 | ∥𝑥 − 𝑥0∥𝑝≤ 𝜖}), the inner minimization has a closed solution:

min
𝑥∈C,𝑧∈Z

𝑓 (𝑥) ≥ max
𝜷≥0
−∥𝒂 + P𝜷∥𝑞𝜖 + (P⊤𝑥0 + q)⊤𝜷 + 𝒂⊤𝑥0 + 𝑐 := max

𝜷≥0
𝑔(𝜷) (4.16)

where 1
𝑝

+ 1
𝑞

= 1. The maximization is concave in 𝜷 (𝑞 ≥ 1), so we can simply optimize it using

projected (super)gradient ascent with gradients from an automatic differentiation library. Since any

𝜷 ≥ 0 yields a valid lower bound for min𝑥∈C,𝑧∈Z 𝑓 (𝑥), convergence is not necessary to guarantee

soundness. 𝛽-CROWN is efficient - it has the same asymptotic complexity as CROWN when 𝜷

is fixed. When 𝜷 = 0, 𝛽-CROWN yields the same results as CROWN; however the additional

optimizable 𝜷 allows us to maximize and tighten the lower bound due to neuron split constraints.

We define 𝜶(𝑖) ∈ R𝑑𝑖 for free variables associated with unstable ReLU neurons in Lemma 4.1.1

for layer 𝑖 and define all free variables 𝜶 = {𝜶(1) · · ·𝜶(𝐿−1)}. Since any 0 ≤ 𝜶(𝑖)
𝑗
≤ 1 yields a

72

valid bound, we can optimize it to tighten the bound, similarly as done in [35]. Formally, we

rewrite Equation 4.16 with 𝜶 explicitly:

min
𝑥∈C,𝑧∈Z

𝑓 (𝑥) ≥ max
0≤𝜶≤1, 𝜷≥0

𝑔(𝜶, 𝜷). (4.17)

4.3.2 Connections to Dual Space

In this subsection, we show that 𝛽-CROWN can also be derived from a dual LP problem. Based

on Equation 4.1 and linear relaxations in Section 4.1.2, we first construct an LP problem for ℓ∞

robustness verification in Equation 4.18 where 𝑖 ∈ {1, · · · , 𝐿 − 1}.

min 𝑓 (𝑥) := 𝑧(𝐿)(𝑥) s.t.

Network and Input Bounds: 𝑧(𝑖) = W(𝑖)𝑧(𝑖−1) + b(𝑖); 𝑧(0) ≥ 𝑥0 − 𝜖 ; 𝑧(0) ≤ 𝑥0 + 𝜖 ;

Stable ReLUs: 𝑧(𝑖)
𝑗

= 𝑧
(𝑖)
𝑗

(if l(𝑖)
𝑗
≥ 0); 𝑧(𝑖)

𝑗
= 0 (if u(𝑖)

𝑗
≤ 0);

Unstable: 𝑧(𝑖)
𝑗
≥ 0, 𝑧(𝑖)

𝑗
≥ 𝑧

(𝑖)
𝑗
, 𝑧

(𝑖)
𝑗
≤

u(𝑖)
𝑗

u(𝑖)
𝑗
−l(𝑖)

𝑗

(
𝑧

(𝑖)
𝑗
− l(𝑖)

𝑗

)
(if l(𝑖)

𝑗
< 0 < u(𝑖)

𝑗
, 𝑗 /∈ Z+(𝑖) ∪Z−(𝑖))

Neuron Split Constraints: 𝑧(𝑖)
𝑗

= 𝑧
(𝑖)
𝑗
, 𝑧

(𝑖)
𝑗
≥ 0 (if 𝑗 ∈ Z+(𝑖)); 𝑧(𝑖)

𝑗
= 0, 𝑧(𝑖)

𝑗
< 0 (if 𝑗 ∈ Z−(𝑖))

(4.18)

Compared to the formulation in [32], we have neuron split constraints. Many BaB based complete

verifiers [27, 30] use an LP solver for Equation 4.18 as the incomplete verifier. We first show that it

is possible to derive Theorem 4.3.1 from the dual of this LP, leading to Theorem 4.3.2:

Theorem 4.3.2. The objective 𝑑LP for the dual problem of Equation 4.18 can be represented as

𝑑LP = −∥𝒂 + P𝜷∥1·𝜖 + (P⊤𝑥0 + q)⊤𝜷 + 𝒂⊤𝑥0 + 𝑐,

where 𝒂, P, q and 𝑐 are defined in the same way as in Theorem 4.3.1, and 𝜷 ≥ 0 corresponds to the

dual variables of neuron split constraints in Equation 4.18.

A similar connection between CROWN and dual LP based verifier [32] was shown in [107],

and their results can be seen as a special case of ours when 𝜷 = 0 (none of the split constraints are

73

active). An immediate consequence is that 𝛽-CROWN can potentially solve Equation 4.18 as well

as using an LP solver:

Corollary 4.3.2.1. When 𝜶 and 𝜷 are optimally set and intermediate bounds l, u are fixed, 𝛽-

CROWN produces 𝑝∗LP, the optimal objective of LP with split constraints in Equation 4.18:

max
0≤𝜶≤1,𝜷≥0

𝑔(𝜶, 𝜷) = 𝑝∗LP,

In Section 4.3.5, we give detailed formulations for conversions between the variables 𝜶, 𝜷 in

𝛽-CROWN and their corresponding dual variables in the LP problem.

4.3.3 Joint Optimization of Free Variables in 𝛽-CROWN

In Equation 4.17, 𝑔 is also a function of l(𝑖)
𝑗

and u(𝑖)
𝑗

, the intermediate layer bounds for each

neuron 𝑧
(𝑖)
𝑗

. They are also computed using 𝛽-CROWN. To obtain l(𝑖)
𝑗

, we set 𝑓 (𝑥) := 𝑧
(𝑖)
𝑗

(𝑥) and

apply Theorem 4.3.1:

min
𝑥∈C,𝑧(𝑖−1)∈Z̃(𝑖−1)

𝑧
(𝑖)
𝑗

(𝑥) ≥ max
0≤𝜶′≤1, 𝜷′≥0

𝑔′(𝜶′, 𝜷′) := l(𝑖)
𝑗

(4.19)

For computing u(𝑖)
𝑗

we simply set 𝑓 (𝑥) := −𝑧(𝑖)
𝑗

(𝑥). Importantly, during solving these intermediate

layer bounds, the 𝜶′ and 𝜷′ are independent sets of variables, not the same ones for the objective

𝑓 (𝑥) := 𝑧(𝐿). Since 𝑔 is a function of l(𝑖)
𝑗

, it is also a function of 𝜶′ and 𝜷′. In fact, there are a total of∑𝐿−1
𝑖=1 𝑑𝑖 intermediate layer neurons, and each neuron is associated with a set of independent 𝜶′ and

𝜷′ variables. Optimizing these variables allowing us to tighten the relaxations on unstable ReLU

neurons (which depend on l(𝑖)
𝑗

and u(𝑖)
𝑗

) and produce tight final bounds, which is impossible in LP. In

other words, we need to optimize �̂� and �̂�, which are two vectors concatenating 𝜶, 𝜷 as well as a

large number of 𝜶′ and 𝜷′ used to compute each intermediate layer bound:

min
𝑥∈C,𝑧∈Z

𝑓 (𝑥) ≥ max
0≤�̂�≤1, �̂�≥0

𝑔(�̂�, �̂�). (4.20)

74

This formulation is non-convex and has a large number of variables. Since any 0 ≤ �̂� ≤ 1, �̂� ≥ 0

leads to a valid lower bound, the non-convexity does not affect soundness. When intermediate layer

bounds are also allowed to be tightened during optimization, we can outperform the LP verifier

for Equation 4.18 using fixed intermediate layer bounds. Typically, in many previous works [27, 30,

38], when the LP formulation Equation 4.18 is formed, intermediate layer bounds are pre-computed

with bound propagation procedures [27, 30], which are far from optimal. To estimate the dimension

of this problem, we denote the number of unstable neurons at layer 𝑖 as 𝑠𝑖 := Tr(|S(𝑖) |). Each neuron

in layer 𝑖 is associated with 2 × ∑𝑖−1
𝑘=1 𝑠𝑘 variables 𝜶′. Suppose each hidden layer has 𝑑 neurons

(𝑠𝑖 = 𝑂(𝑑)), then �̂� has 2 × ∑𝐿−1
𝑖=1 𝑑𝑖

∑𝑖−1
𝑘=1 𝑠𝑘 = 𝑂(𝐿2𝑑2) variables in total. This can be too large

for efficient optimization, so we share 𝜶′ and 𝜷′ among the intermediate neurons of the same

layer, leading to a total number of 𝑂(𝐿2𝑑) variables to optimize. Note that a weaker form of joint

optimization was also discussed in [35] without 𝜷.

4.3.4 Complete Verification Framework 𝛽-CROWN BaB

We perform complete verification following BaB framework [27] using 𝛽-CROWN as the

incomplete solver, and we use simple branching heuristics like BaBSR [40] or FSB [41]. To

efficiently utilize GPU, we also use batch splits to evaluate multiple subdomains in the same batch

as in [37, 39]. We first describe our detailed algorithm for 𝛽-CROWN BaB. Then we prove that

𝛽-CROWN can detect infeasible subdomains produced in BaB. Infeasible subdomain detection

is crucial to guarantee the completeness as discussed in Theorem 4.2.1. Lastly, we prove our

𝛽-CROWN BaB is sound and complete.

Detailed algorithm. We list our complete verifier 𝛽-CROWN with branch and bound (𝛽-CROWN

BaB) in Algorithm 4. The algorithm takes a target NN function 𝑓 and a domain C as inputs. The

subprocedure beta_CROWN optimizes �̂� and �̂� (free variables for computing intermediate layer

bounds and last layer bounds) as Equation 4.20 in Section 4.3.3. It operates in a batch and returns

the lower and upper bounds for 𝑛 selected subdomains simultaneously: a lower bound is obtained

75

Algorithm 4 𝛽-CROWN with branch and bound for complete verification. Comments are in brown.
1: Inputs: 𝑓 , C, 𝑛 (batch size), 𝛿 (tolerance), [(maximum length of subdomains)
2: (𝑓 , 𝑓)← optimized_beta_CROWN(𝑓 , [C]) ⊲ Initially there is no split; Optimization is done over �̂�

3: P←
[
(𝑓 , 𝑓 , C)

]
⊲ P is the set of all unverified subdomains

4: while 𝑓 < 0 and 𝑓 ≥ 0 and 𝑓 − 𝑓 > 𝛿 and length(P) < [do
5: (C1, . . . , C𝑛)← batch_pick_out(P, 𝑛) ⊲ Pick subdomains to split and removed them from P
6:

[
C𝑙1, C

𝑢
1 , . . . , C

𝑙
𝑛, C𝑢𝑛

]
← batch_split(C1, . . . , C𝑛) ⊲ C𝑖 splits into two subdomains C𝑙

𝑖
and C𝑢

𝑖

7:

[
𝑓
C𝑙1
, 𝑓 C𝑙1

, 𝑓
C𝑢1
, 𝑓 C𝑢1

, . . . , 𝑓
C𝑙𝑛
, 𝑓 C𝑙𝑛 , 𝑓 C𝑢𝑛

, 𝑓 C𝑢𝑛

]
← beta_CROWN(𝑓 ,

[
C𝑙1, C

𝑢
1 , . . . , C

𝑙
𝑛, C𝑢𝑛

]
) ⊲

Compute lower and upper bounds by optimizing �̂� and �̂� mentioned in Section 4.3.3 in a batch

8: P← P⋃Dom_Filter
(
[𝑓
C𝑙1
, 𝑓 C𝑙1

, C𝑙1], [𝑓
C𝑢1
, 𝑓 C𝑢1

, C𝑢1], . . . , [𝑓
C𝑙𝑛
, 𝑓 C1

𝑛
, C𝑙𝑛], [𝑓

C𝑢𝑛
, 𝑓 C𝑢𝑛 , C

𝑢
𝑛]
)

⊲

Filter out verified subdomains, insert the left domains back to P
9: 𝑓 ← min{ 𝑓

C𝑖
| (𝑓

C𝑖
, 𝑓 C𝑖 , C𝑖) ∈ P}, 𝑖 = 1, . . . , 𝑛 ⊲ To ease notation, C𝑖 here indicates either C𝑢

𝑖
or C𝑙

𝑖

10: 𝑓 ← min{ 𝑓 C𝑖 | (𝑓 C𝑖 , 𝑓 C𝑖 , C𝑖) ∈ P}, 𝑖 = 1, . . . , 𝑛

11: Outputs: 𝑓 , 𝑓

by optimizing Equation 4.20 using 𝛽-CROWN and an upper bound can be the network prediction

𝑓 (𝑥∗) given the 𝑥∗ that minimizes Equation 4.151. Initially, we don’t have any splits, so we only

need to optimize �̂� to obtain 𝑓 for 𝑥 ∈ C (Line 2). Then we utilize the power of GPUs to split in

parallel and maintain a global set P storing all the subdomains which does not satisfy 𝑓
C𝑖

< 0 (Line

5-10). Specifically, batch_pick_out extends branching strategy BaBSR [27] or FSB [41] in a

parallel manner to select 𝑛 (batch size) subdomains in P and determine the corresponding ReLU

neuron to split for each of them. If the length of P is less than 𝑛, then we reduce 𝑛 to the length

of P. batch_split splits each selected C𝑖 to two subdomains C𝑙
𝑖

and C𝑢
𝑖

by forcing the selected

unstable ReLU neuron to be positive and negative, respectively. Dom_Filter filters out verified

subdomains (proved with 𝑓
C𝑖
≥ 0) and we insert the remaining ones to P. The loop breaks if the

property is proved (𝑓 ≥ 0), or a counter-example is found in any sub-domain (𝑓 < 0), or the lower

bound 𝑓 and upper bound 𝑓 are sufficiently close, or the length of subdomains P reaches a desired

threshold [(maximum memory limit).

Note that for models evaluated in this chapter, we find that computing intermediate layer bounds

1We want an upper bound of the objective in Equation 4.1. Since Equation 4.1 is an minimization problem, any
feasible 𝑥 produces an upper bound of the optimal objective. When Equation 4.1 is solved exactly as 𝑓 ∗ (such as in the
case where all neurons are split), we have 𝑓 ∗ = 𝑓 = 𝑓 . See also the discussions in Section I.1 of [39].

76

in every iteration at line 7 is too costly (although it is possible and supported) so we only compute

intermediate layer bounds once at line 2. At line 7, only the neuron with split constraints have their

intermediate layer bounds updated, and other intermediate bounds are not recomputed. This makes

the intermediate layer bounds looser but it allows us to quickly explore a large number of nodes

on the branch and bound search tree and is overall beneficial for verifying most models. A similar

observation was also found in [39] (Section 5.1.1).

Detection of infeasibility. Maximizing Equation 4.16 with infeasible constraints leads to un-

bounded dual objective, which can be detected by checking if this optimized lower bound becomes

greater than the upper bound (which is also maintained in BaB, see Algorithm 4). For the robustness

verification problem, a subdomain that has lower bound greater than 0 is dropped, which includes

the unbounded case. Due to insufficient convergence, this cannot always detect infeasibility, but it

does not affect soundness, as this infeasible subdomain only leads to worse overall lower bound in

BaB. To guarantee completeness, we show that when all unstable neurons are split the problem is

concave (see Section 4.3.5); in this case, we can use line search to guarantee convergence when

feasible, and detect infeasibility if the objective exceeds the upper bound (line search guarantees the

objective can eventually exceed upper bound). In most real scenarios, the verifier either finishes or

times out before all unstable neurons are split.

Theorem 4.3.3. 𝛽-CROWN with Branch and Bound on splitting ReLUs is sound and complete.

Proof. Soundness is trivial because 𝛽-CROWN is a sound verifier. For completeness, it suffices

to show that when all unstable ReLU neurons are split, 𝛽-CROWN gives the global minimum

for Equation 4.18. In contrast, combining CROWN [31] with BaB does not yield a complete

verifier, as it cannot detect infeasible splits and a slow LP solver is still needed to guarantee

completeness [35]. Instead, 𝛽-CROWN can detect infeasible subdomains - according to duality

theory, an infeasible primal problem leads to an unbounded dual objective, which can be detected

as discussed above. We provide the detailed proof for Theorem 4.3.3 below:

Proof for soundness. Branch and bound (BaB) with 𝛽-CROWN is sound because for each subdomain

77

C𝑖 := {𝑥 ∈ C, 𝑧 ∈ Z𝑖}, we apply Theorem 4.3.1 to obtain a sound lower bound 𝑓
C𝑖

(the bound is

valid for any 𝜷 ≥ 0). The final bound returned by BaB is min𝑖 𝑓 C𝑖 which represents the worst case

over all subdomains, and is a sound lower bound for 𝑥 ∈ C := ∪𝑖C𝑖.

Proof for completeness. To show completeness, we need to solve Equation 4.1 to its global minimum.

When there are 𝑁 unstable neurons, we have up to 2𝑁 subdomains, and in each subdomain we have

all unstable ReLU neurons split into one of the 𝑧
(𝑖)
𝑗
≥ 0 or 𝑧(𝑖)

𝑗
< 0 case. The final solution obtained

by BaB is the min over these 2𝑁 subdomains. To obtain the global minimum, we must ensure that

in every of these 2𝑁 subdomain we can solve Equation 4.18 exactly.

When all unstable neurons are split in a subdomain C𝑖, the network becomes a linear network

and neuron split constraints become linear constraints w.r.t. inputs. Under this case, an LP with

Equation 4.18 can solve the verification problem in C𝑖 exactly. In 𝛽-CROWN, we solve the

subdomain using the usually non-concave formulation Equation 4.20; however, in this case, it

becomes concave in �̂� because no intermediate layer bounds are used (no 𝜶′ and 𝜷′) and no

ReLU neuron is relaxed (no 𝜶), thus the only optimizable variable is 𝜷 (Equation 4.20 becomes

Equation 4.16). Equation 4.16 is concave in 𝜷 so (super)gradient ascent guarantees to converge to

the global optimal 𝜷∗. To ensure convergence without relying on a preset learning rate, a line search

can be performed in this case. For infeasible cases, 𝛽-CROWN can also easily detect them as we

discussed above. Then, according to Corollary 4.3.2.1, this optimal 𝜷∗ corresponds to the optimal

dual variable for the LP in Equation 4.18 and the objective is a global minimum of Equation 4.18.

Early stopping a complete verifier for more accurate incomplete verification. Additionally,

we show the potentiality of early stopping a complete verifier as an incomplete verifier. BaB

approaches the exact solution of Equation 4.1 by splitting the problem into multiple subdomains,

and more subdomains give a tighter lower bound for Equation 4.1. Unlike traditional complete

verifiers, 𝛽-CROWN is efficient to explore a large number of subdomains during a very short time,

making 𝛽-CROWN BaB an attractive solution for efficient incomplete verification.

78

4.3.5 Proofs for 𝛽-CROWN

Proofs for deriving 𝛽-CROWN using bound propagation

Lemma 4.1.1 is from part of the proof of the main theorem in [31]. Here we present it separately

to use it as an useful subprocedure for our later proofs.

Lemma 4.1.1 (Relaxation of a ReLU layer in CROWN). Given two vectors 𝑤, 𝑣 ∈ R𝑑 , l ≤ 𝑣 ≤ u

(element-wise), we have

𝑤⊤ReLU(𝑣) ≥ 𝑤⊤D𝑣 + 𝑏′,

where D is a diagonal matrix defined as:

D 𝑗 , 𝑗 =

1, if l 𝑗 ≥ 0

0, if u 𝑗 ≤ 0

𝜶 𝑗 , if u 𝑗 > 0 > l 𝑗 and 𝑤 𝑗 ≥ 0

u 𝑗

u 𝑗−l 𝑗 , if u 𝑗 > 0 > l 𝑗 and 𝑤 𝑗 < 0,

(4.21)

0 ≤ 𝜶 𝑗 ≤ 1 are free variables, 𝑏′ = 𝑤⊤b and each element in b is

b
𝑗

=

0, if l 𝑗 > 0 or u 𝑗 ≤ 0

0, if u 𝑗 > 0 > l 𝑗 and 𝑤 𝑗 ≥ 0

− u 𝑗 l 𝑗
u 𝑗−l 𝑗 , if u 𝑗 > 0 > l 𝑗 and 𝑤 𝑗 < 0.

(4.22)

Proof. For the 𝑗-th ReLU neuron, if l 𝑗 ≥ 0, then ReLU(𝑣 𝑗) = 𝑣 𝑗 ; if u 𝑗 < 0, then ReLU(𝑣 𝑗) = 0.

For the case of l 𝑗 < 0 < u 𝑗 , the ReLU function can be linearly upper and lower bounded within this

range:

𝜶 𝑗𝑣 𝑗 ≤ ReLU(𝑣 𝑗) ≤
u 𝑗

u 𝑗 − l 𝑗
(
𝑣 𝑗 − l 𝑗

)
∀ l 𝑗 ≤ 𝑣 𝑗 ≤ u 𝑗

where 0 ≤ 𝜶 𝑗 ≤ 1 is a free variable - any value between 0 and 1 produces a valid lower bound.

79

To lower bound 𝑤⊤ReLU(𝑣) = ∑
𝑗 𝑤 𝑗ReLU(𝑣 𝑗), for each term in this summation, we take the

lower bound of ReLU(𝑣 𝑗) if 𝑤 𝑗 is positive and take the upper bound of ReLU(𝑣 𝑗) if 𝑤 𝑗 is negative

(reflected in the definitions of D and b). This conservative choice allows us to always obtain a lower

bound ∀ l ≤ 𝑣 ≤ u:

∑︁
𝑗

𝑤 𝑗ReLU(𝑣 𝑗) ≥
∑︁
𝑗

𝑤 𝑗

(
D 𝑗 , 𝑗𝑣 𝑗 + b

𝑗

)
= 𝑤⊤D𝑣 + 𝑤⊤b = 𝑤⊤D𝑣 + 𝑏′

where D 𝑗 , 𝑗 and b
𝑗

are defined in Equation 4.21 and Equation 4.22 representing the lower or upper

bounds of ReLU.

Before proving our main theorem (Theorem 4.3.1), we first define matrix 𝛀, which is the product

of a series of model weights W and “weights” for relaxed ReLU layers D:

Definition 4.3.4. Given a set of matrices W(2), · · · ,W(𝐿) and D(1), · · · ,D(𝐿−1), we define a recursive

function 𝛀(𝑘, 𝑖) for 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝐿 as

𝛀(𝑖, 𝑖) = 𝑰, 𝛀(𝑘+1, 𝑖) = W(𝑘+1)D(𝑘)𝛀(𝑘, 𝑖)

For example, 𝛀(3, 1) = W(3)D(2)W(2)D(1), 𝛀(5, 2) = W(5)D(4)W(4)D(3)W(3)D(2). Now we

present our main theorem with each term explicitly written:

Theorem 4.3.1 (𝛽-CROWN bound). Given a 𝐿-layer neural network 𝑓 (𝑥) : R𝑑0 → R with weights

W(𝑖), biases b(𝑖), pre-ReLU bounds l(𝑖) ≤ 𝑧(𝑖) ≤ u(𝑖) (1 ≤ 𝑖 ≤ 𝐿), input constraint C and split

constraintZ. We have

min
𝑥∈C,𝑧∈Z

𝑓 (𝑥) ≥ max
𝜷≥0

min
𝑥∈C

(𝒂 + P𝜷)⊤𝑥 + q⊤𝜷 + 𝑐, (4.23)

where P ∈ R𝑑0×(∑𝐿−1
𝑖=1 𝑑𝑖) is a matrix containing blocks P :=

[
P1
⊤ P2

⊤ · · · P𝐿−1
⊤] , q ∈ R

∑𝐿−1
𝑖=1 𝑑𝑖 is a

vector q := [q1
⊤ · · · q𝐿−1

⊤]⊤, and each term is defined as:

𝒂 =
[
𝛀(𝐿, 1)W(1)]⊤ ∈ R𝑑0×1 (4.24)

80

P𝑖 = S(𝑖)𝛀(𝑖, 1)W(1) ∈ R𝑑𝑖×𝑑0 , ∀ 1 ≤ 𝑖 ≤ 𝐿 − 1 (4.25)

q𝑖 =
𝑖∑︁

𝑘=1
S(𝑖)𝛀(𝑖, 𝑘)b(𝑘) +

𝑖∑︁
𝑘=2

S(𝑖)𝛀(𝑖, 𝑘)W(𝑘)b(𝑘−1) ∈ R𝑑𝑖 , ∀ 1 ≤ 𝑖 ≤ 𝐿 − 1 (4.26)

𝑐 =
𝐿∑︁
𝑖=1

𝛀(𝐿, 𝑖)b(𝑖) +
𝐿∑︁
𝑖=2

𝛀(𝐿, 𝑖)W(𝑖)b(𝑖−1) (4.27)

diagonal matrices D(𝑖) and vector b(𝑖) are determined by the relaxation of ReLU neurons, and

A(𝑖) ∈ R1×𝑑𝑖 represents the linear relationship between 𝑓 (𝑥) and 𝑧(𝑖). D(𝑖) and b(𝑖) depend on A(𝑖),

l(𝑖) and u(𝑖):

D(𝑖)
𝑗 , 𝑗

=

1, if l(𝑖)
𝑗
≥ 0 or 𝑗 ∈ Z+(𝑖)

0, if u(𝑖)
𝑗
≤ 0 or 𝑗 ∈ Z−(𝑖)

𝜶 𝑗 , if u(𝑖)
𝑗
> 0 > l(𝑖)

𝑗
and 𝑗 /∈ Z+(𝑖) ∪Z−(𝑖) and A(𝑖)

1, 𝑗 ≥ 0

u 𝑗

u 𝑗−l 𝑗 , if u(𝑖)
𝑗
> 0 > l(𝑖)

𝑗
and 𝑗 /∈ Z+(𝑖) ∪Z−(𝑖) and A(𝑖)

1, 𝑗 < 0

(4.28)

b(𝑖)
𝑗

=

0, if l(𝑖)
𝑗
> 0 or u(𝑖)

𝑗
≤ 0 or 𝑗 ∈ Z+(𝑖) ∪Z−(𝑖)

0, if u(𝑖)
𝑗
> 0 > l(𝑖)

𝑗
and 𝑗 /∈ Z+(𝑖) ∪Z−(𝑖) and A(𝑖)

1, 𝑗 ≥ 0

−
u(𝑖)
𝑗

l(𝑖)
𝑗

u(𝑖)
𝑗
−l(𝑖)

𝑗

, if u(𝑖)
𝑗
> 0 > l(𝑖)

𝑗
and 𝑗 /∈ Z+(𝑖) ∪Z−(𝑖) and A(𝑖)

1, 𝑗 < 0

(4.29)

A(𝑖) =

W(𝐿), 𝑖 = 𝐿 − 1

(A(𝑖+1)D(𝑖+1) + 𝜷(𝑖+1)⊤S(𝑖+1))W(𝑖+1), 0 ≤ 𝑖 ≤ 𝐿 − 2
(4.30)

Proof. We prove this theorem by induction: assuming we know the bounds with respect to layer

𝑧(𝑚), we derive bounds for 𝑧(𝑚−1) until we reach 𝑚 = 0 and by definition 𝑧(0) = 𝑥. We first define a

set of matrices and vectors 𝒂(𝑚), P(𝑚), q(𝑚), 𝑐(𝑚), where P(𝑚) ∈ R𝑑𝑚×(∑𝐿−1
𝑖=𝑚+1 𝑑𝑖) is a matrix containing

blocks P :=
[
P(𝑚)
𝑚+1
⊤ · · · P(𝑚)

𝐿−1
⊤]

, q ∈ R
∑𝐿−1

𝑖=𝑚+1 𝑑𝑖 is a vector q :=
[
q(𝑚)
𝑚+1
⊤ · · · q(𝑚)

𝐿−1
⊤
]⊤

, and each

term is defined as:

81

𝒂(𝑚) =
[
𝛀(𝐿, 𝑚 + 1)W(𝑚+1)]⊤ ∈ R𝑑𝑚×1 (4.31)

P(𝑚)
𝑖

= S(𝑖)𝛀(𝑖, 𝑚 + 1)W(𝑚+1) ∈ R𝑑𝑖×𝑑𝑚 , ∀ 𝑚 + 1 ≤ 𝑖 ≤ 𝐿 − 1 (4.32)

q(𝑚)
𝑖

=
𝑖∑︁

𝑘=𝑚+1
S(𝑖)𝛀(𝑖, 𝑘)b(𝑘) +

𝑖∑︁
𝑘=𝑚+2

S(𝑖)𝛀(𝑖, 𝑘)W(𝑘)b(𝑘−1) ∈ R𝑑𝑚 , ∀ 𝑚 + 1 ≤ 𝑖 ≤ 𝐿 − 1 (4.33)

𝑐(𝑚) =
𝐿∑︁

𝑖=𝑚+1
𝛀(𝐿, 𝑖)b(𝑖) +

𝐿∑︁
𝑖=𝑚+2

𝛀(𝐿, 𝑖)W(𝑖)b(𝑖−1) (4.34)

and we claim that

min
𝑥∈C
𝑧∈Z

𝑓 (𝑥) ≥ max
�̃�(𝑚+1)≥0

min
𝑥∈C

𝑧(𝑚)∈Z̃(𝑚)

(𝒂(𝑚) + P(𝑚) �̃�(𝑚+1))⊤𝑧(𝑚) + q(𝑚)⊤ �̃�(𝑚+1) + 𝑐(𝑚) (4.35)

where �̃�(𝑚+1) :=
[
𝜷(𝑚+1)⊤ · · · 𝜷(𝐿−1)⊤]⊤ concatenating all 𝜷(𝑖) variables up to layer 𝑚 + 1.

For the base case 𝑚 = 𝐿 − 1, we simply have

min
𝑥∈C,𝑧∈Z

𝑓 (𝑥) = min
𝑥∈C,𝑧∈Z

W(𝐿)𝑧(𝐿−1) + b(𝐿).

No maximization is needed and 𝒂(𝑚) =
[
𝛀(𝐿, 𝐿)W(𝐿)]⊤ = W(𝐿)⊤, 𝑐(𝑚) = ∑𝐿

𝑖=𝐿 𝛀(𝐿, 𝑖)b(𝑖) = b(𝐿).

Other terms are zero.

In Section 4.3.1 we have shown the intuition of the proof by demonstrating how to derive the

bounds from layer 𝑧(𝐿−1) to 𝑧(𝐿−2). The case for 𝑚 = 𝐿 − 2 is presented in Equation 4.14.

Now we show the induction from 𝑧(𝑚) to 𝑧(𝑚−1). Starting from Equation 4.35, since 𝑧(𝑚) =

ReLU(𝑧(𝑚)) we apply Lemma 4.1.1 by setting 𝑤 =
[
𝒂(𝑚) + P(𝑚) �̃�(𝑚+1)]⊤ := A(𝑚). It is easy to show

that A(𝑚) can also be equivalently and recursively defined in Equation 4.30 (see Lemma 4.3.5).

Based on Lemma 4.1.1 we have D(𝑚) and b(𝑚) defined as in Equation 4.28 and Equation 4.29,

so Equation 4.35 becomes

82

min
𝑥∈C
𝑧∈Z

𝑓 (𝑥) ≥ max
�̃�(𝑚+1)≥0

min
𝑥∈C

𝑧(𝑚)∈Z̃(𝑚)

(𝒂(𝑚) + P(𝑚) �̃�(𝑚+1))⊤D(𝑚)𝑧(𝑚)

+ (𝒂(𝑚) + P(𝑚) �̃�(𝑚+1))⊤b(𝑚) + q(𝑚)⊤ �̃�(𝑚+1) + 𝑐(𝑚)

(4.36)

Note that when we apply Lemma 4.1.1, for 𝑗 ∈ Z+(𝑖) (positive split) we simply treat the neuron

𝑗 as if l(𝑖)
𝑗
≥ 0, and for 𝑗 ∈ Z−(𝑖) (negative split) we simply treat the neuron 𝑗 as if u(𝑖)

𝑗
≤ 0. Now

we add the multiplier 𝜷(𝑚) to 𝑧(𝑚) to enforce per-neuron split constraints:

min
𝑥∈C
𝑧∈Z

𝑓 (𝑥) ≥ max
�̃�(𝑚+1)≥0

min
𝑥∈C

𝑧(𝑚−1)∈Z̃(𝑚−1)

max
𝜷(𝑚)≥0

(𝒂(𝑚) + P(𝑚) �̃�(𝑚+1))⊤D(𝑚)𝑧(𝑚) + 𝜷(𝑚)⊤S(𝑚)𝑧(𝑚)

+(𝒂(𝑚) + P(𝑚) �̃�(𝑚+1))⊤b(𝑚) + q(𝑚)⊤ �̃�(𝑚+1) + 𝑐(𝑚)

≥ max
�̃�(𝑚)≥0

min
𝑥∈C

𝑧(𝑚−1)∈Z̃(𝑚−1)

(𝒂(𝑚)⊤D(𝑚) + �̃�(𝑚+1)⊤P(𝑚)⊤D(𝑚) + 𝜷(𝑚)⊤S(𝑚))𝑧(𝑚)

+(𝒂(𝑚) + P(𝑚) �̃�(𝑚+1))⊤b(𝑚) + q(𝑚)⊤ �̃�(𝑚+1) + 𝑐(𝑚)

Similar to what we did in Equation 4.13, we swap the min and max in the second inequality

due to weak duality, such that every maximization on 𝜷(𝑖) is before min. Then, we substitute

𝑧(𝑚) = W(𝑚)𝑧(𝑚−1) + b(𝑚) and obtain:

83

min
𝑥∈C
𝑧∈Z

𝑓 (𝑥) ≥ max
�̃�(𝑚)≥0

min
𝑥∈C

𝑧(𝑚−1)∈Z̃(𝑚−1)

(𝒂(𝑚)⊤D(𝑚) + �̃�(𝑚+1)⊤P(𝑚)⊤D(𝑚) + 𝜷(𝑚)⊤S(𝑚))⊤W(𝑚)𝑧(𝑚−1)

+ (𝒂(𝑚)⊤D(𝑚) + �̃�(𝑚+1)⊤P(𝑚)⊤D(𝑚) + 𝜷(𝑚)⊤S(𝑚))⊤b(𝑚)

+ (𝒂(𝑚) + P(𝑚) �̃�(𝑚+1))⊤b(𝑚) + q(𝑚)⊤ �̃�(𝑚+1) + 𝑐(𝑚)

=

[
𝒂(𝑚)⊤D(𝑚)W(𝑚)

]⊤︸ ︷︷ ︸
𝒂′

+ (�̃�(𝑚+1)⊤P(𝑚)⊤D(𝑚)W(𝑚) + 𝜷(𝑚)⊤S(𝑚)W(𝑚))︸ ︷︷ ︸
P′ �̃�(𝑚)

⊤

𝑧(𝑚−1)

+
(
(P(𝑚)⊤D(𝑚)b(𝑚) + P(𝑚)⊤b(𝑚) + q(𝑚))⊤ �̃�(𝑚+1) + (S(𝑚)b(𝑚))⊤𝜷(𝑚)

)
︸ ︷︷ ︸

q′⊤ �̃�(𝑚)

+ 𝒂(𝑚)⊤D(𝑚)b(𝑚) + 𝒂(𝑚)⊤b(𝑚) + 𝑐(𝑚)︸ ︷︷ ︸
𝑐′

Now we evaluate each term 𝒂′, P′, q′ and 𝑐′ and show the induction holds. For 𝒂′ and q′ we

have:

𝒂′ =
[
𝒂(𝑚)⊤D(𝑚)W(𝑚)

]⊤
=
[
𝛀(𝐿, 𝑚 + 1)W(𝑚+1)D(𝑚)W(𝑚)]⊤ =

[
𝛀(𝐿, 𝑚)W(𝑚)]⊤ = 𝒂(𝑚−1)

𝑐′ = 𝑐(𝑚) + 𝛀(𝐿, 𝑚 + 1)W(𝑚+1)D(𝑚)b(𝑚) + 𝛀(𝐿, 𝑚 + 1)W(𝑚+1)b(𝑚)

=
𝐿∑︁

𝑖=𝑚+1
𝛀(𝐿, 𝑖)b(𝑖) +

𝐿∑︁
𝑖=𝑚+2

𝛀(𝐿, 𝑖)W(𝑖)b(𝑖−1) + 𝛀(𝐿, 𝑚)b(𝑚) + 𝛀(𝐿, 𝑚 + 1)W(𝑚+1)b(𝑚)

=
𝐿∑︁

𝑖=𝑚
𝛀(𝐿, 𝑖)b(𝑖) +

𝐿∑︁
𝑖=𝑚+1

𝛀(𝐿, 𝑖)W(𝑖)b(𝑖−1)

= 𝑐(𝑚−1)

84

For P′ :=
[
P′𝑚⊤ · · · P′

𝐿−1
⊤] , we have a new block P′𝑚 where

P′𝑚 = S(𝑚)W(𝑚) = S(𝑚)𝛀(𝑚, 𝑚)W(𝑚) = P(𝑚−1)
𝑚

for other blocks where 𝑚 + 1 ≤ 𝑖 ≤ 𝐿 − 1,

P′𝑖 = P(𝑚)
𝑖

D(𝑚)W(𝑚) = S(𝑖)𝛀(𝑖, 𝑚 + 1)W(𝑚+1)D(𝑚)W(𝑚) = S(𝑖)𝛀(𝑖, 𝑚)W(𝑚) = P(𝑚−1)
𝑖

For q′ :=
[
q′𝑚⊤ · · · q′

𝐿−1
⊤] , we have a new block q′𝑚 where

q′𝑚 = S(𝑚)b(𝑚) =
𝑚∑︁

𝑘=𝑚
S(𝑖)𝛀(𝑖, 𝑘)b(𝑖) = q(𝑚−1)

𝑚

for other blocks where 𝑚 + 1 ≤ 𝑖 ≤ 𝐿 − 1,

q′𝑖 = q(𝑚)
𝑖

+ P(𝑚)⊤D(𝑚)b(𝑚) + P(𝑚)⊤b(𝑚)

=
𝑖∑︁

𝑘=𝑚+1
S(𝑖)𝛀(𝑖, 𝑘)b(𝑘) +

𝑖∑︁
𝑘=𝑚+2

S(𝑖)𝛀(𝑖, 𝑘)W(𝑘)b(𝑘−1) + P(𝑚)⊤D(𝑚)b(𝑚) + P(𝑚)⊤b(𝑚)

=
𝑖∑︁

𝑘=𝑚+1
S(𝑖)𝛀(𝑖, 𝑘)b(𝑘) +

𝑖∑︁
𝑘=𝑚+2

S(𝑖)𝛀(𝑖, 𝑘)W(𝑘)b(𝑘−1)

+ S(𝑖)𝛀(𝑖, 𝑚 + 1)W(𝑚+1)D(𝑚)b(𝑚) + S(𝑖)𝛀(𝑖, 𝑚 + 1)W(𝑚+1)b(𝑘)

=
𝑖∑︁

𝑘=𝑚+1
S(𝑖)𝛀(𝑖, 𝑘)b(𝑘) +

𝑖∑︁
𝑘=𝑚+2

S(𝑖)𝛀(𝑖, 𝑘)W(𝑘)b(𝑘−1) + S(𝑖)𝛀(𝑖, 𝑚)b(𝑚)

+ S(𝑖)𝛀(𝑖, 𝑚 + 1)W(𝑚+1)b(𝑚)

=
𝑖∑︁

𝑘=𝑚
S(𝑖)𝛀(𝑖, 𝑘)b(𝑘) +

𝑖∑︁
𝑘=𝑚+1

S(𝑖)𝛀(𝑖, 𝑘)W(𝑘)b(𝑘−1)

= q(𝑚−1)
𝑖

Thus, 𝒂′ = 𝒂(𝑚−1), P′ = P(𝑚−1), q′ = q(𝑚−1) and 𝑐′ = 𝑐(𝑚−1) so the induction holds for layer

85

𝑧(𝑚−1):

min
𝑥∈C
𝑧∈Z

𝑓 (𝑥) ≥ max
�̃�(𝑚)≥0

min
𝑥∈C

𝑧(𝑚−1)∈Z̃(𝑚−1)

(𝒂(𝑚−1) + P(𝑚−1) �̃�(𝑚))⊤𝑧(𝑚−1) + q(𝑚−1)⊤ �̃�(𝑚) + 𝑐(𝑚−1) (4.37)

Finally, Theorem 4.3.1 becomes the special case where 𝑚 = 0 in Equation 4.31, Equation 4.32,

Equation 4.33 and Equation 4.34.

The next Lemma unveils the connection with CROWN [31] and is also useful for drawing

connections to the dual problem.

Lemma 4.3.5. With D, b and A defined in Equation 4.28, Equation 4.29 and Equation 4.30, we

can rewrite Equation 4.23 in Theorem 4.3.1 as:

min
𝑥∈C
𝑧∈Z

𝑓 (𝑥) ≥ max
𝜷≥0

min
𝑥∈C

A(0)𝑥 +
𝐿−1∑︁
𝑖=1

A(𝑖)(D(𝑖)b(𝑖) + b(𝑖)) (4.38)

where A(𝑖), 0 ≤ 𝑖 ≤ 𝐿 − 1 contains variables 𝜷.

Proof. To prove this lemma, we simply follow the definition of A(𝑖) and check the resulting terms

are the same as Equation 4.23. For example,

A(0) = (A(1)D(1) + 𝜷(1)⊤S(1))W(1)

= A(1)D(1)W(1) + 𝜷(1)⊤S(1)W(1)

= (A(2)D(2) + 𝜷(2)⊤S(2))W(2)D(1)W(1) + 𝜷(1)⊤S(1)W(1)

= A(2)D(2)W(2)D(1)W(1) + 𝜷(2)⊤S(2)W(2)D(1)W(1) + 𝜷(1)⊤S(1)W(1)

= · · ·

= 𝛀(𝐿, 1)W(1) +
𝐿−1∑︁
𝑖=1

𝜷(𝑖)⊤S(𝑖)𝛀(𝑖, 1)W(1)

= [𝒂 + P𝜷]⊤

86

Other terms can be shown similarly.

With this definition of A, we can see Equation 4.23 as a modified form of CROWN, with an

extra term 𝜷(𝑖+1)⊤S(𝑖+1) added when computing A(𝑖). When we set 𝜷 = 0, we obtain the same bound

propagation rule for A as in CROWN. Thus, only a small change is needed to implement 𝛽-CROWN

given an existing CROWN implementation: we add 𝜷(𝑖+1)⊤S(𝑖+1) after the linear bound propagates

backwards through a ReLU layer. We also have the same observation in the dual space, as we will

show this connection in the next subsection.

Proofs for the connection to the dual space

Theorem 4.3.2. The objective 𝑑LP for the dual problem of Equation 4.18 can be represented as

𝑑LP = −∥𝒂 + P𝜷∥1·𝜖 + (P⊤𝑥0 + q)⊤𝜷 + 𝒂⊤𝑥0 + 𝑐,

where 𝒂, P, q and 𝑐 are defined in the same way as in Theorem 4.3.1, and 𝜷 ≥ 0 corresponds to the

dual variables of neuron split constraints in Equation 4.18.

Proof. To prove the Theorem 4.3.2, we demonstrate the detailed dual objective 𝑑LP for Equa-

tion 4.18, following a construction similar to the one in [32]. We first associate a dual variable

for each constraint involved in Equation 4.18 including dual variables 𝜷 for the per-neuron split

constraints introduced by BaB. Although it is possible to directly write the dual LP for Equation 4.18,

for easier understanding, we first rewrite the original primal verification problem into its Lagrangian

dual form as Equation 4.39, with dual variables 𝝂, 𝝃+, 𝝃−𝝁, 𝜸, 𝝀, 𝜷:

87

𝐿(𝑧, 𝑧; 𝝂, 𝝃, 𝝁, 𝜸, 𝝀, 𝜷) = 𝑧(𝐿) +
𝐿∑︁
𝑖=1

𝝂(𝑖)⊤(𝑧(𝑖) −W(𝑖)𝑧(𝑖−1) − b(𝑖))

+ 𝝃+⊤(𝑧(0) − 𝑥0 − 𝜖) + 𝝃−⊤(−𝑧(0) + 𝑥0 − 𝜖)

+
𝐿−1∑︁
𝑖=1

∑︁
𝑗 /∈Z+(𝑖) ⋃Z−(𝑖)

l(𝑖)
𝑗
<0<u(𝑖)

𝑗

[
𝝁(𝑖)
𝑗

⊤
(−𝑧(𝑖)

𝑗
) + 𝜸(𝑖)

𝑗

⊤
(𝑧(𝑖)

𝑗
− 𝑧

(𝑖)
𝑗

) + 𝝀(𝑖)
𝑗

⊤
(−u(𝑖)

𝑗
𝑧

(𝑖)
𝑗

+ (u(𝑖)
𝑗
− l(𝑖)

𝑗
)𝑧(𝑖)

𝑗
+ u(𝑖)

𝑗
l(𝑖)
𝑗

)
]

+
𝐿−1∑︁
𝑖=1

∑︁

𝑧
(𝑖)
𝑗
∈Z−(𝑖)

𝜷(𝑖)
𝑗
𝑧

(𝑖)
𝑗

+
∑︁

𝑧
(𝑖)
𝑗
∈Z+(𝑖)

−𝜷(𝑖)
𝑗
𝑧

(𝑖)
𝑗

Subject to:

𝝃+ ≥ 0, 𝝃− ≥ 0, 𝝁 ≥ 0, 𝜸 ≥ 0, 𝝀 ≥ 0, 𝜷 ≥ 0
(4.39)

The original minimization problem then becomes:

max
𝝂,𝝃+,𝝃−,𝝁,𝜸,𝝀,𝜷

min
𝑧,𝑧

𝐿(𝑧, 𝑧, 𝝂, 𝝃+, 𝝃−, 𝝁, 𝜸, 𝝀, 𝜷)

Given fixed intermediate bounds l, u, the inner minimization is a linear optimization problem and

we can simply transfer it to the dual form. To further simplify the formula, we introduce notations

similar to those in [32], where �̂�(𝑖−1) = W(𝑖)⊤𝝂(𝑖) and 𝜶(𝑖)
𝑗

=
𝜸(𝑖)
𝑗

𝝁(𝑖)
𝑗

+𝜸(𝑖)
𝑗

. Then the dual form can be

written as Equation 4.40.

88

max
0≤𝜶≤1,𝜷≥0

𝑔(𝜶, 𝜷), where

𝑔(𝜶, 𝜷) = −
𝐿∑︁
𝑖=1

𝝂(𝑖)⊤b(𝑖) − �̂�(0)⊤𝑥0 − ||�̂�(0) | |1·𝜖 +
𝐿−1∑︁
𝑖=1

∑︁
𝑗 /∈Z+(𝑖) ⋃Z−(𝑖)

l(𝑖)
𝑗
<0<u(𝑖)

𝑗

l(𝑖)
𝑗

[𝝂(𝑖)
𝑗

]+

Subject to:

𝝂(𝐿) = −1, �̂�(𝑖−1) = W(𝑖)⊤𝝂(𝑖)

𝝂(𝑖)
𝑗

= 0, when u(𝑖)
𝑗
≤ 0

𝝂(𝑖)
𝑗

= �̂�(𝑖)
𝑗
, when l(𝑖)

𝑗
≥ 0

[𝝂(𝑖)
𝑗

]+ = u(𝑖)
𝑗
𝝀(𝑖)
𝑗
, [𝝂(𝑖)

𝑗
]− = 𝜶(𝑖)

𝑗
[�̂�(𝑖)

𝑗
]−

𝝀(𝑖)
𝑗

=
[�̂�(𝑖)

𝑗
]+

u(𝑖)
𝑗
−l(𝑖)

𝑗

,𝜶(𝑖)
𝑗

=
𝜸(𝑖)
𝑗

𝝁(𝑖)
𝑗

+𝜸(𝑖)
𝑗

 when l(𝑖)
𝑗
< 0 < u(𝑖)

𝑗
, 𝑗 /∈ Z+(𝑖) ⋃Z−(𝑖)

𝝂(𝑖)
𝑗

= −𝜷(𝑖)
𝑗
, 𝑗 ∈ Z−(𝑖)

𝝂(𝑖)
𝑗

= 𝜷(𝑖)
𝑗

+ �̂�(𝑖)
𝑗
, 𝑗 ∈ Z+(𝑖)

𝝁 ≥ 0, 𝜸 ≥ 0, 𝝀 ≥ 0, 𝜷 ≥ 0, 0 ≤ 𝜶 ≤ 1, 𝑖 ∈ {1, . . . , 𝐿 − 1}

(4.40)

Similar to the dual form in [32] (our differences are highlighted in blue), the dual problem can be

viewed in the form of another deep network by backward propagating 𝝂(𝐿) to �̂�(0) following the rules

in Equation 4.40. If we look closely at the conditions and coefficients when backward propagating

𝝂(𝑖)
𝑗

for 𝑗-th ReLU at layer 𝑖 in Equation 4.40, we can observe that they match exactly to the

propagation of diagonal matrices D(𝑖), S(𝑖), and vector b(𝑖) defined in Equation 4.28 and Equation 4.29.

Therefore, using notations in Equation 4.28 and Equation 4.29 we can essentially simplify the dual

LP problem in Equation 4.40 to:

𝝂(𝐿) = −1, �̂�(𝑖−1) = W(𝑖)⊤𝝂(𝑖), 𝝂(𝑖) = D(𝑖)�̂�(𝑖) − 𝜷(𝑖)S(𝑖), 𝑖 ∈ {𝐿, · · · , 1}∑︁
l(𝑖)
𝑗
<0<u(𝑖)

𝑗

𝑗 /∈Z+(𝑖) ⋃Z−(𝑖)

l(𝑖)
𝑗

[𝝂(𝑖)
𝑗

]+ = −�̂�(𝑖)𝑇b(𝑖), 𝑗 ∈ {1, · · · , 𝑑𝑖}, 𝑖 ∈ {𝐿 − 1, · · · , 1} (4.41)

89

Then we prove the key claim for this proof with induction where 𝒂(𝑚) and P(𝑚) are defined

in Equation 4.31 and Equation 4.32:

�̂�(𝑚) = −𝒂(𝑚) − P(𝑚) �̃�(𝑚+1) (4.42)

When 𝑚 = 𝐿−1, we can have �̂�(𝐿−1) = −𝒂(𝐿−1)−P(𝐿−1) �̃�(𝐿) = −
[
𝛀(𝐿, 𝐿)W(𝐿)]⊤−0 = −W(𝐿)⊤

which is true according to Equation 4.41.

Now we assume that �̂�(𝑚) = −𝒂(𝑚) − P(𝑚) �̃�(𝑚+1) holds, and we show that �̂�(𝑚−1) = −𝒂(𝑚−1) −

P(𝑚−1) �̃�(𝑚) will hold as well:

�̂�(𝑚−1) = W(𝑚)⊤
(
D(𝑚)�̂�(𝑚) − 𝜷(𝑚)S(𝑚)

)
= −W(𝑚)⊤D(𝑚)𝒂(𝑚) −W(𝑚)⊤D(𝑚)P(𝑚) �̃�(𝑚+1) −W(𝑚)⊤𝜷(𝑚)S(𝑚)

= −𝒂(𝑚−1) −
[(

S(𝑚)W(𝑚)
)⊤

,

(
P(𝑚)⊤D(𝑚)W(𝑚)

)⊤] [
𝜷(𝑚), �̃�(𝑚+1)]

= −𝒂(𝑚−1) − P(𝑚−1) �̃�(𝑚)

Therefore, the claim Equation 4.42 is proved with induction. Lastly, we prove the following

claim where q(𝑚) and 𝑐(𝑚) are defined in Equation 4.33 and Equation 4.34.

−
𝐿∑︁

𝑖=𝑚+1
𝝂(𝑖)⊤b(𝑖) +

𝐿−1∑︁
𝑖=𝑚+1

∑︁
l(𝑖)
𝑗
<0<u(𝑖)

𝑗

𝑗 /∈Z+(𝑖) ⋃Z−(𝑖)

l(𝑖)
𝑗

[𝝂(𝑖)
𝑗

]+ = q(𝑚)⊤ �̃�(𝑚+1) + 𝑐(𝑚) (4.43)

90

This claim can be proved by applying Equation 4.41 and Equation 4.42.

−
𝐿∑︁

𝑖=𝑚+1
𝝂(𝑖)⊤b(𝑖) +

𝐿−1∑︁
𝑖=𝑚+1

∑︁
l(𝑖)
𝑗
<0<u(𝑖)

𝑗

𝑗 /∈Z+(𝑖) ⋃Z−(𝑖)

l(𝑖)
𝑗

[𝝂(𝑖)
𝑗

]+

= −
𝐿∑︁

𝑖=𝑚+1

(
D(𝑖)�̂�(𝑖) − 𝜷(𝑖)S(𝑖)

)⊤
b(𝑖) +

𝐿∑︁
𝑖=𝑚+2

(
−�̂�(𝑖−1)𝑇b(𝑖−1)

)
=

𝐿∑︁
𝑖=𝑚+1

[(
𝒂(𝑖)⊤ + �̃�(𝑖+1)⊤P(𝑖)⊤

)
D(𝑖)b(𝑖) + 𝜷(𝑖)⊤S(𝑖)b(𝑖)

]
+

𝐿∑︁
𝑖=𝑚+2

(
𝒂(𝑖−1)⊤ + �̃�(𝑖)⊤P(𝑖−1)⊤

)
b(𝑖−1)

=
𝐿∑︁

𝑖=𝑚+1
�̃�(𝑖)⊤

[
S(𝑖),P(𝑖)⊤D(𝑖)

]
b(𝑖) +

𝐿∑︁
𝑖=𝑚+2

�̃�(𝑖)⊤P(𝑖−1)⊤b(𝑖−1)

+
𝐿∑︁

𝑖=𝑚+1
𝒂(𝑖)⊤D(𝑖)b(𝑖) +

𝐿∑︁
𝑖=𝑚+2

𝒂(𝑖−1)⊤b(𝑖−1)

= q(𝑚)⊤ �̃�(𝑚+1) + 𝑐(𝑚)

Finally, we apply claims Equation 4.42 and Equation 4.43 into the dual form solution Equa-

tion 4.40 and prove the Theorem 4.3.2.

𝑔(𝜶, 𝜷) = −
𝐿∑︁
𝑖=1

𝝂(𝑖)⊤b(𝑖) − �̂�(0)⊤𝑥0 − ||�̂�(0) | |1·𝜖 +
𝐿−1∑︁
𝑖=1

∑︁
l(𝑖)
𝑗
<0<u(𝑖)

𝑗

𝑗 /∈Z+(𝑖) ⋃Z−(𝑖)

l(𝑖)
𝑗

[𝝂(𝑖)
𝑗

]+

= −||−𝒂(0) − P(0) �̃�(1) | |1·𝜖 +
(
𝒂(0)⊤ + �̃�(1)⊤P(0)⊤

)
𝑥0 + q(0)⊤ �̃�(1) + 𝑐(0)

= −||𝒂 + P�̃�(1) | |1·𝜖 +
(
P⊤𝑥0 + q

)⊤
�̃�(1) + 𝒂⊤𝑥0 + 𝑐

A more intuitive proof. Here we provide another intuitive proof showing why the dual form

solution of verification objective in Equation 4.40 is the same as the primal one in Thereom 4.3.1.

𝑑LP = 𝑔(𝜶, 𝜷) is the dual objective for Equation 4.18 with free variables 𝜶 and 𝜷. We want to show

91

that the dual problem can be viewed in the form of backward propagating 𝝂(𝐿) to �̂�(0) following the

same rules in 𝛽-CROWN. [107] showed that CROWN computes the same solution as the dual form

in [32]: �̂�(𝑖) is corresponding to −A(𝑖) in CROWN (defined in the same way as in Equation 4.30 but

with 𝜷(𝑖+1) = 0) and 𝝂(𝑖) is corresponding to −A(𝑖+1)D(𝑖+1). When the split constraints are introduced,

extra terms for the dual variable 𝜷 modify 𝝂(𝑖) (highlighted in blue in Equation 4.40). The way

𝛽-CROWN modifies A(𝑖+1)D(𝑖+1) is exactly the same as the way 𝜷(𝑖) affects 𝝂(𝑖): when we split

𝑧
(𝑖)
𝑗
≥ 0, we add 𝜷(𝑖)

𝑗
to the 𝝂(𝑖)

𝑗
in [32]; when we split 𝑧(𝑖)

𝑗
≥ 0, we add −𝜷(𝑖)

𝑗
to the 𝝂(𝑖)

𝑗
in [32] (𝝂(𝑖)

𝑗
is

0 in this case because it is set to be inactive). To make this relationship more clear, we define a new

variable 𝝂′, and rewrite relevant terms involving 𝝂, �̂� below:

𝝂(𝑖)
𝑗

= 0, 𝑗 ∈ Z−(𝑖);

𝝂(𝑖)
𝑗

= �̂�(𝑖)
𝑗
, 𝑗 ∈ Z+(𝑖);

𝝂(𝑖)
𝑗

is defined in the same way as in Equation 4.40 for other cases

𝝂(𝑖)
𝑗
′ = −𝜷(𝑖)

𝑗
+ 𝝂(𝑖)

𝑗
, 𝑗 ∈ Z−(𝑖);

𝝂(𝑖)
𝑗
′ = 𝜷(𝑖)

𝑗
+ 𝝂(𝑖)

𝑗
, 𝑗 ∈ Z+(𝑖);

𝝂(𝑖)
𝑗
′ = 𝝂(𝑖)

𝑗
, otherwise

�̂�(𝑖−1) = W(𝑖)⊤𝝂(𝑖)′;

(4.44)

It is clear that 𝝂′ corresponds to the term −(A(𝑖+1)D(𝑖+1)+𝜷(𝑖+1)⊤S(𝑖+1)) in Equation 4.30, by noting

that 𝝂(𝑖) in [32] is equivalent to −A(𝑖+1)D(𝑖+1) in CROWN and the choice of signs in S(𝑖+1) reflects

neuron split constraints. Thus, the dual formulation will produce the same results as Equation 4.38,

and thus also equivalent to Equation 4.23.

Corollary 4.3.2.1. When 𝜶 and 𝜷 are optimally set, 𝛽-CROWN produces the same solution as LP

with split constraints when intermediate bounds l, u are fixed. Formally,

max
0≤𝜶≤1,𝜷≥0

𝑔(𝜶, 𝜷) = 𝑝∗LP

where 𝑝∗LP is the optimal objective of Equation 4.18.

92

Proof. Given fixed intermediate layer bounds l and u, the dual form of the verification problem

in Equation 4.18 is a linear programming problem with dual variables defined in Equation 4.39.

Suppose we use an LP solver to obtain the optimal dual solution 𝝂∗, 𝝃∗, 𝝁∗, 𝜸∗, 𝝀∗, 𝜷∗. Then we

can set 𝜶(𝑖)
𝑗

=
𝜸(𝑖)
𝑗
∗

𝝁(𝑖)
𝑗
∗+𝜸(𝑖)

𝑗
∗ , 𝜷 = 𝜷∗ and plug them into Equation 4.40 to get the optimal dual solution

𝑑∗LP. Theorem 4.3.2 shows that, 𝛽-CROWN can compute the same objective 𝑑∗LP given the same

𝜶(𝑖)
𝑗

=
𝜸(𝑖)
𝑗
∗

𝝁(𝑖)
𝑗
∗+𝜸(𝑖)

𝑗
∗ , 𝜷 = 𝜷∗, thus max0≤𝜶≤1,𝜷≥0 𝑔(𝜶, 𝜷) ≥ 𝑑∗LP. On the other hand, for any setting of 𝜶

and 𝜷, 𝛽-CROWN produces the same solution 𝑔(𝜶, 𝜷) as the rewritten dual LP in Equation 4.40,

so 𝑔(𝜶, 𝜷) ≤ 𝑑∗LP. Thus, we have max0≤𝜶≤1,𝜷≥0 𝑔(𝜶, 𝜷) = 𝑑∗LP. Finally, due to the strong duality in

linear programming, 𝑝∗LP = 𝑑∗LP = max0≤𝜶≤1,𝜷≥0 𝑔(𝜶, 𝜷).

The variables 𝜶 in 𝛽-CROWN can be translated to dual variables in LP as well. Given 𝜶

in 𝛽-CROWN, we can get the corresponding dual LP variables 𝝁, 𝜸 given 𝜶 by setting 𝝁(𝑖)
𝑗

=

(1 − 𝜶(𝑖)
𝑗

)[�̂�(𝑖)
𝑗

]− and 𝜸(𝑖)
𝑗

= 𝜶(𝑖)
𝑗

[�̂�(𝑖)
𝑗

]−.

4.4 Experimental Evaluation for 𝛼, 𝛽-CROWN

Implementation. We implemented 𝛼-CROWN and the improved version 𝛽-CROWN based on

a well developed library auto_LiRPA2 for CROWN [31, 37] in Python and PyTorch3. The

combination of 𝛼-CROWN, 𝛽-CROWN, and BaB enables state-of-the-art complete verifier 𝛼, 𝛽-

CROWN and the released code is available at https://abcrown.org.

VNN-COMP 2021 results. We encourage the readers to checkout the report of the Second Inter-

national Verification of Neural Networks Competition (VNN-COMP 2021) [42] with 9 additional

benchmarks and 12 competing methods evaluated in a standardized testing environment on AWS.

Our entry 𝛼,𝛽-CROWN is based on the 𝛽-CROWN algorithm in this work with the same codebase.

Experimental setup. We run our experiments on a machine with a single NVIDIA RTX 3090

GPU (24GB GPU memory), a AMD Ryzen 9 5950X CPU and 64GB memory. Our 𝛼, 𝛽-CROWN
2https://github.com/KaidiXu/auto_LiRPA
3https://pytorch.org/

93

https://abcrown.org

Model name Model structure

CNN-A-Adv (MNIST) Conv(1, 16, 4) - Conv(16, 32, 4) - Linear(1568, 100) - Linear(100, 10)
ConvSmall (MNIST) Conv(1, 16, 4) - Conv(16, 32, 4) - Linear(800, 100) - Linear(100, 10)
ConvBig (MNIST) Conv(1, 32, 3) - Conv(32, 32, 4) - Conv(32, 64, 3) - Conv(64, 64, 4) - Linear(3136, 512) -

Linear(512, 512) - Linear(512, 10)
ConvSmall (CIFAR-10) Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(1152, 100) - Linear(100, 10)
ConvBig (CIFAR-10) Conv(3, 32, 3) - Conv(32, 32, 4) - Conv(32, 64, 3) - Conv(64, 64, 4) - Linear(4096, 512) -

Linear(512, 512) - Linear(512, 10)
CNN-A-Adv/-4 (CIFAR-10) Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100) - Linear(100, 10)
CNN-B-Adv/-4 (CIFAR-10) Conv(3, 32, 5) - Conv(32, 128, 4) - Linear(8192, 250) - Linear(250, 10)
CNN-A-Mix/-4 (CIFAR-10) Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100) - Linear(100, 10)

Base (CIFAR-10) Conv(3, 8, 4) - Conv(8, 16, 4) - Linear(1024, 100) - Linear(100, 10)
Wide (CIFAR-10) Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100) - Linear(100, 10)
Deep (CIFAR-10) Conv(3, 8, 4) - Conv(8, 8, 3) - Conv(8, 8, 3) - Conv(8, 8, 4) - Linear(412, 100) - Linear(100, 10)

Table 4.1: Model architectures used in our experiments. For example, Conv(1, 16, 4) stands for a
conventional layer with 1 input channel, 16 output channels and a kernel size of 4 × 4. Linear(1568,
100) stands for a fully connected layer with 1568 input features and 100 output features. We have
ReLU activation functions between two consecutive layers.

solver uses 1 CPU and 1 GPU only, except for the MLP models in Table 4.3 where 16 threads

are used to compute intermediate layer bounds with Gurobi4. We use the Adam optimizer [51]

to solve both �̂� and �̂� in Equation 4.20 with 20 iterations. The learning rates are set as 0.1 and

0.05 for optimizing �̂� and �̂� respectively. We decay the learning rates with a factor of 0.98 per

iteration. To maximize the benefits of parallel computing on GPU, we use batch sizes 𝑛 =1024 for

Base (CIFAR-10), Wide (CIFAR-10), Deep (CIFAR-10), CNN-A-Adv (MNIST) and ConvSmall

(MNIST), 𝑛 =2048 for ConvSmall (CIFAR-10), 𝑛 =4096 for CNN-A-Adv (CIFAR-10), CNN-

A-Adv-4 (CIFAR-10), CNN-A-Mix (CIFAR-10) and CNN-A-Mix-4 (CIFAR-10), 𝑛 =256 for

CNN-B-Adv (CIFAR-10) and CNN-B-Adv-4 (CIFAR-10), 𝑛 =1024 for ConvBig (MNIST), 𝑛 =10

for ConvBig (CIFAR-10), 𝑛 =8 for ResNet (CIFAR-10) respectively. The CNN-A-Adv, CNN-

A-Adv-4, CNN-A-Mix, CNN-A-Mix-4, CNN-B-Adv and CNN-B-Adv-4 models are obtained

from the authors or [114] and are the same as the models used in their paper. We summarize the

model structures in both incomplete verification and complete verification (Base, Wide and Deep)

4Note that our 𝛽-CROWN verifier does not rely on MILP/LP solvers. For these very small MLP models, we find
that a MILP solver can actually compute intermediate layer bounds pretty quickly and using these tighter intermediate
bounds are quite helpful for 𝛽-CROWN. This also enables us to utilize both CPUs and GPUs on a machine. For all
other models, intermediate layer bounds are computed through optimizing Equation 4.20. Practically, MILP is not
scalable beyond these very small MLP models and these small models are not the main focus of this work.

94

experiments in Table 4.1.

We mainly evaluate the performance of 𝛼, 𝛽-CROWN demonstrating significant verification

efficiency improvements across standard complete and incomplete benchmarks. For simplicity, we

use 𝛽-CROWN BaB representing full 𝛼, 𝛽-CROWN while we consider BaB based verifier using

𝛼-CROWN as a baseline referred to as Fast-and-Complete [35] in the following experiments.

4.4.1 Comparisons to Complete Verifiers

We evaluate complete verification performance on dataset provided in [30, 39] and used in

VNN-COMP 2020 [146]. The benchmark contains three CIFAR-10 models (Base, Wide, and Deep)

with 100 examples each. Each data example is associated with an ℓ∞ norm 𝜖 and a target label

for verification (referred to as a property to verify). We compare against multiple baselines for

complete verification: (1) BaBSR [40], a basic BaB and LP based verifier; (2) MIPplanet [20], a

customized MIP solver for NN verification where unstable ReLU neurons are randomly selected

for splitting; (3) ERAN [108, 94, 95, 93], an abstract interpretation based verifier which performs

well on this benchmark in VNN-COMP 2020; (4) GNN-Online [30], a BaB and LP based verifiers

using a learned Graph Neural Network (GNN) to guide the ReLU splits; (5) BDD+ BaBSR [38],

a verification framework based on Lagrangian decomposition on GPUs (BDD+) with BaBSR

branching strategy; (6) OVAL (BDD+ GNN) [38, 30], a strong verifier in VNN-COMP 2020 using

BDD+ with GNN guiding the ReLU splits; (7) A.set BaBSR and (8) Big-M+A.set BaBSR [39], very

recent dual-space verifiers on GPUs with a tighter linear relaxation than triangle LP relaxations; (9)

Fast-and-Complete [35], which uses 𝛼-CROWN on GPUs as the incomplete verifier in BaB without

neuron split constraints; (10) BaDNB (BDD+ FSB) [41], a concurrent state-of-the-art complete

verifier, using BDD+ on GPUs with FSB branching strategy. 𝛽-CROWN BaB can use either BaBSR

or FSB branching heuristic, and we include both in evaluation. All methods use a 1 hour timeout

threshold.

We report the average verification time and branch numbers in Table 4.2 and plot the percentage

of solved properties over time in Figure 4.4. 𝛽-CROWN FSB achieves the fastest average running

95

CIFAR-10 Base CIFAR-10 Wide CIFAR-10 Deep

Method time(s) branches %timeout time(s) branches %timeout time(s) branches %timeout

BaBSR [40] 2367.78 1020.55 36.00 2871.14 812.65 49.00 2750.75 401.28 39.00
MIPplanet [20] 2849.69 - 68.00 2417.53 - 46.00 2302.25 - 40.00

ERAN∗[108, 94, 95, 93] 805.94 - 5.00 632.20 - 9.00 545.72 - 0.00
GNN-online [30] 1794.85 565.13 33.00 1367.38 372.74 15.00 1055.33 131.85 4.00

BDD+ BaBSR [38] 807.91 195480.14 20.00 505.65 74203.11 10.00 266.28 12722.74 4.00
OVAL (BDD+ GNN)∗[38, 30] 662.17 67938.38 16.00 280.38 17895.94 6.00 94.69 1990.34 1.00

A.set BaBSR [39] 381.78 12004.60 7.00 165.91 2233.10 3.00 190.28 2491.55 2.00
BigM+A.set BaBSR [39] 390.44 11938.75 7.00 172.65 4050.59 3.00 177.22 3275.25 2.00
Fast-and-Complete [35] 695.01 119522.65 17.00 495.88 80519.85 9.00 105.64 2455.11 1.00

BaDNB (BDD+ FSB)[41] 309.29 38239.04 7.00 165.53 11214.44 4.00 10.50 368.16 0.00
𝛽-CROWN BaBSR 226.06 509608.50 6.00 118.26 217691.24 3.00 6.12 204.66 0.00
𝛽-CROWN FSB 118.23 208018.21 3.00 78.32 116912.57 2.00 5.69 41.12 0.00

* OVAL (BDD+ GNN) and ERAN results are from VNN-COMP 2020 report [146]. Other results were reported by their authors.

Table 4.2: Average runtime and number of branches on three CIFAR-10 models over 100 properties.

100 101 102 103

CIFAR-10 Base: Running time (in s)
0%

20%

40%

60%

80%

100%-CROWN FSB
-CROWN BaBSR

OVAL (VNN-Comp 20')
ERAN (VNN-Comp 20')
BaBSR
MIPplanet
GNN-Online
BaDNB(BDD+ FSB)
BDD+ BaBSR
A.Set BaBSR
Big-M+A.Set BaBSR
Fast-and-Complete 100 101 102 103

CIFAR-10 Wide: Running time (in s)
0%

20%

40%

60%

80%

100%

100 101 102 103

CIFAR-10 Deep: Running time (in s)
0%

20%

40%

60%

80%

100%

Figure 4.4: Percentage of solved properties with growing running time. 𝛽-CROWN FSB (light
green) clearly lead in all 3 settings and solve over 90% properties within 10 seconds.

time compared to all other baselines with minimal timeouts, and also clearly leads on the cactus

plot. When using a weaker branching heuristic, 𝛽-CROWN BaBSR still outperforms all literature

baselines, including very recent ones such as A.set BaBSR [39], Fast-and-Complete [35] and

BaDNB [41]. Our benefits are more clearly shown in Figure 4.4, where we solve over 90%

examples under 10s and most other verifiers can verify much less or none of the properties within

10s. We see a 2 to 3 orders of magitudes speedup in Figure 4.4 compared to CPU based verifiers

such as MIPplanet and BaBSR.

4.4.2 Comparisons to Incomplete Verifiers

Verified accuracy. In Table 4.3, we compare against a few representative and strong incomplete

verifiers on 5 convolutional networks and 4 MLP networks for MNIST and CIFAR-10 under the

same set of 1000 images and perturbation 𝜖 as reported in [108, 89, 109]. Among the baselines,

96

Dataset Model CROWN/DeepPoly∗[95] kPoly [108] OptC2V [89] PRIMA† [109] 𝛽-CROWN FSB Upper
(Same settings as [108, 89, 109]) Verified% Time (s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s) bound

MNIST
MLP 5 × 100‡ 16.0 0.7 44.1 307 42.9 137 51.0 159 69.9 102 84.2
MLP 8 × 100 18.2 1.4 36.9 171 38.4 759 42.8 301 62.0 103 82.0
MLP 5 × 200 29.2 2.4 57.4 187 60.1 403 69.0 224 77.4 86 90.1
MLP 8 × 200 25.9 5.6 50.6 464 52.8 3451 62.4 395 73.5 95 91.1
ConvSmall 15.8 3 34.7 477 43.6 55 59.8 42 72.7 7.0 73.2
ConvBig 71.1 21 73.6 40 77.1 102 77.5 11 79.3 3.1 80.4

CIFAR
ConvSmall 35.9 4 39.9 86 39.8 105 44.6 13 46.3 6.8 48.1
ConvBig 42.1 43 45.9 346 No public code 48.3 176 51.6 15.3 55.0
ResNet 24.1 1 24.5 91 cannot run 24.8 1.7 24.8 1.6 24.8

* CROWN/DeepPoly evaluated on CPU. † PRIMA is a concurrent work and its results are from [109] (Oct 26, 2021 version), except that
ResNet results are from personal communications with the authors due to a different input normalization used.
‡ Because these MLP models are fairly small, some of their intermediate layer bounds are computed by mixed integer programming
(MIP) using 80% time budget before branch and bound starts and 𝛽-CROWN FSB is used during the branch and bound process.

Table 4.3: Verified accuracy (%) and avg. time (s) of 1000 images evaluated on the ERAN models
in [108, 89, 109]. kPoly, OptC2V and PRIMA are strong incomplete verifiers that can break
the convex relaxation barrier [107]. Average time reported excludes examples that are classified
incorrectly.

kPoly [108], OptC2V [89] and PRIMA [109] utilize state-of-the-art multi-neuron linear relaxation

for ReLUs and can bypass the single-neuron convex relaxation barrier [107], and are among the

strongest incomplete verifiers. 𝛽-CROWN FSB achieves better verified accuracy on all models using

a similar or less amount of time. Some models, such as MNIST ConvBig and CIFAR ConvBig, are

quite challenging - the verified accuracy obtained by 𝛽-CROWN FSB is close to the upper bound

found via PGD attack.

To make more comprehensive evaluations, in Table 4.4 we further compare against a state-of-

the-art semidefinite programming (SDP) based verifier, SDP-FO [114], on one MNIST and six

CIFAR-10 models reported in their paper. The models were trained using adversarial training,

which posed a challenge for verification [111]. The SDP formulation can be tighter than linear

relaxation based ones, but it is computationally expensive - SDP-FO takes 2 to 3 hours to converge

on one GPU for verifying a single property, resulting 5,400 GPU hours to verify 200 testing images

with 10 labels each. Due to resource limitations, we directly quote SDP-FO results from [114] on

the same set of models. We evaluate verified accuracy on the same set of 200 test images for other

baselines. We include a concurrent work PRIMA [109], the strongest multi-neuron linear relaxation

baseline in Table 4.3. Table 4.4 shows that overall we are 3 orders of magnitude faster than SDP-FO

97

Dataset Model CROWN/DeepPoly SDP-FO [114]∗ PRIMA [109] 𝛽-CROWN FSB Upper
𝜖 = 0.3 and 𝜖 = 2/255 Verified% Time (s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s) bound

MNIST CNN-A-Adv 1.0 0.1 43.4 >20h 44.5 135.9 70.5 21.1 76.5

CIFAR

CNN-B-Adv 21.5 0.5 32.8 >25h 38.0 343.6 46.5 32.2 65.0
CNN-B-Adv-4 43.5 0.9 46.0 >25h 53.5 43.8 54.0 11.6 63.5
CNN-A-Adv 35.5 0.6 39.6 >25h 41.5 4.8 44.0 5.8 50.0

CNN-A-Adv-4 41.5 0.7 40.0 >25h 45.0 4.9 46.0 5.6 49.5
CNN-A-Mix 23.5 0.4 39.6 >25h 37.5 34.3 41.5 49.6 53.0

CNN-A-Mix-4 38.0 0.5 47.8 >25h 48.5 7.0 50.5 5.9 57.5
*

SDP-FO results are directly from their paper due to its very long running time (>20h per example). † PRIMA
experiments were done using commit released in June, 2021. PRIMA and 𝛽-CROWN FSB results are on the same set
of 200 examples (first 200 examples of CIFAR-10 dataset) and we do not verify examples that are classified incorrectly
or can be attacked by a 200-step PGD. 𝛽-CROWN uses 1 GPU and 1 CPU; PRIMA uses 1 GPU and 20 CPUs.

Table 4.4: Verified accuracy (%) and avg. per-example verification time (s) on 7 models from
SDP-FO [114]. CROWN/DeepPoly are fast but loose bound propagation based methods, and
they cannot be improved with more running time. SDP-FO uses stronger semidefinite relaxations,
which can be very slow and sometimes has convergence issues. PRIMA, a concurrent work, is the
state-of-the-art relaxation barrier breaking method.

while still achieving consistently higher verified accuracy on average.

Tightness of verification. In Figure 4.5, we compare the tightness of verification bounds against

SDP-FO on two adversarially trained networks from [114]. Specifically, we use the verification

objective 𝑓 (𝑥) := 𝑧
(𝐿)
𝑦 (𝑥) − 𝑧

(𝐿)
𝑦′ (𝑥), where 𝑧(𝐿) is the logit layer output, 𝑦 and 𝑦′ are the true label

and the runner-up label. For each test image, a 200-step PGD attack [18] provides an adversarial

upper bound 𝑓 of the optimal objective: 𝑓 ∗ ≤ 𝑓 . Verifiers, on the other hand, can provide a verified

lower bound 𝑓 ≤ 𝑓 ∗. Bounds from tighter verification methods lie closer to line 𝑦 = 𝑥 in Figure 4.5.

Figure 4.5 shows that on both PGD adversarially trained networks, 𝛽-CROWN FSB consistently

outperforms SDP-FO for all 100 random test images. Importantly, for each point on the plots,

𝛽-CROWN FSB needs 3 minutes while SDP-FO needs 178 minutes on average. LP verifier with

triangle relaxations produces much looser bounds than 𝛽-CROWN FSB and SDP-FO.

4.4.3 Ablation Studies for 𝛼, 𝛽-CROWN BaB and 𝛽-CROWN BaB

Ablation study of running time on GPUs and CPUs We conduct the same experiments as in

Table 4.2 but run 𝛽-CROWN FSB on CPUs instead of GPUs. As shown in Table 4.5, our method is

strong even on a single CPU, showing that the good performance does not only come from GPU

98

2 0 2 4 6
PGD adversarial upper bound

10
8
6
4
2
0
2
4
6

Ve
rif

ie
d

lo
we

r b
ou

nd

-CROWN
LP
SDP-FO
PGD (y=x)

1 0 1 2 3 4 5 6 7
PGD adversarial upper bound

8
6
4
2
0
2
4
6
8

Ve
rif

ie
d

lo
we

r b
ou

nd

-CROWN
LP
SDP-FO
PGD (y=x)

(a) MNIST CNN-A-Adv, 𝜖 = 0.3 (b) CIFAR CNN-B-Adv, 𝜖 = 2/255

Figure 4.5: Verified lower bound v.s. PGD adversarial upper bound targeting runner-up labels.A
lower bound closer to the upper bound (closer to the line 𝑦 = 𝑥) is better. 𝛽-CROWN FSB uses 3
mins while SDP-FO needs 2 to 3 hours per point.

CIFAR-10 Base CIFAR-10 Wide CIFAR-10 Deep

Hardware time(s) branches %timeout time(s) branches %timeout time(s) branches %timeout

1 CPU 249.49 7886.37 4.00 178.01 2749.96 4.00 47.46 41.12 0.00
4 CPU 228.28 9575.52 4.00 172.55 3956.17 4.00 45.35 41.12 0.00

16 CPU 222.71 10271.08 4.00 172.40 4087.15 4.00 43.97 41.12 0.00
1 GPU 118.23 208018.21 3.00 78.32 116912.57 2.00 5.69 41.12 0.00

Table 4.5: Average runtime and average number of branches on three CIFAR-10 models over 100
properties (the same setting as in Table 4.2) by using different numbers of CPU cores, as well as
using a single GPU.

acceleration; our efficient algorithm also contributes to our success. On the other hand, using GPU

can boost the performance by at least 2x. Importantly, the models evaluated in this table are very

small ones. Massive parallelization on GPU will lead to more significant acceleration on larger

models. The speedup on multi-core CPU is not obvious, possibly due to the limitation of underlying

implementations of PyTorch.

Ablation study on the impact of 𝛼, 𝛽, and their joint optimization We conduct the same

experiments as in Table 4.2 but turn on or turn off 𝛼 and 𝛽 optimization to see the contribution of

each part. As shown in Table 4.6, optimizing both 𝛼 and 𝛽 leads to optimal performance. Optimizing

beta has a greater impact than optimizing 𝛼. Joint optimization is helpful for CIFAR10-Base and

CIFAR10-Wide models, reducing the overall runtime. For simple models like CIFAR10-Deep,

disabling joint optimization can help slightly because this model is very easy to verify (within a few

seconds) and using looser bounds reduces verification cost.

99

CIFAR-10 Base CIFAR-10 Wide CIFAR-10 Deep

joint opt 𝛼 𝛽 time(s) branches %timeout time(s) branches %timeout time(s) branches %timeout

✓ 233.86 233233.70 6.00 148.46 113017.10 4.00 5.77 260.18 0.00
✓ 174.10 163037.05 4.00 102.65 86571.18 2.00 5.73 134.76 0.00

✓ ✓ 139.83 133346.44 3.00 91.01 73713.30 2.00 5.22 100.44 0.00

✓ ✓ 163.69 160058.80 4.00 149.00 115509.71 4.00 8.58 65.70 0.00
✓ ✓ 162.95 150631.49 4.00 89.22 72479.96 2.00 8.38 52.26 0.00
✓ ✓ ✓ 118.23 208018.21 3.00 78.32 116912.57 2.00 5.69 41.12 0.00

Table 4.6: Ablation study on the CIFAR-10 Base, Wide and Deep models (the same setting as in
Table 4.2), including combinations of optimizing or not optimizing 𝛼 and/or 𝛽 variables, and using
or not using joint optimization for intermediate layer bounds.

4.5 Generalized 𝛽-CROWN: Intermediate Bound Refinement for Branch

and Bound

As we introduced in Section 4.1.2, for branch and bound based complete verifiers, a great

opportunity for refining intermediate bounds is through the additional split constraints introduced by

BaB, which do not exist for incomplete verifiers. For example, in ReLU networks, an intermediate

neuron 𝑧 can be split into active (𝑧 > 0) or inactive (𝑧 < 0) cases, and this constraint can be added to

refine every other intermediate neuron bounds. Typically, a BaB solver needs to add tens to hundreds

of such constraints to the subproblems, which creates great potential to tighten intermediate bounds

using these constraints, leading to stronger relaxation for subsequent subproblems. Despite this great

potential, refinement for complete verifiers is more challenging because branch and bound creates a

large number of subproblems (in the order of tens of thousands), and in each subproblem, hundreds

or thousands of neurons can be potentially refined, thus the computational cost for refinement is

almost infeasible for complete verification.

Current state-of-the-art BaB based complete verifiers like 𝛼, 𝛽-CROWN introduced in Sec-

tion 4.3 are efficient in verifying the existing benchmarks [36, 39, 35, 38] but the benchmarks are

mainly designed for early complete verifiers and are relatively simple, thus giving us a false sense

of power on verifying difficult verification problems (larger networks and larger input domains).

We noticed that even the SOTA complete verifiers struggle to verify simple adversarially trained

100

MLP with larger perturbation epsilons. Specifically, ReLU neuron splits will have very limited

improvement on these verification instances (e.g., one network have 10,000 unstable ReLU neurons

but we are just splitting one at a time). Splitting one ReLU neuron can only tighten the relaxation

on that neuron, but has little benefit in tightening other ReLU neuron relaxations.

After investigating their performance of bound propagation methods like CROWN variances

used in BaB, we find a very interesting but counter-intuitive observation: using bound propagation

based approach to tighten intermediate bounds may actually cause worse bounds, and a full linear

programming (LP) formation is required to avoid this issue. However, using LP for refinement leads

to extremely high costs, and is impossible to be repeatedly used in the BaB procedure.

Motivated by this challenge, in this section, we propose a very efficient method to refine the

intermediate layer bounds for complete verifiers by exploiting the split constraints added by branch

and bound. Our main contribution is a differentiable optimization framework that can tighten

the intermediate layer bounds for all neurons together by optimizing a single objective using

projected gradient ascent, where its gradient can be obtained cheaply on GPUs using an automatic

differentiation framework such as PyTorch. Refined intermediate bounds produced by our method

are very close to the ones obtained by solving a relatively expensive linear programming (LP)

problem for every intermediate neuron. This efficient procedure allows us to conduct effective

bound refinements for complete verifiers with thousands of subproblems to solve. Our method

is complementary to existing SOTA complete verifiers based on branch and bound with splitting

neurons. Empirically, we show that assisted by our efficient refinement process, the bounds

computed by a complete verifier can improve quite noticeably especially when evaluating on

challenging networks with a large portion of unstable ReLU neurons.

In this section, we will first describe the intriguing observation in Section 4.5.1. Then we

analyze such a challenge and describe a possible but extremely expensive LP based solution to it in

Section 4.5.2. In Section 4.5.3, we propose to our general efficient intermediate bound refinement

frameworks for BaB generalized from 𝛽-CROWN formulation (described in Section 4.3). Lastly, in

Section 4.5.4, we provide extensive experimental results showing that the proposed approach can

101

outperform SOTA complete verifier 𝛼, 𝛽-CROWN especially on challenging verification problems.

4.5.1 Issues with BaB Refinement Using Existing Bound Propagation Methods

1

2
1

2 1

-1

Figure 4.6: A toy example illustrating the issues of bound propagation methods in BaB

Most of the existing BaB based complete verifiers utilize simple bound propagation methods

like CROWN or 𝛽-CROWN as incomplete verifiers to bound each split subdomain [30, 40, 27, 35,

36, 39]. Intuitively, after each iteration of BaB on problem domain C with current global lower

bound 𝑓 , splitting a targeted ReLU neuron C1 = {𝑥 ∈ C, 𝑧(𝑖)
𝑗
≥ 0} and C2 = {𝑥 ∈ C, 𝑧(𝑖)

𝑗
< 0} will

always give us a refined global lower bound 𝑓 ′ = min(𝑓
C1
, 𝑓
C2

) better than original 𝑓 (𝑓 ′ ≥ 𝑓). The

intuition makes sense since there is no need to relax the targeted ReLU neuron any more after the

split. However, we surprisingly observe that this seemingly intuitive assumption is not always true

and it might even end up with worse lower bound after split refinement (𝑓 ′ < 𝑓).

We illustrate this interesting observation with CROWN and LP verifier respectively an example

in Figure 4.6: Given a two layer NN with two inputs 𝑥1, 𝑥2 ∈ [−1, 1], we want to verify if the output

𝑓 (𝑥1, 𝑥2) = ReLU(𝑧1) − ReLU(𝑧2) = ReLU(𝑥1 + 2𝑥2) − ReLU(2𝑥1 + 𝑥2) is always > 0. First we

illustrate how each type of incomplete verifier introduced before can provide a sound lower bound

in a simple example in Figure 4.6:

Sound propagation method is a type of incomplete verifiers that can quickly compute a sound

lower bound of NN output given the input domains and 𝛼-CROWN introduced in Section 4.2 is a

representative. Essentially, it will maintain a sound convex relaxation for each layer by propagating

the input domain layer by layer towards the output layer. The sound lower bound of the output can

102

then be easily calculated from the relaxed output domain. When it comes to non-linear ReLU layers,

they will relax the ReLU operations to be a linear upper and lower bound as shown in Figure 4.1d.

Formally, given the pre-activation bounds of ReLU neuron 𝑧 = ReLU(𝑧), 𝑧 ∈ [𝑙, 𝑢], its relaxation

in 𝛼-CROWN can be written as (1) 𝑧 = 0 if 𝑢 ≤ 0 (inactive state) (2) 𝑧 = 𝑧 if 𝑙 ≥ 0 (active state)

(3) 𝛼𝑧 ≤ 𝑧 ≤ 𝑢(𝑧 − 𝑙)/(𝑢 − 𝑙) if 𝑙 < 𝑧 < 𝑢 (unstable). Here 𝛼 is a free variable bounded within

[0, 1] representing the slope of the linear lower bound. The choice of 𝛼 determines the precision

of the obtained sound lower bound. A common heuristic is to use the same slope as upper bound

𝛼 = 𝑢/(𝑢 − 𝑙) = 0.5 [32, 26, 92, 94] leading to the CROWN lower bound -2.5 in Equation 4.45.

𝛼-CROWN uses gradient ascent to optimize 𝛼 to be 0.25 and get optimized lower bound -2.25

in Equation 4.46.

𝑓
CROWN

= min
𝑥1,𝑥2∈[−1,1],𝛼=0.5

𝛼(𝑥1 + 2𝑥2) − (2𝑥1 + 𝑥2 + 3)/2 = −2.5 (4.45)

𝑓
𝛼−CROWN

= max
𝛼=[0,1]

min
𝑥1,𝑥2∈[−1,1]

𝛼(𝑥1 + 2𝑥2) − (2𝑥1 + 𝑥2 + 3)/2 = −2.25 (4.46)

LP verifiers on the other hand can obtain an accurate and sound lower bound for NN by writing

the verification problem into an Linear programming formulation (LP) and solve it with a linear

solver. For each non-linear ReLU neuron, LP verifiers bound it with a tight convex triangle

relaxation shown in Figure 4.1c. The intermediate layer bounds for each ReLU neuron are obtained

from cheap sound propagation methods mentioned before (e.g., 𝑧1, 𝑧2 ∈ [−3, 3]). Then, the unstable

ReLU neuron is relaxed into a triangle region 𝑧 ≥ 0, 𝑧 ≥ 𝑧, 𝑧 ≤ 𝑢(𝑧 − 𝑙)/(𝑢 − 𝑙). Considering the

example shown in Figure 4.6, LP verifier gives a tighter lower bound 𝑓 = −2.25. Since there are

two linear lower bounds for each ReLU neuron and the choices of lower bounds are exponential to

the number of ReLU neurons, a linear solver has to be called to get the relaxed lower bound on the

final objective. Therefore, unlike bound propagation methods like CROWN, LP verifier has high

103

computational cost and can barely be parallelized on GPUs.

𝑓 = min
𝑥1,𝑥2∈[−1,1]

𝑓 (𝑥1, 𝑥2) 𝑠.𝑡. 𝑧1 = 𝑥1 + 2𝑥2; 𝑧2 = 2𝑥1 + 𝑥2; 𝑓 (𝑥1, 𝑥2) = 𝑧1 − 𝑧2;

𝑧1 ∈ [−3, 3]; 𝑧2 ∈ [−3, 3]; 𝑧1 ≥ 0; 𝑧1 ≥ 𝑧1; 𝑧1 ≤ (𝑧1 + 3)/2; 𝑧2 ≥ 0; 𝑧2 ≥ 𝑧2; 𝑧2 ≤ (𝑧2 + 3)/2;

(4.47)

Bound propagation with enforced neuron bounds. State-of-the-art BaB based complete verifiers

like 𝛼, 𝛽-CROWN using bound propagation methods as incomplete verifier all encode the split

constraints by simply propagating the corresponding linear pieces of the targeted ReLU neuron

to the next layer while all the other ReLU relaxations remain the same [39, 35, 36]. Consider

the instance of Figure 4.6, splitting on ReLU neuron 𝑧1 will generate two new subdomains C1 =

{𝑥1, 𝑥2 ∈ [−1, 1], 𝑧1 ≥ 0} and C2 = {𝑥1, 𝑥2 ∈ [−1, 1], 𝑧1 ≤ 0}. Within each subdomain, relaxation is

no longer needed for 𝑧1. The union of 𝑓
C1

and 𝑓
C2

should intuitively give us a global lower bound

better than the original −2.5 in Equation 4.45. Surprisingly, after removing an unstable ReLU

neuron, we obtain a worse lower bound of −3 for both subdomains:

C1 = {𝑥1, 𝑥2 ∈ [−1, 1], 𝑧1 ≥ 0}, 𝑓
C1

= min
C1

𝑓 (𝑥1, 𝑥2) = min
C1

𝑥1 + 2𝑥2 − (2𝑥1 + 𝑥2 + 3)/2 ≥ −3

C2 = {𝑥1, 𝑥2 ∈ [−1, 1], 𝑧1 ≤ 0}, 𝑓
C2

= min
C2

𝑓 (𝑥1, 𝑥2) = min
C2

0 − (2𝑥1 + 𝑥2 + 3)/2 ≥ −3

(4.48)

Understanding of the failure. The observation before tells a very interesting but counter-intuitive

truth: tightening the relaxation on certain ReLU neurons with bound propagation might not improve

or even hurt precision of the relaxation on the final objective globally. If we look closely at the

previous example when using CROWN verifier to handle neuron split constraints, the effect of the

neuron split constraints on the other intermediate ReLU neuron 𝑧2 are not counted when we are

relaxing it with linear/triangle relaxations. Without splitting 𝑧1, certain relaxation on 𝑧2 will be

canceled out by the relaxation on 𝑧1 since they share certain dependencies in input space. However,

such cancellation effect disappears after splitting 𝑧1 into subdomains C1 and C2 leading to worse

104

global lower bounds on 𝑓 .

One obvious fix for the aforementioned example is to also split 𝑧2 within each subdomain C1

and C2, resulting in four subdomains C11 = {𝑥1, 𝑥2 ∈ [−1, 1], 𝑧1 ≤ 0, 𝑧2 ≤ 0}, C12 = {𝑥1, 𝑥2 ∈

[−1, 1], 𝑧1 ≤ 0, 𝑧2 ≥ 0}, C21 = {𝑥1, 𝑥2 ∈ [−1, 1], 𝑧1 ≥ 0, 𝑧2 ≤ 0}, C22 = {𝑥1, 𝑥2 ∈ [−1, 1], 𝑧1 ≥

0, 𝑧2 ≥ 0}. Since all the unstable ReLU neurons have been split and thus we can get the optimal

lower bound 𝑓 ∗ = min{ 𝑓
C11

, 𝑓
C12

, 𝑓
C21

, 𝑓
C22
} = min{−1.5, 0,−1.5, 0} = −1.5. However, such

solution is not practical at all because it is almost impossible to split all the unstable ReLU neurons

that share dependencies in input space for modern size NNs.

LP verifier with neuron split constraint. We then try to encode the split constraint and solve

an LP instead. To encode the neuron split constraint introduced in the subdomain by splitting the

targeted ReLU neuron, LP verifier will clip the pre-activation bound on the targeted neuron originally

obtained from cheap bound propagation methods and then use the corresponding linear piece as

the constraint for the targeted ReLU neuron. Consider the same example in Figure 4.6, we list the

LP formulation for split domain C1 = {𝑥1, 𝑥2 ∈ [−1, 1], 𝑧1 ≥ 0} and C2 = {𝑥1, 𝑥2 ∈ [−1, 1], 𝑧1 ≤ 0}

in Equation 4.49 and Equation 4.50. By calling the linear solver, we can have 𝑓C1 = −2.25 and

𝑓C2 = −2.25. In this case, although the LP bounds are not getting worse, the new global lower

bound 𝑓 ′ = −2.25 after splitting 𝑧1 that is equal to the original 𝑓 = −2.25.

𝑓
C1

= min
C1

𝑓 (𝑥1, 𝑥2) 𝑠.𝑡. 𝑧1 = 𝑥1 + 2𝑥2; 𝑧2 = 2𝑥1 + 𝑥2; 𝑓 (𝑥1, 𝑥2) = 𝑧1 − 𝑧2;

𝑧1 ∈ [0, 3]; 𝑧2 ∈ [−3, 3]; 𝑧1 = 𝑧1; 𝑧2 ≥ 0; 𝑧2 ≥ 𝑧2; 𝑧2 ≤ (𝑧2 + 3)/2;
(4.49)

𝑓
C2

= min
C2

𝑓 (𝑥1, 𝑥2) 𝑠.𝑡. 𝑧1 = 𝑥1 + 2𝑥2; 𝑧2 = 2𝑥1 + 𝑥2; 𝑓 (𝑥1, 𝑥2) = 𝑧1 − 𝑧2;

𝑧1 ∈ [−3, 0]; 𝑧2 ∈ [−3, 3]; 𝑧1 = 0; 𝑧2 ≥ 0; 𝑧2 ≥ 𝑧2; 𝑧2 ≤ (𝑧2 + 3)/2;
(4.50)

To make LP more effective, we must refine intermediate bounds, as shown in the next subsection.

4.5.2 Potential Intermediate Bound Refinement Using LP Solvers

It is possible to solve every intermediate ReLU upper and lower bounds with split constraints

instead of using bound propagation methods. This way, we can have a more accurate incomplete

105

verifier than a regular LP verifier but with a much more expensive cost (2𝑁 times more LP calls,

N is the total number of ReLU neurons). The insight of such a method can also be applied to

fix our focused cases in BaB, where we can use linear solvers to optimize each intermediate

ReLU bounds under neuron split constraints. For the same example in Figure 4.6, LP verifier

will first be called twice for the lower and upper bounds of 𝑧2, getting [−1.5, 3] in subdomain

C1 = {𝑥1, 𝑥2 ∈ [−1, 1], 𝑧1 ≥ 0}. Another two LP calls are needed to get the bounds 𝑧2 ∈ [−3, 1.5]

in subdomain C2 = {𝑥1, 𝑥2 ∈ [−1, 1], 𝑧1 ≤ 0}. With the tightened intermediate bounds using

LP, we can have a tighter relaxation on 𝑧2 and get the newly refined global lower bounds 𝑓 ′ =

min{ 𝑓
C1
, 𝑓
C2
} = min{−2, ,−1.5} = −2 which is better than the original LP verifier lower bound

𝑓 = −2.25 without splitting 𝑧1.

𝑧2C1
= min
C1

𝑧2 = min
C1

2𝑥1 + 𝑥2 = −1.5; 𝑧2C1 = min
C1

𝑧2 = min
C1

2𝑥1 + 𝑥2 = 3;

𝑓
C1

= min
C1

𝑓 (𝑥1, 𝑥2) 𝑠.𝑡. 𝑧1 = 𝑥1 + 2𝑥2; 𝑧2 = 2𝑥1 + 𝑥2; 𝑓 (𝑥1, 𝑥2) = 𝑧1 − 𝑧2;

𝑧1 ∈ [0, 3]; 𝑧2 ∈ [−1.5, 3]; 𝑧1 = 𝑧1; 𝑧2 ≥ 0; 𝑧2 ≥ 𝑧2; 𝑧2 ≤ 2(𝑧2 + 1.5)/3;

(4.51)

𝑧2C2
= min
C2

𝑧2 = min
C2

2𝑥1 + 𝑥2 = −3; 𝑧2C2 = min
C2

𝑧2 = min
C2

2𝑥1 + 𝑥2 = 1.5;

𝑓
C2

= min
C2

𝑓 (𝑥1, 𝑥2) 𝑠.𝑡. 𝑧1 = 𝑥1 + 2𝑥2; 𝑧2 = 2𝑥1 + 𝑥2; 𝑓 (𝑥1, 𝑥2) = 𝑧1 − 𝑧2;

𝑧1 ∈ [−3, 0]; 𝑧2 ∈ [−3, 1.5]; 𝑧1 = 0; 𝑧2 ≥ 0; 𝑧2 ≥ 𝑧2; 𝑧2 ≤ (𝑧2 + 3)/3;

(4.52)

However, the cost of this method is a very big concern. Considering the LP verifier using one single

LP solver call is already very expensive compared to bound propagation methods, the LP verifier

with intermediate bounds refinements will require 2𝑁 solver calls where 𝑁 is the total number

of ReLU neurons, leading to extremely high computational cost. Therefore, intermediate bounds

refinement using LP will also be impossible to use in practical BaB based complete verification. In

this section, we propose a new incomplete verifier based on CROWN which can refine intermediate

layer bounds considering neuron split constraints without calling any linear solvers, achieving as

tight lower bound on the verification objective as intermediate bounds refinements using LP but

106

being several magnitudes faster and applicable in practical BaB verification.

In Section 4.5.1, we show that after adding a split constraint, a bound propagation (e.g., CROWN

variances) based verifier does not always improve the lower bound, and a LP based verifier (described

in Section 4.1.2 can improve the lower bound. Formally, we state a theorem (note that we rephrase

the statement in our original submission to make it more clear):

Theorem 4.5.1 (LP Verifier with Neuron Split Constraints). Given a verification domain C and a

sound lower bound 𝑓 CROWN by CROWN variances and a sound lower bound 𝑓 LP by the LP verifier.

Then splitting C on an unstable ReLU neuron C1 = {𝑥 ∈ C, 𝑧 ≥ 0} and C2 = {𝑥 ∈ C, 𝑧 < 0} will

always lead to better lower bound for the LP verifier:

𝑓 ′LP := min
(
𝑓 LP
C1
, 𝑓 LP
C2

)
≥ 𝑓 LP

However, 𝑓 ′CROWN := min
(
𝑓 CROWN
C1

, 𝑓 CROWN
C2

)
is not always greater than or equal to 𝑓 CROWN.

Proof. For the LP verifier, the solution 𝑓 LP
C1

or 𝑓 LP
C2

are from the original LP formulation with an

extra constraint 𝑧 ≥ 0 or 𝑧 < 0. With an added constraint, the optimal solution of a LP with

minimization as the objective can only increase or stay the same, thus the lower bound always

improves.

For bound propagation methods CROWN variances, we have shown a counter-example in

Section 4.5.1 such that:

𝑓 CROWN = −2.5 According to Equation 4.45

𝑓 CROWN
C1

= 𝑓 CROWN
C1

= −3 According to Equation 4.48

𝑓 ′CROWN := min
(
𝑓 CROWN
C1

, 𝑓 CROWN
C2

)
= −3 ≤ 𝑓

CROWN
= −2.5

In other words, adding a split to the bound propagation does not always improve the final lower

bound.

107

4.5.3 Intermediate Bound Refinement as Differentiable Optimizations

As we have discussed in previous sections, intermediate bounds refinements directly using naive

bound propagation may even lead to looser bounds, and it is usually not practical to use LP for

refinement. In this section, we discuss our proposed approach to tighten all intermediate bounds

together using a single optimization formulation.

Tightening a Single Neuron Under Split Constraints Without loss of generality, we first

consider the case where an neuron 𝑧
(𝑖2)
𝑗2

has been split: 𝑧(𝑖2)
𝑗2

< 0, and we want to refine the lower and

upper bound of a single neuron 𝑧
(𝑖1)
𝑗1

based on the constraint 𝑧(𝑖2)
𝑗2
≤ 0. For the case where 𝑖2 < 𝑖1

(i.e., the neuron to be refined is after the neuron being split), we can treat 𝑧(𝑖1)
𝑗1

as the output neuron

of the network, with an split constraint in a previous layer neuron 𝑧
(𝑖2)
𝑗2

. In this scenario, the bounds

of 𝑧(𝑖1)
𝑗1

can be solved using 𝛽-CROWN [36].

For the case where 𝑖2 ≥ 𝑖1, existing bound propagation based approach such as [32, 31, 95]

cannot handle this case as the bounds for a neuron in an shallower layer will never depend on any

neurons after it. To solve this challenge in an efficient manner, we propagate the split constraints

from layer 𝑖2 to layer 𝑖1, obtaining a new constraint on 𝑧(𝑖1) and use Lagrangian multiplier to handle

this constraint. In other words, we first obtain a linear lower bounds of the constraint:

𝑎(𝑖1, 𝑗1)⊤𝑧(𝑖1) + 𝑏(𝑖1, 𝑗1) ≤ 𝑧
(𝑖2)
𝑗2
≤ 0 (4.53)

Then, a lower bound of 𝑧(𝑖1)
𝑗1

can be obtained by solving the following optimization problem:

min
𝑥∈C

𝑧
(𝑖1)
𝑗1
, s.t. 𝑎(𝑖1, 𝑗1)⊤𝑧(𝑖1) + 𝑏(𝑖1, 𝑗1) ≤ 0 (4.54)

108

We can then lower bound Equation 4.54 using a Lagrangian multiplier:

min
𝑥∈C,𝑎(𝑖1 , 𝑗1)⊤𝑧(𝑖1)+𝑏(𝑖1 , 𝑗1)≤0

𝑧
(𝑖1)
𝑗1
≥ min

𝑥∈C
max

𝛽(𝑖1 , 𝑗1)≥0
𝑧

(𝑖1)
𝑗1

+ 𝛽(𝑖1, 𝑗1)(𝑎(𝑖1, 𝑗1)⊤𝑧(𝑖1) + 𝑏(𝑖1, 𝑗1))

≥ max
𝛽(𝑖1 , 𝑗1)≥0

min
𝑥∈C

𝑧
(𝑖1)
𝑗1

+ 𝛽(𝑖1, 𝑗1)(𝑎(𝑖1, 𝑗1)⊤𝑧(𝑖1) + 𝑏(𝑖1, 𝑗1))

≥ max
𝛽(𝑖1 , 𝑗1)≥0

min
𝑥∈C

[(
𝑎 + 𝛽(𝑖1, 𝑗1)𝑝

)⊤
𝑥 + 𝑞𝛽(𝑖1, 𝑗1) + 𝑐

] (4.55)

The last inequality comes from 𝛽-CROWN bound propagation. When C is a ℓ𝑝 norm ball and

∥𝑥 − 𝑥0∥≤ 𝜖 , Equation 4.55 has a closed form for the inner minimization:

min
𝑥∈C,𝑎(𝑖1 , 𝑗1)⊤𝑧(𝑖1)+𝑏(𝑖1 , 𝑗1)≤0

𝑧
(𝑖1)
𝑗1
≥ max

𝛽(𝑖1 , 𝑗1)≥0
min
𝑥∈C

[(
𝑎 + 𝛽(𝑖1, 𝑗1)𝑝

)⊤
𝑥 + 𝑞𝛽(𝑖1, 𝑗1) + 𝑐

]
≥ max

𝛽(𝑖1 , 𝑗1)≥0
−𝜖 ∥𝑎 + 𝛽(𝑖1, 𝑗1)𝑝∥𝑞+(𝑞 + 𝑝⊤𝑥0) · 𝛽(𝑖1, 𝑗1) + 𝑎⊤𝑥0 + 𝑐

(4.56)

Note that the coefficients 𝑎, 𝑎(𝑖1, 𝑗1), 𝑝, 𝑞, 𝑐 are implicitly functions of 0 ≤ 𝛼(𝑖1, 𝑗1) ≤ 1, a vector

denoting all lower bound slopes of unstable ReLU neurons (e.g., see the discussions in [36, 35])

when propagating the constraint 𝑧(𝑖2)
𝑗2

< 0 in Equation 4.53 and the final objective in Equation 4.56.

0 ≤ 𝛼(𝑖1, 𝑗1) ≤ 1 is also an optimizable parameter, so we eventually optimize both 𝛼(𝑖1, 𝑗1) and 𝛽(𝑖1, 𝑗1):

min
𝑥∈C

𝑎(𝑖1 , 𝑗1)⊤𝑧(𝑖1)+𝑏(𝑖1 , 𝑗1)≤0

𝑧
(𝑖1)
𝑗1
≥ max

𝛽(𝑖1 , 𝑗1)≥0
0≤𝛼(𝑖1 , 𝑗1)≤1

−𝜖 ∥𝑎 + 𝛽(𝑖1, 𝑗1)𝑝∥𝑞+(𝑞 + 𝑝⊤𝑥0) · 𝛽(𝑖1, 𝑗1) + 𝑎⊤𝑥0 + 𝑐 (4.57)

Before we start the proof of our Theorem 4.5.3, we first state an lemma from [36] under our

notations, which says that 𝛽-CROWN produces the same solution as the LP based verifier discussed

in Section 4.5.2. This is sufficient for the case 𝑖2 < 𝑖1:

Lemma 4.5.2 (Optimality of 𝛽-CROWN [36], using the notation of our context). When 𝑖2 < 𝑖1,

denote the solution of Equation 4.56 as 𝑧
(𝑖1)
𝑗1,OPT when 𝛼(𝑖1, 𝑗1) and 𝛽(𝑖1, 𝑗1) are optimally set. Then,

𝛽-CROWN produces the same solution as the LP formulation discussed in Section 4.3 with split

109

constraints when intermediate bounds are fixed:

𝑧
(𝑖1)
𝑗1,LP = 𝑧

(𝑖1)
𝑗1,OPT

Note that the above theorem only applies when 𝑖2 < 𝑖1 (e.g., the neuron under split is in a layer

before the neuron to be refined). Our Theorem 4.5.3 generalizes to other cases (𝑖2 ≥ 𝑖1):

Theorem 4.5.3. Denote 𝑧
(𝑖1)
𝑗1,LP as the optimal linear programming (LP) objective under constraint

𝑧
(𝑖2)
𝑗2
≤ 0, and denote 𝑧

(𝑖1)
𝑗1,OPT as the optimal solution of Equation 4.56. Then we have

𝑧
(𝑖1)
𝑗1,LP = 𝑧

(𝑖1)
𝑗1,OPT

under the optimal setting of 𝛼(𝑖1, 𝑗1) and 𝛽(𝑖1, 𝑗1).

Proof. For the case 𝑖2 < 𝑖1, Lemma 4.5.2 can be directly applied by treating neuron 𝑧
(𝑖1)
𝑗1

as the

output layer neuron in 𝛽-CROWN.

For the case 𝑖2 ≥ 𝑖1, we need to make an extension to the main theorem of 𝛽-CROWN. We first

write the LP problem solved by the LP verifier described in Section 4.5.2. Without loss of generality,

we follow the assumption in Section 4.5.3 that we split 𝑧(𝑖2)
𝑗2
≤ 0 (or 𝑧(𝑖2)

𝑗2
≥ 0) and refine 𝑧

(𝑖1)
𝑗1

:

𝑧
(𝑖1)
𝑗1,LP := min 𝑧(𝑖1)

𝑗1
(𝑥)

s.t. 𝑧(𝑖) = W(𝑖)𝑧(𝑖−1) + b(𝑖), 𝑖 ∈ {1, · · · , 𝐿}

𝑧(0) ≥ 𝑥0 − 𝜖

𝑧(0) ≤ 𝑥0 + 𝜖

𝑧(𝑖) = 𝑧(𝑖) if l(𝑖)
𝑗
≥ 0, 𝑖 ∈ {1, · · · , 𝐿 − 1}, (𝑖, 𝑗) ̸= (𝑖2, 𝑗2)

𝑧(𝑖) = 0 if u(𝑖)
𝑗
≤ 0, 𝑖 ∈ {1, · · · , 𝐿 − 1}, (𝑖, 𝑗) ̸= (𝑖2, 𝑗2)

𝑧
(𝑖)
𝑗
≥ 0, 𝑧(𝑖)

𝑗
≥ 𝑧

(𝑖)
𝑗
, 𝑧

(𝑖)
𝑗
≤

u(𝑖)
𝑗

u(𝑖)
𝑗
−l(𝑖)

𝑗

(
𝑧

(𝑖)
𝑗
− l(𝑖)

𝑗

)
if l(𝑖)

𝑗
< 0 < u(𝑖)

𝑗
, 𝑖 ∈ {1, · · · , 𝐿 − 1}

𝑧
(𝑖2)
𝑗2

= 0; 𝑧(𝑖2)
𝑗2
≤ 0 (or 𝑧(𝑖2)

𝑗2
= 𝑧

(𝑖2)
𝑗2

; 𝑧(𝑖2)
𝑗2
≥ 0 for split 𝑧(𝑖2)

𝑗2
≥ 0)

(4.58)

110

Following [139] and [36], the dual problem of this LP can be written as:

max
0≤𝜶≤1,𝛽≥0

𝑔(𝜶, 𝛽), where

𝑔(𝜶, 𝛽) = −
𝐿∑︁
𝑖=1

𝝂(𝑖)⊤b(𝑖) − �̂�(0)⊤𝑥0 − ||�̂�(0) | |1·𝜖 +
𝐿−1∑︁
𝑖=1

∑︁
l(𝑖)
𝑗
<0<u(𝑖)

𝑗

(𝑖, 𝑗)̸=(𝑖2, 𝑗2)

l(𝑖)
𝑗

[𝝂(𝑖)
𝑗

]+

Subject to:

𝝂(𝐿) = 0

𝝂(𝑖1)
𝑗1

= −1 when u(𝑖1)
𝑗1
≤ 0; or 𝝂(𝑖1)

𝑗1
= �̂�(𝑖1)

𝑗1
−1 when l(𝑖1)

𝑗1
≥ 0

𝝂(𝑖1)
𝑗1

= u(𝑖1)
𝑗1
𝝀(𝑖1)
𝑗1
− 𝜸(𝑖1)

𝑗1
−1

𝝀(𝑖1)
𝑗1

=
[�̂�(𝑖1)

𝑗1
]+

u(𝑖1)
𝑗1
−l(𝑖1)

𝑗1

, 𝝁(𝑖1)
𝑗1

+ 𝜸(𝑖1)
𝑗1

= [�̂�(𝑖1)
𝑗1

]−

 when l(𝑖1)
𝑗1

< 0 < u(𝑖1)
𝑗1

�̂�(𝑖−1) = W(𝑖)⊤𝝂(𝑖), 𝑖 ∈ {1, . . . , 𝐿}

𝝂(𝑖)
𝑗

= 0, when u(𝑖)
𝑗
≤ 0, 𝑖 ∈ {1, . . . , 𝐿 − 1}, (𝑖, 𝑗) ̸= (𝑖1, 𝑗1)

𝝂(𝑖)
𝑗

= �̂�(𝑖)
𝑗
, when l(𝑖)

𝑗
≥ 0, 𝑖 ∈ {1, . . . , 𝐿 − 1}, (𝑖, 𝑗) ̸= (𝑖1, 𝑗1)

𝝂(𝑖1)
𝑗1

= u(𝑖1)
𝑗1
𝝀(𝑖1)
𝑗1
− 𝜸(𝑖1)

𝑗1

𝝀(𝑖)
𝑗

=
[�̂�(𝑖)

𝑗
]+

u(𝑖)
𝑗
−l(𝑖)

𝑗

, 𝝁(𝑖)
𝑗

+ 𝜸(𝑖)
𝑗

= [�̂�(𝑖)
𝑗

]−

 when l(𝑖)
𝑗
< 0 < u(𝑖)

𝑗
, (𝑖, 𝑗) ̸= (𝑖2, 𝑗2), (𝑖, 𝑗) ̸= (𝑖1, 𝑗1)

𝝂(𝑖2)
𝑗2

= −𝛽 (or, 𝝂(𝑖2)
𝑗2

= 𝛽 + �̂�(𝑖2)
𝑗2

for split 𝑧(𝑖2)
𝑗2
≥ 0)

𝝁 ≥ 0, 𝜸 ≥ 0, 𝝀 ≥ 0, 𝛽 ≥ 0

(4.59)

The dual variables are connected to the bound propagation rule in 𝛽-CROWN via the following

relationships [107, 36]:

𝜶(𝑖)
𝑗

=
𝜸(𝑖)
𝑗

𝝁(𝑖)
𝑗

+ 𝜸(𝑖)
𝑗

(0 ≤ 𝜶 ≤ 1), 𝛽(𝑖1, 𝑗1) = 𝛽 (4.60)

Here 𝜶 := 𝛼(𝑖1, 𝑗1) includes all optimizable slopes for ReLU relaxations during CROWN bound

propagation. We highlight the difference compared to the dual formulation in 𝛽-CROWN [36]

111

(Equation 4.40 in Section 4.3.5) in brown. [36] showed that when the constraints 𝝂(𝐿) = 0 are

replaced with 𝝂(𝐿) = −1 and the −1 terms in 𝝂(𝑖1)
𝑗1

do not exist, 𝛽-CROWN with optimal 𝜶, 𝛽(𝑖1, 𝑗1)

produces the same solution as LP for lower bounding the output node objective 1 · 𝑧(𝐿). We can then

follow the same procedure as in [36] to show that the bound propagation process used in refinement

can also produce the same bound as LP when 𝜶, 𝛽(𝑖1, 𝑗1) are optimally set. Although it is possible

to entirely follow [36, 107] and re-derive the theorem, here we mostly focus on our differences

from [36] and discuss why our bound refinement process also produces the same results as the dual

LP in Equation 4.59.

Initially, since we now have 𝝂(𝐿) = 0 (this can be seen as setting the last layer weight to 0, which

does not affect the correctness of bound propagation), all 𝝂(𝑖) = 0 for 𝑖 > 𝑖2 until reaching the split

node, so the backward bound propagation can start from the first non-zero dual variable 𝝂(𝑖2)
𝑖2

, and

the process of computing dual variables up to �̂�(𝑖1) will be the same as propagating bounds from

neuron 𝑧
(𝑖2)
𝑖2

from layer 𝑖2 to 𝑖1, as in equation Equation 4.53.

After reaching layer 𝑖1, 𝝂(𝑖1) is modified slightly compared to [36]: the 𝑗1’s element has an extra

term −1. This term is corresponding to the term 1 · 𝑧(𝑖1)
𝑗1

in Equation 4.55, and bound propagation

with this extra term produces the same results as the dual LP. Thus, the bound propagation process

described in Equation 4.53, Equation 4.54 and Equation 4.55 can yield the same results as the dual

LP when 𝛽(𝑖1, 𝑗1) = 𝛽∗ and 𝜶(𝑖)
𝑗

=
𝜸(𝑖)
𝑗

∗

𝝁(𝑖)
𝑗

∗
+𝜸(𝑖)

𝑗

∗ (where 𝛽∗, 𝜸(𝑖)
𝑗

∗
and 𝝁(𝑖)

𝑗

∗
are optimal solutions obtained

from a LP solver).

Note that Equation 4.55 can also be applied to the case where 𝑖1 = 𝑖2 (i.e., using the split

constraint of the same layer to tighten intermediate layer bonds of other neurons from the same

layer), and the formulation just becomes

max
𝛽(𝑖1 , 𝑗1)≥0

𝑧
(𝑖2)
𝑗2

+ 𝛽(𝑖1, 𝑗1)𝑧(𝑖1)
𝑗1

(4.61)

It is also easy to extend Equation 4.55 and Equation 4.56 to handle multiple split constraints - each

split constraint will be propagated to layer 𝑖1 and have its own 𝛽 variable. For the case where

112

𝑧
(𝑖1)
𝑗1

< 0, the sign of 𝛽 simply needs to be flipped.

Tightening All Neurons under Split Constraints By solving Equation 4.55 using gradient ascent,

we can obtain refined bounds for a single neuron. We denote the objective of Equation 4.56 for a

neuron 𝑧
(𝑖)
𝑗

under the constraint 𝑧(𝑖1)
(𝑗1) ≤ 0 given a fixed setting of 𝛼(𝑖1, 𝑗1)

𝐿,𝑖, 𝑗
and 𝛽

(𝑖1, 𝑗1)
𝐿,𝑖, 𝑗

as l𝑖
𝑗

(which is a

function of 𝛼(𝑖1, 𝑗1)
𝐿,𝑖, 𝑗

and 𝛽
(𝑖1, 𝑗1)
𝐿,𝑖, 𝑗

. Additionally, for the upper bound of 𝑧𝑖
𝑗

we can solve Equation 4.56

by setting the objective as −𝑧𝑖
𝑗
, and denote the objective as u𝑖

𝑗
(similarly, a function of 𝛼(𝑖1, 𝑗1)

𝑈,𝑖, 𝑗
and

𝛽
(𝑖1, 𝑗1)
𝑈,𝑖, 𝑗

).

Instead of repeatedly solving Equation 4.55 for every single neuron, we compute the final lower

bound using 𝛽-CROWN as a function of all the intermediate layer bounds instead (which in turn, is

a function of all 𝛼(𝑖1, 𝑗1)
𝐿,𝑖, 𝑗

, 𝛽(𝑖1, 𝑗1)
𝐿,𝑖, 𝑗

, 𝛼(𝑖1, 𝑗1)
𝐿,𝑖, 𝑗

and 𝛽
(𝑖1, 𝑗1)
𝐿,𝑖, 𝑗

for all 𝑖, 𝑗), since the whole purpose of refinement

is to obtain tighter bounds for the final objective 𝑓 (𝑥):

min
𝑥∈C,𝑧(𝑖1)

𝑗1
≤0

𝑓 (𝑥) ≥ max
0≤�̂�≤1, �̂�≥0

𝑔(�̂�, �̂�). (4.62)

where function 𝑔(·) represents the 𝛽-CROWN bounding procedure (see [36] for the exact formu-

lation) given the split constraint and all intermediate layer bounds. 𝛽-CROWN additionally has

its own setting of 𝜶 and 𝜷 parameters for the output bound, and here �̂� is an concatenation of 𝜷

with our 𝛽(𝑖1, 𝑗1)
𝐿,𝑖, 𝑗

and 𝛽
(𝑖1, 𝑗1)
𝑈,𝑖, 𝑗

for all 𝑖, 𝑗 ; �̂� is defined similarly. All variables are optimized jointed

to maximize the objective 𝑔. Practically, to reduce the total number of optimizable variables and

improve runtime, we share some variables between neurons: for all neurons in the same intermediate

layer 𝑖, we use the same set of 𝛼(𝑖1, 𝑗1)
𝐿,𝑖

(regardless of 𝑗) and so does 𝛼(𝑖1, 𝑗1)
𝐿,𝑖

.

It is important to note that, although [35, 36] also discussed jointly optimizing intermediate layer

bounds, their bound propagation process cannot tighten intermediate bounds of layer 𝑖 using split

constraints after layer 𝑖. The difference is immediate, for example, when we have a split constraint

on the last ReLU layer: we can use this constraint to tighten all intermediate layer bounds for the

same ReLU layer and before the layer, while [35, 36] cannot tighten intermediate bounds of any

layer because there is no additional non-linear layers after the last ReLU layer. Practically, [27]

113

found that most effective split constraints for high dimensional model (e.g., a model trained on

CIFAR-10) are on the last a few layers of the network, thus the refinement provided of our approach

makes a huge difference compared to existing approaches, which we will also evaluate empirically

in Section 4.5.4.

Iterative Refinement In Equation 4.54, the effectiveness of the additional constraint depends on

the tightness of ReLU relaxation when propagating the constraint 𝑧(𝑖1)
𝑗
≤ 0 to layer 𝑖2. Relaxations

are also needed for deriving the final bounds in Equation 4.55. Thus, when the intermediate bounds

become tighter, the constraint also becomes stronger, leading to even tighter intermediate bounds.

This gives us the opportunity to actually outperforming LP based refinement with fixed intermediate

bounds - due to the high cost of LP solver, it is usually impractical to refine in multiple around

(e.g., using the tighter intermediate bound found by LP refinement to form tighter relaxation of the

network, and then refine intermediate bounds again under tighter relaxation).

4.5.4 Experimental Evaluation

Experimental Setup Our experiments consist of three models, with model structures summarized

in Table 4.7. All three models were trained using adversarial training. We run all experiments on a

single NVIDIA GTX 1080 Ti GPU and an AMD EPYC 7502 CPU and set timeout threshold to 10

minutes for all methods. The CPU memory constraint for all methods is set to 32GB, similar to [36].

For solving the refinement optimization problem, we use Adam solver with 20 iterations, and set

learning rate for 𝛼 to 0.1 and learning rate for 𝛽 to 0.05, respectively. We use an exponential decay

of learning rate with a factor of 0.98. Batch size is set to 10 for all three models, and we randomly

select 200 images from MNIST/CIFAR test set for our experiments. Each method is evaluated on

the same set of 200 images.

New Benchmarks for Complete Verifiers The standard complete verification benchmarks such

as the OVAL benchmarks on CIFAR-10 [147], which were originally designed for older verifiers,

have become too simple for SOTA complete verifiers (e.g., [36] can solve over 80% instances in

114

Name Adv. Training 𝜖 Architecture

MNIST-FC6 0.3 Linear(784, 512) - Linear(512, 512) × 5 - Linear(512, 10)
MNIST-FC7 0.3 Linear(784, 512) - Linear(512, 512) × 6 - Linear(512, 10)
CIFAR-Conv 8

255 Conv(3, 8, 4) - Conv(8, 16, 4) - Conv(16, 32, 4) - Linear(512, 512) - Linear(512, 512) - Linear(512, 10)

Table 4.7: Benchmark model architectures. All networks use ReLU activation function between
two affine layers. Conv(𝑥, 𝑦, 𝑧) means a convolutional layer with 𝑥 input channel, 𝑦 output channels
and a kernel size of 𝑧 × 𝑧. Linear(𝑥, 𝑦) means a fully connected layer with 𝑥 inputs and 𝑦 outputs.

10 seconds). Also, these networks are trained using verification-customized methods [32] to allow

easier verification. Here we focus on more difficult verification problems (i.e., more unstable ReLU

neurons leading to inaccurate relaxation on NN outputs and more challenging bounding) – we

train our neural networks on MNIST [142] and CIFAR10 datasets with large ℓ∞ norm balls using

standard PGD based adversarial training [148], and we find that most existing complete verifiers are

unable to verify most properties within 10 minutes time out. Specifically, we adversarially train two

networks for MNIST each having 6 and 7 fully connected layers with 512 ReLU neurons per neuron

using ℓ∞ norm perturbation with 𝜖 = 0.3. For CIFAR10, we train one convolutional neural network

with 3 convolutional layers (8, 16, 32 channels) and 2 fully connected layers each with 512 ReLU

neurons using ℓ∞ perturbation of 8
255 . During verification, we select the first 200 images from the

testset in MNIST and CIFAR-10 with the runner-up label. The time out threshold is 600s per image.

Comparisons against SOTA complete verifiers We mainly compare our proposed bound re-

finement method against four state-of-the-art complete verifiers including (1) BDD+ BaBSR [38]:

using Lagrangian Decomposition with ReLU branching heuristic BaBSR ; (2) A. Set BaBSR [39]:

recent dual space verifier on GPUs able to produce tighter bounds than LP verifier.; (3) OVAL-

BaB: containing an improved implementation of A.Set and BDD+ BaBSR [38, 39]; (4) Fast and

Complete [35]: using CROWN [31] for incomplete verifier in BaB introduced in Section 4.2; (5)

𝛽-CROWN FSB [36] SOTA complete verifier using 𝛽-CROWN which considers split constraints

during bound propagation introduced in Section 4.3, achieving similar or tighter approximations as

LP verifier but in a much faster manner.

Although we use a 10min timeout, all 4 baseline complete verifiers make very little progress

115

Ours 𝛽-CROWN Fast and Complete Oval-bab A. set BaBSR BDD+ BaBSR

Average lower bound (higher is better)

MNIST-FC6 (𝜖 = 0.15) 1.99 0.66 0.47 1.04 -7.59 -6.47
MNIST-FC7 (𝜖 = 0.15) -0.5 -3.22 -3.63 -2.44 -22.39 -20.57

CIFAR-Conv (𝜖 = 8/255) -15.05 -17.73 -17.99 -16.24 -34.29 -34.42

Average number of neuron splits

MNIST-FC6 (𝜖 = 0.15) 2091 113105 137548 10719 756 1321
MNIST-FC7 (𝜖 = 0.15) 1351 104374 121404 9010 1295 1138

CIFAR-Conv (𝜖 = 8/255) 1382 26690 28849 41425 16525 16183

Verified accuracy (higher is better)

MNIST-FC6 (𝜖 = 0.15) 72.0 60.0 57.0 63.0 22.5 20.5
MNIST-FC7 (𝜖 = 0.15) 54.5 37.0 35.5 44.0 2.5 2.5

CIFAR-Conv (𝜖 = 8/255) 0.5 0.5 0.5 0.5 0.5 0.5

Table 4.8: The average lower bound, number of neuron splits, and verified accuracy for different
methods on MNIST-FC6, MNIST-FC7 and CIFAR-Conv models. All methods use BaB with a
10min timeout.

after 10mins due to the large number of unstable neurons without sufficient refinement.

In Table 4.8, we show the average lower bound (larger is better), number of neuron splits, and

verified accuracy for different methods on MNIST-FC6, MNIST-FC7 and CIFAR-Conv models. All

methods use branch and bound (BaB) with a 10min timeout. Our refinement approach greatly helps

BaB and thus achieves the best lower bound and verified accuracy compared with all baselines

across all three models. Noticeably, our verified accuracy is improved from 61.5% to 72.0%, and

from 40.5% to 54.5% on MNIST-FC6 and MNIST-FC7 models, respectively. The CIFAR-Conv

network is very hard - although we could not improve its verified accuracy, the average lower bound

improved from -17.62 to -15.05.

Moreover, we plot the distribution of the absolute value of the lower bounds (minus by the best

bound) for different methods on MNIST-FC6, MNIST-FC7, and CIFAR-Conv in Figure 4.7. A

larger lower bound indicates better verification performance. The figures show that we can achieve

tighter bounds (larger bounds) than all baseline methods.

In Figure 4.8, we present the cactus plots comparing against other SOTA verifiers. Although

many existing approaches can verify some easy instances quickly, their performance saturates with

runtime and cannot solve hard instances regardless of runtime. Thanks to the tighter bounds, our

116

20

15

10

5

0

5

lo
we

r b
ou

nd

Ours -CROWN FSB Fast-and-Complete Oval-bab A.Set BaBSR BDD+ BaBSR

(a) MNIST-FC6

30

25

20

15

10

5

0

5

lo
we

r b
ou

nd

Ours -CROWN FSB Fast-and-Complete Oval-bab A.Set BaBSR BDD+ BaBSR

(b) MNIST-FC7

60

50

40

30

20

10

0

lo
we

r b
ou

nd

Ours -CROWN FSB Fast-and-Complete Oval-bab A.Set BaBSR BDD+ BaBSR

(c) CIFAR-Conv

Figure 4.7: We plot the distribution of lower bounds (higher is better) obtained by different methods
on MNIST-FC6, MNIST-FC7, and CIFAR-Conv models. A larger lower bound indicates better
verification performance. The lower bounds reported here are the final bounds obtained by running
branch and bound using each method for the same timeout threshold (10min).

refinement approach helps BaB solve most number of properties compared to SOTA baselines.

Bound tightness comparisons against LP-based refinements In Figure 4.9, we compare the

tightness of our refined lower bounds against the tightest possible LP verifier with intermediate

bound refinements (denoted as LP with refinements in Section 4.5.2), as well as the state-of-the-art

verifier 𝛽-CROWN [36]. The tightest LP with refinements involves solving two LPs for each

interemdiate layer neuron with a split constraint, and thousands of LPs are required for obtaining the

117

100 101 102

MNIST-FC6: Running time (in s)

0

10

20

30

40

50

60

70

%
 o

f p
ro

pe
rti

es
 v

er
ifi

ed

Ours
-CROWN

Fast-and-Compete
Oval-bab

100 101 102

MNIST-FC7: Running time (in s)

0

10

20

30

40

50

%
 o

f p
ro

pe
rti

es
 v

er
ifi

ed

Ours
-CROWN

Fast-and-Compete
Oval-bab

Figure 4.8: Cactus plots: percentage of solved properties with growing running time on MNIST-FC6
and MNIST-FC7 models. All methods here use branch and bound with a 10min timeout threshold.

refined bound under a single split constraints. The distributions are measured on MNIST FC-6 and

FC-7 models with the first split found by FSB for each image. Note that 𝛽-CROWN can theoretically

converge to LP without refinement while our methods can theoretically lead to the tightest bounds

by LP with refinements (0 gap). To obtain the tightest bounds using LP with refinements, we solve

two LPs for every neuron in the network with split constraints, involving thousands of LPs for a

single split.

Table 4.9 reports the average time for solving each split subdomain in BaB by each method. We

report single CPU running time for LP verifier without intermediate bound refinements (denoted as

LP without refinements) and the tightest possible LP verifier with intermediate bound refinements

(denoted as LP with refinements) while we run the experiments on 16-core servers in parallel.

The running time for our approach and 𝛽-CROWN is measured on one CPU and one GPU. The

distribution of gaps between the tightest possible lower bounds measured by LP with refinement and

the lower bounds got from our methods can be found in Figure 4.9. It shows that, to achieve a very

small gap (1e-3 to 1e-4) to the tighest bound by LP with refinements, our approach only requires 6 or

64 seconds (50 or 500 iterations) with 1 CPU and 1 GPU, while the tightest LP refinement requires

72 CPU hours for refining a single split on MNIST-FC6, and 315 CPU hours on MNIST-FC7. The

entire experiment took us around 50,000 CPU hours to finish.

Note that 𝛽-CROWN theoretically converges to the LP verifier without intermediate bounds

refinement (denoted as “LP w/o refinement”, which solves a single LP for the final objective without

118

10 4

10 3

10 2

10 1

100

101
Lo

we
r B

ou
nd

s G
ap

Ours (500 iters)

10 4

10 3

10 2

10 1

100

101
Ours (50 iters)

10 4

10 3

10 2

10 1

100

101
LP w/o Refinement

10 4

10 3

10 2

10 1

100

101
-CROWN

10 4

10 3

10 2

10 1

100

101

Lo
we

r B
ou

nd
s G

ap

Ours (500 iters)

10 4

10 3

10 2

10 1

100

101
Ours (50 iters)

10 4

10 3

10 2

10 1

100

101
LP w/o Refinement

10 4

10 3

10 2

10 1

100

101
-CROWN

(a) MNIST-FC6 (b) MNIST-FC7

Figure 4.9: The distribution of gaps (smaller is better) between the tightest possible lower bounds
measured by LP verifier with intermediate bound refinements (denoted as LP with refinements)
and the lower bounds got from (1) our refinement method (50 and 500 iterations), (2) LP verifier
without intermediate bound refinements (denoted as LP without refinements), and (3) 𝛽-CROWN.

Models 𝛽-CROWN (50 iters)∗ LP w/o refinements Ours (50 iters) Ours (500 iters) Tightest LP with refinements

MNIST-FC6 1.1s 10.9s 6.6s 64.5s 72.9 hours
MNIST-FC7 1.2s 49.2s 8.4s 80.9s 315.4 hours

∗ 50 iterations for 𝛽-CROWN is enough to well converge to its optimal bound which is LP without refinements.

Table 4.9: Average time for solving each split subdomain in BaB corresponding to the distribution
of gaps measured in Figure 4.9.

refining intermediate layer bounds), while our new approach converges to the tightest LP verifier

with intermediate bounds refinement.

4.6 Conclusion

In this chapter, we first introduce BaB based complete verifier using incomplete verifiers 𝛼-

CROWN BaB (also known as Fast and Complete) in Section 4.2 and 𝛽-CROWN BaB in Section 4.3.

𝛼-CROWN can produce much tighter incomplete approximations using optimizable lower bound

slopes 𝜶. On the other hand, 𝛽-CROWN can fully encode the neuron split constraints introduced

in BaB with optimizable Lagrangian multipliers 𝜷, achieving the same tightness as traditional

expensive LP verifiers in a much faster manner. The combination of them enables state-of-the-art

complete verifier 𝛼, 𝛽-CROWN which clearly leads in both complete and incomplete verification

119

settings as demonstrated in Section 4.4 and won the second International Verification of Neural

Network Competition (VNN-COMP) [42].

However, we noticed an intriguing observation about bound propagations like 𝛼-CROWN or

𝛽-CROWN used in BaB that splitting certain ReLU neurons might not improve but even hurt

the tightness of eventual estimation of the verification objective in BaB. This is mainly because

these incomplete verifiers cannot fully take advantage of the neuron split constraints introduced

in split subdomains and refine the intermediate bounds of all other ReLU neurons. In Section 4.5,

we illustrate such intriguing observations and generalize 𝛽-CROWN to a very efficient iterative

approach that can tighten all intermediate layer bounds based on split constraints in BaB without

calling any expensive solvers. The latest experimental results have shown that our new method

outperforms all four state-of-the-art complete verifiers on the three adversarially trained models.

This approach is promising in further improving the efficiency and scalability of complete verifiers

using BaB especially on very challenging networks under verification.

Limitations and future works. Our verifiers still have several limitations that most existing

BaB-based complete verifiers commonly share. First, we focused on ReLU which can be split into

two linear cases. For other non-piecewise linear activation functions, although it is still possible to

conduct branch and bound, it is difficult to guarantee completeness. Second, we discussed only the

norm perturbations for input domains. In practice, the threat model may involve complicated and

non-convex perturbation specifications. Third, although our GPU accelerated verifier outperforms

existing ones, all BaB based verifiers, including ours, are still limited to relatively small models

far from the ImageNet [2, 140] scale. Finally, we have only demonstrated robustness verification

of image classification tasks. How to generalize verification for other tasks such as robust deep

reinforcement learning [149, 150, 151] and language transformers [145, 37] is an interesting

direction for future works. We discuss and summarize these limitations as open challenges in

Section 6.

120

Chapter 5: Training Neural Networks for Verification

In previous chapters, we discussed state-of-the-art complete verifiers to provide formal guaran-

tees for desired safety properties on neural networks. However, even the state-of-the-art complete

verifiers like 𝛼, 𝛽-CROWN are still unable to scale to practically large models like ResNets for

vision datasets [152, 153] or transformers for language tasks [154, 155]. It is mainly because the

verification heavily relies on the tightness of the approximations by sound propagation methods

like symbolic interval analysis (introduced in Section 3) and CROWN variances (introduced in Sec-

tion 4). Their approximation tightness will significantly decrease if the models become larger [26,

31]. In Table 5.1, we illustrate such scalability issues with existing verifiers on a regularly trained

CIFAR10 convolutional neural network with considered robustness region 𝑙∞ norm less than 2/255.

To further scale the verification to larger models, we have to enhance the training schemes of

neural networks to be aware of the verification properties such that we can have models friendly to

verification. We call such enhanced training schemes verifiable training. The same model trained

with our verifiable training MixTrain can now gain good verified accuracy as shown in Table 5.1.

Models Hidden Units # Params Training Method Accuracy (%) Verified Acc∗ (%)

CIFAR_Large 62,464 2,466,858
Regularly Trained 86.4 0/0

MixTrain [47] 77.9 41.6/50.3
* Incomplete verifier symbolic interval analysis [26] used in MixTrain / complete verifier 𝛼, 𝛽-CROWN [36]

Table 5.1: Illustrating the scalability issues of existing verifiers and the necessity of verifiable
training for verification on practical models.

Besides MixTrain, people have also proposed several verifiable training methods [34, 32, 43,

44, 46, 45, 33, 156], but they face up with two main challenges: (1) many of them relying on tight

incomplete verifiers in training are significantly slower than regular training process, preventing the

verifiable training from being applied in real dataset and models (could be over a hundred times

slower); (2) Most of the verifiably trained models have poor accuracy performance despite the gain

121

of the verifiable robustness (less than 40% clean accuracy on hard CIFAR10 properties 𝑙∞ norm

less than 8/255).

In this chapter, we will mainly focus on two different categories of general verifiable training

frameworks, solving these two challenges perspectively. We first proposed MixTrain [47] in

Section 5.2, which mainly focuses on increasing training efficiency and scalability on large datasets

and networks; Then in Section 5.3, we proposed adaptive verifiable training [48] to further improve

verifiable training performance accounting for label similarity by prioritizing verifiable robustness

between different labels. We mainly implement and evaluate these two frameworks with incomplete

verifiers symbolic interval analysis [26] and CROWN-IBP [45] in Section 5.2.4 and 5.3.4. Note that

these two frameworks are general and thus other verifiable training methods can also be directly

incorporated and gain similar improvements.

5.1 Additional Background and Related Work for Verifiable Training

Robust training defenses essentially solve a robust optimization problem. Formally, Equation 5.1

defines the robust optimization procedure. Given an input 𝑥 with label 𝑦 drawn from the underlying

distribution D, robust optimization minimizes the maximal loss found in the robustness region C.

We discussed robustness region C and corresponding threat model in Section 2.2 and 2.4. Since

we mainly consider 𝐿𝑝 norm robustness within distance 𝜖 , we denote robustness region C to be

𝐵𝜖 (𝑥) around each input point 𝑥 in this chapter. In Equation 5.1, 𝐿(𝑥, \, 𝑦) denotes the regular loss

function of the neural network. A common way to define a robustness region 𝐵𝜖 (𝑥) is to use a

𝐿∞-ball of radius 𝜖 around 𝑥 [7]. The definition can be generalized to arbitrary 𝐵𝜖 including other

𝐿𝑝 norm-bounded balls. However, due to the non-convexity of neural networks, solving the inner

maximization problem is NP-hard. There are three categories of robust training methods, solving

the inner maximization differently.

min
\
E(𝑥,𝑦)∼D max

𝑥∈𝐵𝜖 (𝑥)
(𝐿(\, 𝑥, 𝑦)) (5.1)

122

Adversarial training. Recently, there is a large body of early defenses against adversarial exam-

ples [157, 158, 159, 160, 161, 56, 162, 163, 164, 165, 166]. However, these defenses have been

followed by a sequence of stronger attacks breaking them in quick succession [167, 11, 168, 169,

10, 54, 170, 65, 171, 172, 173, 174, 8, 175, 176]. We refer the interested readers to the survey by

Athalye et al. [56] for more details. The state-of-the-art adversarial training scheme of Madry et

al. [18] estimates the inner maximization of the robust optimization problem with the projected

gradient descent (PGD) attacks and trains the network with the perturbed samples (𝑃𝐺𝐷(𝑥)), i.e.

min\ E(𝑥,𝑦)∼D𝐿(\, 𝑃𝐺𝐷(𝑥), 𝑦). The trained network is robust against various classes of attacks

such as PGD, Fast Gradient Sign Method (FGSM) [9], and Carlini-Wagner (CW) attacks [11].

However, since the training procedure estimates the robustness using heuristics, the robustness

cannot be verified against unknown attacks. There are many other adversarial training variances

further improve the performance based on Madry et al. [18] but none of them can achieve the

verified robustness we desired [177, 178, 179, 180, 181, 148, 182, 183, 184, 55, 185, 186, 187, 188].

Distributional verification. To provide distributional robustness guarantee, Sinha et al. [189]

encode the robustness region as perturbed distributions within a bounded Wasserstein distance to

the data-generating distribution, and then solve the inner maximization with Lagrangian relaxation.

Such defense provides a useful upper bound on the expectation of the neural network loss when

the robustness region is very small (e.g., | |𝜖 | |2≤0.1). However, as the bound becomes larger (e.g.,

| |𝜖 | |∞≤ 0.1), the defense becomes ineffective.

Verifiable training. Our work MixTrain and adaptive verifiable training belong to the last type of

defenses, namely verifiable training. Recent works have used different bound propagation methods

to relax and track an over-approximated output range for each layer of the neural network in order

to provide the worst-case behaviors of the output layer and the loss value. We define such relaxation

methods as sound propagation methods (𝑆𝑃(\, 𝑥, 𝑦)). Our symbolic interval analysis introduced in

Chapter 3, CROWN variances [31, 35, 36] discussed in Chapter 4, and Wong et al.’s method [32]

are representatives. Sound propagation methods offer an over-approximated upper bound to the

123

inner maximization problem. We can use the bound propagation upper bounds to train networks as

min\ E(𝑥,𝑦)∼D𝑆𝑃(\, 𝑥, 𝑦). Among existing methods, DiffAI [44] and convex dual method [43] are

previously the state-of-the-art verifiable training methods. However, since sound propagation is done

for every training sample, these methods are prohibitively expensive in terms of both computation

and memory costs, which are hundreds of times slower than regular training methods. Moreover,

test accuracy is often sacrificed to improve verifiable robustness during the training process. We

propose two methods in MixTrain to solve such scalability problems of verifiable training.

There are many other recent works [46, 45, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199]

focusing on scaling and improving verifiable training. Many of them use naive interval propagation

(IBP) [46] or CROWN-IBP [45]. However, despite their efficiency, these bound propagations will

involve a large overestimation error for each training step and will limit the future improvements of

trained verified accuracy. Note that our MixTrain proposed in Section 5.2 and adaptive verifiable

training introduced in Section 5.3 are general verifiable training frameworks and thus agnostic

to these works. They can be incorporated with other verifiers to speed up the verifiable training

efficiency and scalability and further improve the desired verifiable robustness for specific labels.

We categorize three common accuracy metrics for measuring the performance of a trained

network. (1) Regular accuracy (ACC) represents the test accuracy without adversarial perturbations.

(2) Estimated robust accuracy (ERA) measures the percentage of test samples that are robust against

known attacks like PGD. We discussed detailed PGD attack algorithms in Section 2.2. (3) Verified

robust accuracy (VRA) measures the percentage of test samples that are verified to be safe under

arbitrary attacks.

5.2 MixTrain: Scalable Training of Verifiably Robust Neural Networks

We observe that existing verifiably robust training techniques suffer from two major limitations.

First, during each training epoch, there is a sound propagation process for every training data point

to approximate the worst-case behavior of the current state of the network (see Section 5.1). As

introduced in Section 4.1.2, sound propagation denotes methods that over-approximate potential

124

robustness violations any attacker can cause given a bounded input range, which we define in

Section 5.1. Even though each step of sound propagation method is not that expensive compared to

other LP verifiers used in BaB for complete verification, it becomes an extremely computation- and

memory-intensive process for every training point compared to the regular training process. Second,

the robust loss and regular loss often conflict during the robust training process, i.e., decreasing one

increases the other (as shown in Section 5.2.1). Such conflict prevents verifiably robust training

from efficiently achieving high test accuracy.

In this section, we solve these challenges by designing MixTrain, a scalable verifiably robust

training framework. MixTrain can provide strong verifiable robustness against norm-bounded

attacker with significantly faster training time. MixTrain uses two novel techniques, stochastic

robust approximation and dynamic mixed training. First, we observe that it is not necessary to

conduct sound over-estimation for every single training data point in order to train a network with

high verifiable robustness. Instead, sound propagation of robustness violations over a random subset

of the training data allows the robust training to make progress much faster. This approach drastically

cuts down the training overhead. Second, we use a dynamic loss function to adaptively balance the

robust loss and regular loss for each epoch in order to increase both test accuracy and verifiable

robustness simultaneously. These two techniques in MixTrain can be incorporated with any existing

sound propagation methods (e.g., symbolic interval analysis [26], abstract transformations [94],

convex dual optimization [32, 96, 92]).

We implemented and thoroughly evaluated MixTrain on six different neural networks trained

on three popular datasets including MNIST, CIFAR, and ImageNet-200. Our detailed evaluations

show that, on average, MixTrain takes 15 times less training time and 10 times less memory

than previously state-of-the-art verifiably robust training method [43] to achieve the same level of

verified robustness. Also, compared to state-of-the-art Madry et al.’s adversarially robust training

method [18], MixTrain takes on average 3 times less training time with a bonus of strong verifiable

robustness. Last but not least, MixTrain is the first to scale to a larger network trained on the

ImageNet-200 dataset with off-the-shelf hardware (four NVIDIA 1080 Ti GPUs), significantly

125

outperforming existing verifiably robust training methods.

In this section, we will first highlight the issues of existing verifiable robust training algorithm

and motivate the importance of MixTrain for efficient training scheme in Section 5.2.1. Then in Sec-

tion 5.2.2 and 5.2.3, we will describe the two key components stochastic robust approximation and

dynamic mixed training in MixTrain for mitigating such issues. Lastly, we provide comprehensive

experimental results for evaluating the efficiency and scalability of MixTrain in Section 5.2.4.

5.2.1 Motivation

(a) Regular training (b) Robust training

0 25 50 75 100
Batches

lo
g(

Lo
ss

)

Normal loss
Verif. robust loss

0 25 50 75 100
Batches

lo
g(

Lo
ss

)

Normal loss
Verif. robust loss

Figure 5.1: The conflicting changes in regular loss and verifiable robust loss while training two
CIFAR_Small networks. The left one is regular training after 60 epochs of verifiably robust training
using [43] and the right one is verifiably robust training after 60 epochs of regular training.

We design MixTrain to address the following observations that existing verifiably robust training

methods suffer from two main scalability issues.

High computation and memory cost. Existing verifiably robust training schemes compute sound

over-approximations of the network robustness for all training samples. This causes significant

overhead in both computation and memory costs. The state-of-the-art sound over-approximation

techniques, despite impressive progress, are still hundreds of times slower and requires more

memory than the regular forward propagation in a neural network [32, 43, 92, 26]. For instance, to

verifiably robust train a CIFAR residual network with around 32,000 hidden nodes, it requires up to

126

around 300GB of memory while the regular training only needs 7MB.

Conflict between verifiable robustness and accuracy. We observe that it is conflicting to achieve

high verifiable robustness and high test accuracy after some training epochs, i.e., increasing one often

decreases the other, as demonstrated in Figure 5.1a and Figure 5.1b. For the first experiment, we

pre-trained a CIFAR_Small network (see Section 5.2.4) for 60 epochs with Wong et al.’s verifiably

robust training method [43]. After we further trained this network with regular training, as shown in

Figure 5.1a, the normal loss decreases (i.e., the test accuracy improves) but the verifiable robust loss

increases (i.e., the VRA decreases). For the second experiment, we pre-trained a CIFAR_Small

network with regular training for 60 epochs. Afterwards, training this network with verifiable robust

training increases VRA but decreases test accuracy as shown by the loss values in Figure 5.1b. The

results demonstrate that improving verifiable robustness and test accuracy becomes conflicting after

the initial training epochs.

5.2.2 Stochastic Robust Approximation

We propose stochastic robust approximation to reduce the computational and memory cost

of the verifiably robust training process. The key insight behind our approach is to minimize the

usage of expensive sound over-approximation methods without affecting the verified robustness

of the trained network. We observe that one does not actually need sound over-approximations of

robustness violations over the entire training dataset during all intermediate steps of the training

process. The verifiably robust training can efficiently minimize the verifiable robust loss as long

as it is guided with over-approximated robustness violations over a representative subset of the

training data. Therefore, we use random subsampling to pick a subset of training data and use

sound over-approximation process to estimate robustness violations over this subset. This step

significantly speeds up the training process.

We find that the verifiable robust loss values computed over 𝑘 samples are representative of the

losses from the entire training set. Formally, the training set (i.e., 𝑛 training data points) represents

127

0 2 4 6 8 10
Verifiable robust loss

Fr
eq

ue
nc

y

k=1000
k=50000

Figure 5.2: The distributions of verifiable robust loss from the entire training set D0 and from the
sampled training set D𝑘 (k=1000) are very similar.

an empirical distribution D0 drawn from the underlying input distribution D. Stochastic robust

approximation randomly samples 𝑘 training data points as D𝑘 . Then, the robust training objective

can be defined with the new inner maximization problem using stochastic robust approximation,

where 𝑆𝑃(\, 𝑥, 𝑦) denotes the sound propagation method:

min
\
E(𝑥,𝑦)∼D𝑘

𝑆𝑃(\, 𝑥, 𝑦) (5.2)

To test the effectiveness of subsampling the robust losses over the training dataset, we randomly

sample 1,000 data points (𝑘 = 1, 000) out of 50,000 in CIFAR training dataset. We compute the

verifiable robust losses over both the subsampled data points and the entire training dataset. Figure

5.2 shows that, the distribution of verifiable robust loss over the sub-sampled set D𝑘 is very close to

that over the entire training datasetD0. The two distributions significantly overlap and the verifiable

robust loss values are between 0 to 2 for most of the data points.

Therefore, we can accurately estimate the verifiable robust loss values by computing sound

over-approximation of the robustness violations over a randomly subsampled training dataset. This

significantly reduces the time and memory requirements for MixTrain. For instance, by sampling

𝑘 = 1, 000 training data points out of 50, 000, the computational cost of verifiably robust training is

cut down to 2% of the original cost using the entire training set.

Such finding is not surprising given that stochastic sampling is a common technique used in

128

Machine Learning [200]. For instance, all training procedures for neural networks use sampling

to perform the Empirical Risk Minimization (ERM) process for estimating the loss values over

the underlying data distribution. Specifically, the 𝑛 data points in the training dataset are assumed

to be sampled from the underlying distribution D and are treated as an empirical distribution D0.

Stochastic robust approximation simply takes such procedures one step further by subsampling the

empirical distribution D0 for computing verifiable robust loss with sound propagation methods.

Integration with batch training. We further utilize the randomness in the batch generation

process to integrate stochastic robust approximation with batch training that is commonly used to

train neural networks. Essentially, we pick 𝑘 samples from different batches. Let 𝑚 and 𝑛 denote

the batch size and the number of original training data points. Here, the training process will use

𝑛
𝑚

batches. By distributing 𝑘 random samples over these batches, we get 𝑘′ = 𝑘
𝑛/𝑚

samples per

batch. Before updating the weights of the neural network for each batch through back propagation,

we compute the estimated verifiable robust loss from 𝑘′ random samples within the batch. For

instance, in Figure 5.2, given batch size 𝑚 = 50 and training dataset size 𝑛 = 50, 000, randomly

sampling 𝑘 = 1, 000 from the training set is equivalent to randomly picking 𝑘′ = 1 per batch. Our

experimental results in Section 5.2.4 shows that setting 𝑘′ = 1 achieves high VRA while running

up to 14× faster than the state-of-the-art verifiably robust training schemes [43]. Stochastic robust

approximation can be customized by changing the value of 𝑘 as a hyperparameter.

5.2.3 Dynamic Mixed Training

Our second technique addresses the conflict between the test accuracy and the verifiable robust-

ness. Most existing verifiably robust training methods struggle to achieve both high test accuracy

and high verifiable robustness [156, 44, 43]. To simultaneously increase both the test accuracy

and the verifiable robustness, we dynamically balance the goals of training for each epoch using a

dynamic loss function. Specifically, we define our dynamic loss function as the following:

129

𝐿𝑚𝑖𝑥𝑒𝑑 = (1 − 𝛼)E(𝑥,𝑦)∼D𝐿(\, 𝑥, 𝑦) + 𝛼E(𝑥,𝑦)∼D𝑘
𝑆𝑃(\, 𝑥, 𝑦) (5.3)

𝐿𝑚𝑖𝑥𝑒𝑑 is a weighted sum of (i) the expectation of the regular loss E(𝑥,𝑦)∼D0𝐿(𝑓\(𝑥), 𝑦) and (ii)

the expectation of the verifiable robust loss E(𝑥,𝑦)∼D𝑘
𝑆𝑃(\, 𝑥, 𝑦). The hyperparameter 𝛼, which

takes a value between 0 and 1, biases the dynamic loss value towards either the regular loss or the

verifiably robust loss. When 𝛼 is large, the training process tends to find the weights \ that minimize

the verifiable robust loss, increasing VRA. In contrast, if 𝛼 is small, Equation 5.3 emphasizes more

on the regular loss and thus enhances the test accuracy.

Dynamic Loss. We dynamically adjust 𝛼 per epoch to prioritize different emphasis on the regular

loss and the verifiably robust loss. The dynamic loss function allows us to adaptively maximize

the test accuracy and VRA simultaneously based on the the current test accuracy. It can balance

the gradients generated from the loss of both the regular and the verifiably robust training tasks.

Therefore, we can avoid the training being completely dominated by the one with a larger gradient.

Using dynamic loss, we are able to robustly train the networks that have up to 13.2% higher test

accuracy compared to the state-of-the-art verifiable robust training schemes [43] with similar VRA

(Section 5.2.4). Besides the test accuracy improvement, another significant benefit of MixTrain is

that it helps the training process converges, especially when either the regular loss function or the

verifiable robust loss function is difficult to optimize individually.

In our experiments, we use a specific 𝛼 function as defined in Section 5.2.4. In general, 𝛼 can

be any reasonably smooth function. For example, grid search can be used to find the best 𝛼 for

each epoch. Alternatively, the best 𝛼 for different epochs and different networks can potentially be

policies learned using reinforcement learning techniques. We leave exploring these directions as

future work.

130

Network # hidden units # parameters
MNIST_Small 4,804 166,406
MNIST_large 28,064 1,974,762
CIFAR_Small 6,244 214,918
CIFAR_Large 62,464 2,466,858
CIFAR_Resnet 31,720 1,145,410

ImageNet_Resnet 172,544 2,310,664

Table 5.2: Model architectures for MixTrain evaluation

5.2.4 Experimental Results for MixTrain

In this section, we compare the performance of MixTrain using symbolic interval analysis [26]

introduced in Section 3.2 against four state-of-the-art robust training methods, on 6 different

networks trained over 3 benchmark datasets. We show that MixTrain is one of the first methods that

can scale to the ImageNet_Restnet model trained on the Imagenet-200 dataset, the largest model

and dataset in our evaluation. Note that MixTrain is a general verifiable training framework and can

be used with other verifiers to boost the corresponding verifiable training speed.

Experimental Setup

Implementation. We implemented stochastic robust approximation and dynamic mixed training as

part of MixTrain, built on PyTorch 0.4.01. In MixTrain, we use symbolic interval analysis [26]

as sound propagation method. All experiments are run on four GeForce GTX 1080 Tis.

Dynamic 𝛼 function of MixTrain. We use the following 𝛼 function for MixTrain’s dynamic loss

function:

𝛼𝑡 =

𝛼0, if 𝑡 = 0

𝛼𝑡−1 + 0.05, if 𝑎𝑐𝑐 > 𝑎𝑐𝑐0

𝛼𝑡−1 − 0.05, if 𝑎𝑐𝑐 ≤ 𝑎𝑐𝑐0

1https://pytorch.org/

131

Here 𝑎𝑐𝑐 denotes the accuracy of a sub-sampled training dataset for the current epoch 𝑡. 𝑎𝑐𝑐0

and 𝛼0 denote the desired accuracy and the initial 𝛼 value, respectively. In this conditional function,

𝛼 takes an initial value of 𝛼0 at the beginning (i.e., 𝑡 = 0) of the batch training process. Afterwards,

for each epoch, 𝛼 changes according to the accuracy of current epoch. When the test accuracy

increases and becomes larger than targeted 𝑎𝑐𝑐0, we increase 𝛼 by 0.05. Similarly, if the test

accuracy decreases and becomes less than 𝑎𝑐𝑐0, we deduct 0.05 from the current value of 𝛼. Since

the MNIST networks, unlike the other networks we tested, can be easily trained to have high test

accuracy, we want MixTrain to spend more effort on improving verifiable robustness in dynamic

mixed training. Therefore, we set 𝛼0 to be 0.8. By contrast, for CIFAR networks, where achieving

high accuracy is hard, we set 𝛼0 to 0.5. We provide experimental evaluation for 𝛼 scheme in

Table 5.9 in ablation studies in the later section.

Datasets & networks. We evaluate MixTrain on three different datasets: MNIST digit classifica-

tion [201], CIFAR10 image classification [147], and ImageNet-2002 [202]. We use six different

network architectures for the experiments. The details of networks are shown in Table 5.2. We train

60 epochs in total and batch size 50 with standard training procedures in [43] for all experiments.

Training procedures and accuracy measurements Unless otherwise specified, similar to Wong

et al. [43], we train 60 epochs in total with batch size of 50 for all experiments. We follow the

standard normalization procedures (described below before training for all of the datasets [43, 156,

18, 189]. For all networks trained using the same dataset, we use the configurations as well as the

same randomly selected set of 1,024 test images to compute ACC, ERA, and VRA.

For the MNIST dataset, we scale the inputs to be within [0, 1] with ` = 0.5. We use the Adam

optimizer [51] with learning rate 0.001 and decay it by a factor of 0.6 for every 5 epochs. We use 𝜖

starting from 0.01 to the values used for measuring VRA over the first 10 epochs3.

2Imagenet-200 is a subset of the ImageNet dataset with 200 classes instead of 1,000. Also, each piece of training
data is cropped to be 3×64×64.

3Since sound over-approximations over a network during the early stages of training is more expensive than later
stages, decaying 𝜖 is necessary to bootstrap the training process.

132

For the CIFAR dataset, we use ` = [0.485, 0.456, 0.406], 𝜎 = [0.225, 0.225, 0.225] for input

normalization. We use the SGD optimizer [203, 204] with learning rate 0.05 and decay it by 0.6 for

every 5 epochs. We use 𝜖 starting from 0.001 to values used for measuring VRA over the first 10

epochs. We use the same configurations for ImageNet-200 dataset too.

For ERA, we measure the robust accuracy under PGD attacks. We use one of the standard

evaluation configurations in [18]. Specifically, we ran 40 iterations of PGD or CW attacks with step

size of 0.01. Accuracy and robust accuracy are measured with the same randomly selected 1024

test images.

For the two adversarial training schemes, we use the same adversary configurations and training

process from Madry et al. [18]. Specifically, we run 40 iterations of PGD or WRM (used in Madry

et al. [18] and Sinha et al. [189]) attacks with step size of 0.01 for MNIST while 7 iterations with

step size 2/255 as the adversary for CIFAR.

For the two state-of-the-art verifiable training schemes, we pick the experimental setups that

achieved the best results as described in the corresponding papers. Wong et al.’s method [43] is the

state-of-the-art at supporting high verifiable robustness, i.e., VRA. We use 50 random projections

for Wong et al.’s method [43]. We use training with box domains and testing with a hybrid Zonotope

domain with transformer method hSwitch for DiffAI [44] since this achieved the best results.

Comparison with State-of-the-Art Methods

We compared the performance of MixTrain with existing state-of-the-art schemes: two adversar-

ial training schemes by Madry et al. [18] and Sinha et al. [189] and two verifiable training schemes

by Wong et al. [43] and Mirman et al. (DiffAI) [44].

Comparison with adversarial training. In Table 5.3, we show the training results of different

techniques for the five tested networks under different 𝐿∞ bounded ranges (0.1, 0.3 for MNIST and

2/255 for CIFAR). The last row shows the gain of MixTrain over Madry et al.’s method [18], the

best existing adversarial training method. Here, we set 𝑘 for stochastic robust approximation to be 1

133

Training
MNIST_Small 0.1 MNIST_Small 0.3 MNIST_Large 0.1 MNIST_Large 0.3
Batch

(s)
Train
(m)

VRA
(%)

Batch
(s)

Train
(m)

VRA
(%)

Batch
(s)

Train
(m)

VRA
(%)

Batch
(s)

Train
(m)

VRA
(%)

Regular Training 0.006 7 0 0.006 7 0 0.007 8 0 0.007 8 0
Sinha et al. [189] 0.026 31 0 0.026 31 0 0.063 76 0 0.066 79 0
Madry et al. [18] 0.027 32 0 0.027 32 0 0.063 75 0 Does not converge

MixTrain 0.011 13 91.6 0.011 13 52.0 0.051 61 95.2 0.054 65 58.4
MixTrain Gain -0.016 -19 +91.6 -0.016 -19 +52.0 -0.012 -14 +95.2 N/A N/A +58.4

Training
CIFAR_Small 2/255 CIFAR_Large 2/255 CIFAR_Resnet 2/255
Batch

(s)
Train
(m)

VRA
(%)

Batch
(s)

Train
(m)

VRA
(%)

Batch
(s)

Train
(m)

VRA
(%)

Regular Training 0.011 11 0 0.012 12 0 0.014 15 0
Sinha et al. [189] 0.192 191 0 0.204 204 0 0.212 212 0
Madry et al. [18] 0.194 195 0 0.289 289 0 Does not converge

MixTrain 0.015 15 37.6 0.239 239 41.6 0.109 109 35.5
MixTrain Gain -0.179 -180 +37.6 -0.05 -50 +41.6 N/A N/A +35.5

Table 5.3: Comparison between MixTrain and existing state-of-the-art adversarial training methods.
Experimental setups are consistent with [18, 189]. The gain is over Madry et al.’s method [18]
which is the best adversarial training method among previous works.

to maximize the training efficiency. "Does not converge" means we cannot find a feasible choice

of learning rate (𝑙𝑟 = 10−7, 3 × 10−7, 10−6, ..., 10) that can train the network to have over 30% test

accuracy.

As shown in Table 5.3, after 60 training epochs, MixTrain obtains the highest VRA for all

networks. Madry et al.’s method [18] is efficient but it cannot provide any verifiable robustness,

i.e., has 0 VRA. By contrast, MixTrain can get VRA as high as 95.2% while still being faster than

Madry’s method at achieving the same ACC and ERA. Such improvement in verifiable robustness

is highly significant especially for security-sensitive applications. Note that MixTrain is faster

than existing adversarial training schemes on all networks except CIFAR_Large. Sinha et al.’s

method [189] is slightly faster than MixTrain on CIFAR_Large but MixTrain has significantly

higher VRA scores.

We also show in ablation studies in the later section that MixTrain has stronger robustness under

other types of attacks like 𝐿0 and 𝐿2 bounded attacks than Madry et al.’s method [18].

Comparison with verifiable training. In Table 5.4, we compare the performance of MixTrain

against existing verifiable training methods, DiffAI [44] and Wong et al’s method [43], within

134

Training
MNIST_Small 0.1 MNIST_Small 0.3 MNIST_Large 0.1 MNIST_Large 0.3
Batch

(s)
ACC
(%)

VRA
(%)

Batch
(s)

ACC
(%)

VRA
(%)

Batch
(s)

ACC
(%)

VRA
(%)

Batch
(s)

ACC
(%)

VRA
(%)

DiffAI [44] 0.013 97.8 60.6 0.012 98.2 0 Does not converge Does not converge
Wong et al. [43] 0.078 98.6 95.7 0.079 91.2 57.8 0.687 99.2 96.4 0.689 86.6 53.1

MixTrain 0.026 99.5 97.1 0.028 94.0 60.1 0.051 99.5 95.2 0.054 96.6 58.4
MixTrain Gain -0.161 +0.9 +1.4 -0.051 +2.8 +2.3 -0.636 +0.3 -1.2 -0.635 +10.0 +5.3

Training
CIFAR_Small 2/255 CIFAR_Large 2/255 CIFAR_Resnet 2/255
Batch

(s)
ACC
(%)

VRA
(%)

Batch
(s)

ACC
(%)

VRA
(%)

Batch
(s)

ACC
(%)

VRA
(%)

DiffAI [44] 0.015 66.3 4.0 Does not converge 0.035 75.6 0
Wong et al. [43] 0.248 62.5 47.5 2.157 61.9 49.4 1.914 58.1 43.9

MixTrain 0.087 69.4 48.2 0.268 74.1 50.2 0.281 71.3 50.4
MixTrain Gain -0.161 +6.9 +0.7 -1.889 +12.2 +0.8 -1.633 +13.2 +6.5

Table 5.4: Comparison between MixTrain and state-of-the-art verifiable training methods Dif-
fAI [44] and Wong et al’s method [43]. We use the setup that achieves the best results according to
the original papers. The gain is over the state-of-the-art Wong et al.’s method [43] which is the best
verifiable training method among previous works.

12-hours training time. Despite high VRA, the verifiable training scheme of Wong et al. [43] still

suffers from training cost issues and low test accuracy. Table 5.4 clearly demonstrates that stochastic

robust approximation and dynamic mixed training are two very powerful methods that allow us to

scale to large networks (MNIST_Large and CIFAR_Resnet) and balance the VRA and test accuracy.

Note that the results for DiffAI on MNIST dataset are lower than the numbers reported in [44]

mainly because their input normalization uses a different scale. Though DiffAI with box domains

are efficient to train, our experiments show that they tend to introduce large overestimation errors.

Therefore, VRA of DiffAI is low for most of the networks. Moreover, DiffAI does not converge on

MNIST_Large and CIFAR_Large networks.

While running stochastic robust approximation on small networks (MNIST_Small, CIFAR_Small),

we set 𝑘 to be 20 to compute the verifiable robust loss without significantly increasing the training

cost. For the larger networks like CIFAR_Resnet and CIFAR_Large, we pick 𝑘 = 10. Note that we

can make 𝑘 larger to further improve the VRA by spending more training time. For MNIST_Large,

we find that 𝑘 = 1 is enough to outperform all of the existing state-of-the-art methods.

For all networks, within 12-hour training time, MixTrain achieves higher ACC and VRA than

DiffAI and Wong et al.’s method. In particular, we have achieved 4.2% higher VRA and 9.2% higher

135

ACC than the best-reported number of Wong et al. [43] for the MNIST_Large network (𝜖 = 0.3).

Efficiency of MixTrain

0 2 4 6 8 10 12
Training Time (h)

0

20

40

60

80

100
VR

A
(%

)

7%
4.5h

42.7%

MixTrain
Wong et al.

0 2 4 6 8 10 12
Training Time (h)

0

20

40

60

80

100

AC
C

(/%
)

MixTrain
Wong et al.

(a) Verified robust accuracy (b) Regular accuracy

Figure 5.3: Training accuracy and verified robust accuracy (VRA) of MixTrain and Wong et al.’s
method [43] in terms of training time on CIFAR_Resnet.

We test how fast MixTrain can converge to the best accuracy and VRA compared to Wong et

al.’s method [43] on CIFAR_Resnet. As shown in Figure 5.3a, MixTrain only needs around 4.5

hours to reach the best training VRA which is 52%. For the same amount of time, the network

trained with Wong et al.’s method [43] only achieves 9.3% VRA. We then test whether Wong et

al.’s method [43] can catch up given more training time. However, even after 12 hours of training,

MixTrain outperforms Wong et al.’s method with 7% higher VRA and 10% higher accuracy as

shown in Figure 5.3b.

In Table 5.5, we summarize the results of our tests to check whether and how long Wong et

al.’s method [43] and DiffAI [44] can reach the same VRA as MixTrain shown in Table 5.4 if we

allow more training time than 12 hours. On average, MixTrain is 15× faster than Wong et al.’s

method [43] and at least 20× faster than DiffAI for reaching the same target VRA.

Scalability of MixTrain

All existing verifiable training methods have so far been only evaluated on the MNIST and

CIFAR datasets. Since the training cost increases drastically for large datasets like ImageNet [140,

205]), training large networks with verifiable robustness is very hard. We evaluate MixTrain with

136

Network 𝜖 Method
Training

Time
Others

MixTrain
ACC
(%)

MNIST
_Small

0.1
DiffAI [44] >24h >36× N/A
Wong et al. [43] >24h >36× N/A
MixTrain 39m26s - 99.5

0.3
DiffAI [44] >24h >28× N/A
Wong et al. [43] >24h >28× N/A
MixTrain 50m12s - 94.0

MNIST
_Large

0.1
DiffAI [44] >24h >26× N/A
Wong et al. [43] 3h59m 4× 98.9
MixTrain 55m12s - 99.5

0.3
DiffAI [44] >24h >24× N/A
Wong et al. [43] >24h >24× N/A
MixTrain 58m35s - 96.6

CIFAR
_Small

2/255
DiffAI [44] >24h >16× N/A
Wong et al. [43] 3h35m 3× 61.3
MixTrain 1h24m - 69.4

CIFAR
_Large

2/255
DiffAI [44] >24h >5× N/A
Wong et al. [43] 13h14m 3× 64.9
MixTrain 4h28m - 74.1

CIFAR
_Resnet

2/255
DiffAI [44] >24h >5× N/A
Wong et al. [43] 15h53m 3× 60.2
MixTrain 4h36m - 71.3

Table 5.5: The shortest training time needed by different verifiable training methods to achieve the
same VRA MixTrain achieved in Table 5.4, along with the corresponding accuracy.

ImageNet_Resnet trained on the Imagenet-200 [202] dataset and show that MixTrain can scale to

such large networks. We use robustness regions bounded by 𝐿∞ ≤ 0.007.

Note that there is no existing method that we can compare with on the Imagenet-200 dataset,

using up to 4 GPUs. The state-of-the-art Wong et al.’s method [43] fails to scale to Imagenet-200.

Even after 42 hours of training to warm up the network, Wong et al.’s scheme cannot achieve VRA

scores higher than 3%. Warm up is a crucial and standard process in verifiable training for gradually

increasing the training 𝜖 during the initial training epochs (see Section 5.2.4 for details).

Therefore, to create a meaningful baseline for comparison, we use MixTrain during initial

epochs to help Wong et al.’s method [43] to warm up and then used their method alone (without

MixTrain) for another 12 hours. For MixTrain, we set k=5 and train for the same amount of time.

As shown in Table 5.6, MixTrain outperforms Wong et al.’s method even when it is warmed up with

137

Method Batch Time (s) ACC (%) VRA (%)
Regular training 0.022 36.2 0
Wong et al. [43] No progress after 50 hours of training∗

Wong et al. [43] +
MixTrain warmup

3.392 14.4 5.1

MixTrain 0.396 26.2 19.4
∗ See Section 5.2.4 for detailed explanations.

Table 5.6: The test accuracy (ACC) and verified robust accuracy (VRA) of ImageNet_Resnet
network trained with 12 hours using the ImageNet-200 dataset with 𝜖 ≤ 0.007.

MixTrain. In particular, MixTrain obtains 11.8% higher regular accuracy and 14.3% higher VRA.

GPU Memory Usage

MixTrain is able to significantly cut down memory usage during robust training compared to

previously the best verifiable robust training method [43]. This allows MixTrain to run on limited

GPU resources. Here, in Table 5.7, we summarize the GPU memory requirement for MixTrain and

Wong et al. [43] for each network. 𝜖 is set to 0.3 for MNIST dataset and 2/255 for CIFAR dataset.

For Wong et al.’s mehtod [43], even after applying 50 random projection proposed in [43] to cut

down memory usage, it still needs 4 GeForce GTX 1080 Ti GPUs to train large networks with batch

size 50. In contrast, MixTrain requires only 1 GPU to train these networks. Overall, MixTrain, on

average, uses 10× less GPU memory than Wong et al.’s method. Note that, as shown in Table 5.4

and Figure 5.3, MixTrain further provides similar or even better accuracy and robustness in less

training time compared to Wong et al.’s method [43].

Network
Memory Usage (MB)

Baseline MixTrain Wong et al. [43]
MNIST_Small 533 837 5,474
MNIST_Large 629 6,383 32,626
CIFAR_Small 553 869 17,960
CIFAR_Large 621 5,335 39,840
CIFAR_Resnet 589 3,475 3,7784

Table 5.7: The GPU memory usage required to train different networks by using MixTrain compared
to regular training (Baseline) and state-of-the-art verifiable robust training method [43]. 𝜖 is 0.3 for
MNIST dataset and 2/255 for CIFAR dataset.

138

Ablation studies

Robustness under different 𝐿∞ bounds We examine the VRA and ERA metrics with different

robustness regions in the CIFAR_Large and MNIST_Large networks trained with MixTrain. The

CIFAR_Large and MNIST_Large are trained with 𝐿∞ ≤ 2/255 and 𝐿∞ ≤ 0.3, respectively, using

the training procedure described in early this section. Figure 5.4b shows that these two networks have

high VRA and ERA scores within large 𝐿∞ bounds. Overall, the ERA values are higher than VRA.

For MNIST_Large, the VRA score is still over 80% when 𝜖 is 0.25. Similarly for CIFAR_Large, the

VRA score is higher than 60% when 𝜖 is 0.025. Note that the verifiable robustness of MNIST_Large

decreases faster than CIFAR_Large’s, since the training range 𝐿∞ ≤ 0.3 is relatively large that

covers almost all visually undetectable perturbations.

0.0 0.1 0.2 0.3 0.4
L

0

20

40

60

80

100

Ro
bu

st
 A

cc
ur

ac
y

(%
)

ERA(PGD)
VRA

0.00 0.02 0.04 0.06 0.08
L

0

20

40

60

80

100

Ro
bu

st
 A

cc
ur

ac
y

(%
)

ERA(PGD)
VRA

(a) MNIST_Large (b) CIFAR_Large

Figure 5.4: Model robustness trained by MixTrain w.r.t different 𝐿∞ norm distances

0 2 4 6 8 10
L2

0

20

40

60

80

100

ER
A(

CW
) (

%
)

Madry et al.
MixTrain

0 50 100 150 200 250
L0

0

20

40

60

80

100

ER
A(

Po
in

tw
ise

) (
%

) Madry et al.
MixTrain

(a) 𝐿2 distance (b) 𝐿0 distance

Figure 5.5: ERA of CIFAR_Large networks trained with MixTrain vs Madry et al. [18], under
𝐿2-bounded CW attacks and 𝐿0-bounded pointwise attacks. As additional benefits, the networks
trained with MixTrain are much more robust against 𝐿0 and 𝐿2 adversaries.

MixTrain under 𝐿0 and 𝐿2 bounded attacks. Schott et al. [206] have shown that Madry et al.’s

method [18] is not robust against other types of attacks like 𝐿0-bounded and 𝐿2-bounded attacks. In

139

Figure 5.5, we measure the ERA under state-of-the-art 𝐿2-bounded CW attacks and 𝐿0-bounded

decision-based pointwise attacks [206, 207] on CIFAR_Large networks trained with MixTrain. We

compare the differences of the ERA obtained through MixTrain against the networks trained from

Madry et al.’s method [18]. For 𝐿2-bounded CW attacks, as shown in Figure 5.5a, the ERA of

adversarially robust trained network quickly decreases to 0% when 𝐿2 = 2, whereas MixTrain can

retain over 60% ERA. For 𝐿0-bounded pointwise attacks, as shown in Figure 5.5b, ERA of the

network trained with MixTrain stays over 50% at 𝜖 = 250 while Madry et al.’s number drops to 0%.

The results demonstrate that the networks trained with MixTrain are much more robust against 𝐿0

and 𝐿2 adversaries as side benefits of MixTrain under 𝐿∞-bounded sound over-approximations.

Different values of hyperparameters. Here we briefly describe the training performance in terms

of different hyperparameters 𝑘 and 𝛼 used in stochastic robust approximation and dynamic mixed

training. We note that using substantially smaller 𝑘 does not have a significant impact on the test

accuracy while it can save several times of training time. For example, we only need 13 minutes

to train a robust model that has 37.6% VRA with 𝑘 = 1 while it needs more than 2 hours to train

a robust network that has 45.2% VRA with 𝑘 = 20. Also, the network trained with dynamic 𝛼

strategies described in Implementation in the early section can outperforms the best network trained

with fixed 𝛼 by 7% VRA. Detailed evaluation results for hyperparamters can be found below.

Batch
(s)

Training
(m)

ACC
(%)

ERA
(%)

VRA
(%)

k=1 0.015 13 71.1 54.6 37.6
k=5 0.042 41 70.7 54.9 39.9
k=10 0.078 73 69.7 55.2 43.2
k=20 0.162 149 69.4 56.3 45.7

Table 5.8: Under different values of sampling rate 𝑘 for stochastic robust approximation, the
comparisons of corresponding training time, ACC, ERA, and VRA on CIFAR_Small networks.

We evaluate different choices of 𝑘 in stochastic robust approximation over the resulting accuracy

metrics and training time in Table 5.8. Larger 𝑘 values can increase ERA and VRA scores at the

cost of more training time. When 𝑘 = 1, the network achieves 71.1% test accuracy and decent

140

VRA (37.6%), with very efficient training time. Therefore, 𝑘 = 1 is a good choice to save training

time/memory. On the other hand, if more training time is available, one can use larger sampling

rate 𝑘 to obtain higher VRA. For instance, with 𝑘 = 20, MixTrain can train a robust network with a

high VRA (48.2% vs 47.5%) and significantly higher test accuracy (69.4% vs 61.1%) compared to

the state-of-the-art method by Wong et al. [43]. MixTrain is able to achieve slightly higher verified

accuracy due to the significant improvement of test accuracy.

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)

Test Acc
ERA(PGD)
VRA

Figure 5.6: ACC, ERA, and VRA of CIFAR_Small trained with MixTrain under different fixed 𝛼

values in dynamic mixed training.

We measure how ACC, ERA, and VRA change with different fixed 𝛼 values used for training

the CIFAR_Small network. Specifically, we use different constant values 𝛼 = 0.0, 0.1, ..., 1.0 to

evaluate the corresponding metrics of each network trained with 𝑘 = 1. Figure 5.6 shows that as 𝛼

increases, both ERA and VRA increase but test accuracy decreases. If 𝛼 = 0, the training process

is the same as regular training, which has the highest ACC but 0% VRA. By contrast, if 𝛼 = 1,

MixTrain only relies on stochastic robust approximation and loses the ACC improvement provided

by dynamic mixed training. Overall, by adjusting 𝛼, MixTrain can be tuned to balance the verifiable

robustness and test accuracy as desired.

Instead of using a fixed 𝛼 value in training, dynamically changing 𝛼 can achieve higher ERA

and VRA. In Table 5.9, we compare the results achieved by dynamic 𝛼 with those by the fixed 𝛼

found by grid search. The CIFAR_Small network trained with dynamic 𝛼 outperforms the one

under fixed 𝛼 mechanisms by 6.7% VRA while achieving similar ACC. The adaptive updating

strategies used in MixTrain are described in Implementation in the early section.

141

CIFAR_Small ACC (%) ERA (%) VRA (%)
Fixed 𝛼 = 0.5 71.4 53.2 30.9

Adaptive 𝛼 71.7 54.6 37.6

Table 5.9: Performance of CIFAR_Small networks trained with dynamically adapted 𝛼 vs fixed 𝛼.

5.3 Adaptive Verifiable Training Using Pairwise Class Similarity

Dramatic improvements in the accuracy of neural networks on various tasks has been made, but

their robustness is often not prioritized. However, with poor robustness, the security and reliability

of models is in question when exposed to adversarial examples. Despite appearing indistinguishable

from a normal input, adversarial examples consistently induce predictable errors in machine learning

models. While many defensive techniques have been developed, most fall short as they obfuscate

the discovery process rather that truly reducing the number of adversarial examples a model is

vulnerable to. One effective defense against adversarial examples is verifiable training as it creates

models with provable robustness guarantees. With respect to a robustness criteria, which identifies

a region around an input where the model’s prediction must remain stable, verifiable training

maximizes the potential number of input samples a model is certified to be robust for within that

region. MixTrain discussed in Section 5.2 is one representative framework for accelerating verifiable

training while recently proposed CROWN-IBP [45] achieves the state-of-the-art verifiable training

performance so far.

Although verifiable training creates models with provable robustness, it often comes at the cost

of lower performance on clean data. For example, on CIFAR10 within a 𝐿∞ robustness region

𝜖 = 8/255, a LeNet model trained even using the state-of-the-art CROWN-IBP has significantly

lower clean performance compared to a model created through normal training (i.e., 57.10% error

rate vs. 21.53% error rate). With such poor baseline performance, certified performance on

adversarial samples is limited, having only a 69.92% error rate. This means that in presence of an

adversary, only about 30% of the inputs are guaranteed to be correctly classified.

The poor performance of existing verifiable training methods is due to using only a single

robustness criteria. During verification, the robustness region around an input is estimated and used

142

Robustness region
Optimal decision boundary

Input feature dimension 1

In
pu

t f
ea

tu
re

 d
im

en
sio

n
2

Figure 5.7: During verification, inputs belonging to similar classes may have overlapping robustness
regions when the robustness region is too large.

to determine if the decision is stable within the region. Verifiable training attempts to shape the

decision boundary so as to maximize the number of inputs the model’s decision is stable for within

the robustness region. However, as shown in Figure 5.7, inputs belonging to similar classes may

have overlapping estimations of their robustness regions, thus resulting in high confusion between

these classes. For example, a robust LeNet model trained on CIFAR10 mislabels a dog as a cat

33.53% of the time, whereas it mislabels a dog as a car only 7.48% of the time. These inherent

inter-class similarities in the data limit the natural performance of verifiable training if only a single

robustness criteria is used. Additionally, the inter-class similarity can also represent the relative

sensitivity cost of a misclassification. In safety or security critical tasks, the cost of misclassifying

similar classes is likely lower than the cost of misclassifying dissimilar ones. In autonomous driving,

misidentifying a Speed Limit 40 sign as a Speed Limit 30 causes the car to change its speed only.

However, misidentifying a Speed Limit sign as a Stop sign causes the car to come to a sudden halt.

Such cost-sensitive situations naturally encourage using different robustness criteria during training

based on inter-class similarity.

In this section, we propose adaptive verifiable training, enabling us to create machine learning

models robust with respect to multiple robustness criteria. Because the current state-of-the-art is

limited to using a single robustness criteria, all data classes are treated equally. As such, for strict

robustness criteria (i.e., high 𝜖), the overall performance of a model degrades due to conflicting

estimations of robustness regions between similar classes. To address this issue, adaptive verifiable

143

training exploits the inherent inter-class similarities within the data and enforces multiple robustness

criteria based on this information. Between similar classes, our approach enforces looser robustness

criteria (i.e., smaller 𝜖) so as to minimize any possible overlap when estimating the robustness

region during verification. Between dissimilar classes, on the other hand, our approach enforces

stricter robustness regions (i.e., larger 𝜖).

In this section, we propose adaptive verifiable training, our methodology for creating neural

networks with multiple robustness certificates. Existing verifiable training creates a model that

is only robust with respect to a single robustness criteria based on the assumption that all errors

are equal. However, we argue that certain errors made by the model, whether due to natural error

or adversarial manipulation, are easier to make due to the inherent similarities between classes.

Classes that are highly similar (e.g., dogs and cats) limit the model performance when the robustness

criteria is overly strict due to overlapping robustness regions during verification. Our approach

addresses this problem by creating models with relaxed robustness criteria between similar classes,

while maintaining strict robustness criteria between dissimilar classes. First, in Section 5.3.1,

we identify the inter-class relationships and define robustness criteria to enforce with respect to

these relationships. Once defined, we enforce the robustness constraints either using Inter-Group

Robustness Prioritization (IGRP) introduced in Section 5.3.2 or Neural Decision Trees (NDT)

introduced in Section 5.3.3. Lastly in Section 5.3.4, we provide comprehensive experimental

evaluation for our proposed approaches and demonstrate their strength in improving the desired

adaptive verifiable robustness compared to the state of the arts.

5.3.1 Class Similarity Identification

The first step of our approach is to identify similar class pairs and infer which relationships

should have relaxed robustness constraints. Absent predefined pairwise class relationships, we

propose using agglomerative clustering to define the similarity between classes. Given the weights

of the penultimate layer of a pre-trained classifier, agglomerative clustering pairs classes together

based on a similarity metric (e.g., 𝐿2 distance). After creating the initial clusters, the process

144

iteratively combines smaller clusters into larger clusters using the same similarity metric, until only

a single cluster remains. A similar approach was used by [208] where they replaced the final layer

of a neural network with a decision tree to provide explainability around the network’s predictions.

Once the classes have been clustered, we need to define the robustness criteria to certify a model

against for each group. The robustness criteria, 𝜖 , can be determined by the user, and in general the

robustness criteria can be increased increase as the class similarity decreases.

5.3.2 Inter-Group Robustness Prioritization (IGRP)

The Inter-Group Robustness Prioritization (IGRP) method follows traditional verifiable training

and only creates a single robust model. Unlike prior work, a model created using IGRP can enforce

multiple robustness criteria based on the class grouping during similarity identification. Here, we

describe traditional verifiable training and discuss the improvements of our method.

Verification specification and verifiable robustness. In neural network verification, the verification

specification for an input sample 𝑥𝑘 is defined by a specification matrix 𝑪 ∈ IRnL×nL , where 𝑛𝐿 is

the number of classes. Given the true label 𝑦, we define the specification matrix as:

𝐶𝑖, 𝑗 =

1 if 𝑗 = 𝑦, 𝑖 ̸= 𝑦

−1 if 𝑖 = 𝑗 , 𝑖 ̸= 𝑦

0 otherwise

(5.4)

Thus, for each row vector 𝒄 𝒊 ∈ IRnL in the specification matrix, the index of the true label is 1, the

index of the current label is -1, and all other indices are 0. For the row vector 𝑐𝑦 corresponding to

the true label, all indices are 0.

We use the above definition to define the margin vector 𝒎(𝒙) := 𝑪 𝒇 (𝒙) ∈ IRnL where each

element 𝑚𝑖 in the margin vector denotes the margin between class 𝑦 and the other classes 𝑖 (e.g.,

𝑓𝑦(𝑥)− 𝑓𝑖(𝑥)). Next, given the robustness region 𝑆(𝑥𝑘 , 𝜖) = {𝑥 : | |𝑥𝑘 − 𝑥 | |𝑝≤ 𝜖}, we define the lower

bound of 𝑪 𝒇 (𝒙) for all 𝑥 ∈ 𝑆(𝑥, 𝜖) as 𝒎(𝒙𝒌 , 𝜖). The values in 𝒎(𝒙𝒌 , 𝜖) represent the worst-case

margin values for the input. When all elements in 𝒎(𝒙𝒌 , 𝜖) > 0, 𝑥𝑘 is verifiably robust for any

145

perturbation in 𝑆(𝑥𝑘 , 𝜖). Verification methods like IBP can be used to obtain 𝒎(𝒙𝒌 , 𝜖).

Verifiable training. The min-max robust optimization widely used in adversarial training is defined

as :

min
\

𝐸(𝒙,𝑦)∈D
[

max
𝑥∈𝑆(𝑥𝑘 ,𝜖)

𝐿(𝒇 (𝒙); 𝑦; \)
]

(5.5)

Due to the non-linearity of neural networks, the inner maximization problem is a challenging

problem to solve. Rather than solve the inner maximization problem, [32] showed that the worst-case

margin vector can serve as sound upper bound, i.e., :

max
𝑥∈𝑆(𝑥𝑘 ,𝜖)

𝐿(𝒇 (𝒙); 𝑦; \) ≤ 𝐿(−𝒎(𝒙𝑘 , 𝜖); 𝑦; \) (5.6)

Traditional verifiable training uses Equation 5.6 and trains model to minimize this upper bound for

the inner maximization for each training input. This maximizes the performance with respect to 𝜖 ,

resulting in a verifiably robust model.

IGRP. In order to support multiple robustness criteria, IGRP defines two loss terms: the outer group

loss and the inner group loss. Given a set of class groups 𝐺1, 𝐺2...𝐺𝑘 , an input 𝑥𝑘 , and the true

label 𝑦, the outer group loss, 𝐿𝑜𝑢𝑡𝑒𝑟 , is defined as the loss between the group the true label belongs

to, 𝐺𝑦, and the other groups. When computing the worst-case margin values, classes within the

same group as the true label 𝑦 are not considered. We enforce this by zeroing them out. Formally,

the verification specification matrix, 𝐶𝑂
𝑖, 𝑗

, for the outer loss is defined as:

𝐶𝑂
𝑖, 𝑗 =

1 if 𝑗 = 𝑦, 𝑖 ̸= 𝑦, 𝐺𝑖 ̸= 𝐺𝑦

−1 if 𝑖 = 𝑗 , 𝑖 ̸= 𝑦, 𝐺𝑖 ̸= 𝐺𝑦

0 otherwise

(5.7)

The margin vector for the outer robustness criteria is defined as 𝒎𝑶(𝒙) = 𝑪𝑶 𝒇 (𝒙) and the outer

loss is defined as 𝐿𝑜𝑢𝑡𝑒𝑟 = 𝐿(−𝒎𝑶(𝒙𝑘 , 𝜖𝑂); 𝑦; \).

Similarly, the inner group loss, 𝐿𝑖𝑛𝑛𝑒𝑟 , is defined as the loss between labels belonging to the

146

same group as the true label. When computing the worst-case margin values, classes that are in a

different group as the true label 𝑦 are not considered. We enforce this by zeroing them out. Formally,

the verification specification matrix, 𝐶 𝐼
𝑖, 𝑗

, for the inner loss is defined as:

𝐶 𝐼
𝑖, 𝑗 =

1 if 𝑗 = 𝑦, 𝑖 ̸= 𝑦, 𝐺𝑖 = 𝐺𝑦

−1 if 𝑖 = 𝑗 , 𝑖 ̸= 𝑦, 𝐺𝑖 = 𝐺𝑦

0 otherwise

(5.8)

The margin vector for the inner robustness criteria is defined as 𝒎𝑰(𝒙) = 𝑪𝑰 𝒇 (𝒙) and the inner loss

is defined as 𝐿𝑖𝑛𝑛𝑒𝑟 = 𝐿(−𝒎𝑰(𝒙𝑘 , 𝜖 𝐼); 𝑦; \).

Given the definitions of 𝐿𝑜𝑢𝑡𝑒𝑟 and 𝐿𝑖𝑛𝑛𝑒𝑟 , we define the IGRP training objective as:

𝐿 𝐼𝐺𝑅𝑃 = 𝐿𝑜𝑢𝑡𝑒𝑟 + 𝐿𝑖𝑛𝑛𝑒𝑟 (5.9)

By using verifiable training to minimize Equation 5.9, adaptive verifiable training creates a single

robust model with respect to multiple robustness criteria. Dissimilar classes are clustered into

different groups, so we use outer loss term to enforce a strict robustness criteria between those

groups. Similar classes are clustered into the same group, so we use the inner loss term to enforce

a loose robustness criteria between those groups. Furthermore, if multiple outer or inner group

relationships exist, we can simply add a new inner or outer loss term to 𝐿 𝐼𝐺𝑅𝑃. Note that the

computational cost of IGRP is theoretically the same as traditional verifiable training as we only

need to estimate the worst-case margin value for each class once during verification even though

multiple robustness distances may be considered.

5.3.3 Neural Decision Tree

A Neural Decision Tree (NDT) is a decision tree where each tree node is a neural network

classifier. By training each node in the tree using a different value of 𝜖 , we can enforce multiple

robustness constraints. Once classes have been clustered together, we train each node to identify the

147

group or subgroup an input sample belongs to. As an input is passed through the tree, the model’s

output become more fine-grained, predicting groups with fewer labels. The final prediction of the

NDT is made when only a single class label is predicted. For example, after using agglomerative

clustering on CIFAR10 with a binary split, the root node determines if an input belongs to [bird, cat,

dog, deer, frog, horse] or [airplane, car, ship, truck]. Let’s assume the right child is always predicted.

The next node classifies predicts if the input belongs to [airplane, ship] or [car, truck]. Finally, the

final node predicts if the input is either a car or a truck.

As each node in the tree is distinct, we can easily support multiple robustness criteria depending

on the similarity of the groups at a particular node. The only requirement is that the parent must be

at least as robust as its children. Generally, the closer a node is to the root of the tree, the stricter the

robustness criteria can be as the similarity between groups decreases. We note that although Figure

5.8 shows a tree with a mix of binary robust and non-robust classifiers, our approach is not limited

to this construction. In Section 5.3.4, we present results using several constructions architectures,

including some where we combine binary and non-binary models to achieve high performance on

CIFAR100.

Figure 5.8: A basic NDT architecture. Given an input: (1) Each node determines which of two
groups of class labels the in-put belongs to; (2) Once identified, input is passed to the next respective
model in the tree; (3) Finally, at the leaf nodes, if the predicted subgroup only contains a single
label, a final classification is output. The predicted class is determined by the path of the input
through the NDT.

148

Dataset Models # of Params MACs

F-MNIST
Basic 275,714 13,257,290

DM-Large 864,208 114,632,192

CIFAR10
Basic 337,298 1,385,984

DM-Large 17,190,602 150,901,760

CIFAR100
DM-Large 17,236,772 150,947,840
ResNet18 11,220,132 556,697,600

Table 5.10: The number of parameters and multiply-and-accumulates (MACs) for different model
architectures.

5.3.4 Experimental Results for Adaptive Verifiable Training

Evaluation Setup

Datasets. We evaluated our approach using the Fashion-MNIST (F-MNIST), CIFAR10, and

CIFAR100 datasets. For evaluation on F-MNIST and CIFAR10, we used two different 𝐿∞ norms,

𝜖 = [0.1, 0.3] and 𝜖 = [2
255 ,

8
255], respectively. For evaluation on CIFAR100, due to the poor

performance of the baseline model, we only used 𝜖 = 2
255 .

Models. We experimented with several different model architectures, but found that the performance

difference between our baseline comparison model and our approach did not significantly change

across model architectures. Our F-MNIST and CIFAR10 results were generated using a 4-layer

LeNet model, which was used in prior work [45, 46]. We also include the results for a second larger

LeNet model, denoted DM-Large in prior work. For CIFAR100, we switched to the ResNet model4,

due to better baseline performance. Our Neural Decision Trees use the same model architecture for

each node as the baseline model we compare against.

Here we list the number of parameters and multiply-and-accumulates (MACs) of three different

model architectures, Basic, DM-Large, and ResNet18. Basic is a 4-layer LeNet model and was used

to generate the results. DM-Large is a 5-layer LeNet with much wider convolutions kernels. Both

of them are used in prior work for evaluating state-of-the-art verifiable training methods [45, 46].

Training and Evaluation. We used the state-of-the-art verifiable training method CROWN-IBP [45]

enhanced with loss fusion [37] to robustly train our models. The training hyper-parameters and

4In order to support this architecture, we use the AutoLIRPA library [37]

149

training schedules were the same as the ones used in [37]. For evaluation, we used the Interval

Bounded Propagation (IBP) method to measure verified error. Verified error represents the rate of

samples within the test set that are not guaranteed to be correct within the defined robustness region

regardless of the adversarial threat model. Although we use CROWN-IBP to train our models during

evaluation, given its nature, adaptive verifiable training can be used with any verifiable training

method. In this section, we did not evaluate on larger-scale datasets like ImageNet [140, 2] due

to the performance limitations of existing verifiable training methods on such datasets. Adaptive

verifiable training can benefit from further development in verifiable training techniques that boast

high performance on such datasets.

In regards to clustering the classes into groups, we first trained a non-robust model using

standard cross-entropy minimization and then applied agglomerative clustering using the final

layer’s weights. As agglomerative clustering can be represented as a tree, we denote the root of

the tree as the top-level group split, which splits the most dissimilar clusters apart. The extracted

clusters for F-MNIST and CIFAR10 are given in Figure 5.9.

Label Similarity

In Figure 5.9, we provide the label splits obtained by our class similarity identification algorithms

which are then used in both of our IGRP and NDT methods.

Comparing to CROWN-IBP

We begin with a comparison between a baseline model trained using CROWN-IBP and our

two methods: Inter-Group Robustness Prioritization (IGRP) and Neural Decision Trees (NDT). In

these experiments, our models are only trained to be robust for the given value of 𝜖 with respect

to the top-level group split (i.e., most dissimilar clusters). In F-MNIST, the top-level group split

was [Trouser, Dress, Sandal, Shirt, Sneaker, Bag, Ankle Boot] vs [T-shirt/top, Pullover, Coat]. In

CIFAR10, the top-level group split was [Airplane, Automobile, Ship, Truck] vs [Bird, Cat, Deer,

Dog, Frog, Horse]. After the initial split, we did not impose any other robustness constraints. We

150

Sneaker

Coat

T-shirt

Trouser

Shirt

Dress

[0't-shirt’, 1'trouser’, 2'pullover’, 3'dress’, 4'coat’, 5'sandal’,
6'shirt’, 7'sneaker’, 8'bag’, 9'boot']

Boot

Sandal

Bag

[“0-2-4_1-3-5-6-7-8-9”, “1-3-6_5-7-8-9”, “5-8-9_7”, “5-8_9”, “8_5”, “1-6_3”,
“6_1”, "0-4_2", "4_0"]

Pullover

Shirt

Coat

Pullover

T-shirt Bag

Sneaker

Dress

[0't-shirt’, 1'trouser’, 2'pullover’, 3'dress’, 4'coat’, 5'sandal’,
6'shirt’, 7'sneaker’, 8'bag’, 9'boot']

Boot

Trouser

Sandal

['1-3-5-6-7-8-9_0-2-4', '0_2-4', '4_2', '3-7-8_1-5-6-9', '1-5-9_6', '1-
5_9', '5_1', '7-8_3', '8_7']

(a) F-MNIST, Basic (b) F-MNIST, DM-Large

Frog

Horse

Bird

Deer

Dog

Cat

Truck

Car

Plane

Ship

Horse

Deer

Dog

Cat

Truck

Car

Ship Frog

Plane

Bird

(c) CIFAR10, Basic (d) CIFAR10, DM-Large

Figure 5.9: F-MNIST and CIFAR10 label groups obtained by our class similarity identification
algorithm.

denote performance with respect to the top-level split as the inter-group error. With respect to the

NDT model, we provide results for two different architectures. The Full NDT model is a decision

tree in which every node is a robust binary classifier with respect to 𝜖 . The Mixed NDT model is a

decision tree in which only the root node is robust with respect to 𝜖 . Afterwards, all of of the inner

and leaf nodes are non-robust classifiers.

We also used two additional techniques to improve performance: upper bound scattering (UBS)

and model fine tuning (FT). In upper bound scattering, instead of zeroing out the worst-case margin

values of outer (or inner) group labels when calculating the inner (or outer) loss for IGRP, we

used the respective group labels’ best-case margin values. Compared to IGRP, IGRP-UBS allows

verifiable training to maintain more gradients, thus improving the estimation precision during

verification. Model fine tuning, on the other hand, has been used for tasks, such as transfer learning

and weight initialization.

151

Comparing against CROWN-IBP using F-MNIST and CIFAR10 Basic models. We used

the baseline CROWN-IBP model or a naturally trained model (depending on the training method

and robustness criteria) to initialize the weights of each node in the Neural Decision Tree. The

evaluation of our models using UBS and FT is given in Table 5.11.

Dataset Inter-Group 𝜖 Method Error Inter-Group Error Verified Inter-Group Error

F-MNIST

0.1

CROWN-IBP 15.40% 9.23% 14.53%

IGRP-UBS 12.86% 7.94% 15.59%
Full NDT-FT 15.42% 9.37% 13.70%

Mixed NDT-FT 12.37% 9.37% 13.70%

0.3

CROWN-IBP 26.22% 13.66% 23.39%

IGRP-UBS 18.82% 11.02% 26.54%
Full NDT-FT 27.04% 13.65% 21.59%

Mixed NDT-FT 16.59% 13.65% 21.59%

CIFAR10

2
255

CROWN-IBP 44.25% 8.62% 14.74%

IGRP-UBS 34.54% 6.28% 15.43%
Full NDT-FT 40.00% 7.25% 12.31%

Mixed NDT-FT 22.36% 7.25% 12.31%

8
255

CROWN-IBP 57.10% 13.77% 24.60%

IGRP-UBS 43.66% 9.47% 25.32%
Full NDT-FT 58.75% 11.66% 20.28%

Mixed NDT-FT 26.21% 11.66% 20.28%

Table 5.11: Performance of our IGRP and NDT models created with Upper Bound Scattering
(IGRP-UBS) and Fine Tuning (NDT-FT) applied. For IGRP and NDT, the models are trained to
prioritize the inter-group robustness with respect to 𝜖 . The inter-group error is the error rate with
respect to the top-level split. The verified inter-group error is the worst-case error rate within the
𝜖-bounded robustness region. The lower verified error is, the more robust the model is with respect
to the group split.

Overall, we see that our approach greatly reduces the error rate of a verifiable model, while

maintaining or improving the verifiable error with respect to the inter-group robustness. The

performance gains increase compared to the baseline model as we: 1) increase the value of 𝜖 and 2)

increase the complexity of the input data. With respect to the NDT models, the Full NDT-FT model

has similar performance to the CROWN-IBP model. This is not surprising given that both models

perform the same task, enforcing a universal robustness criteria between all classes. Once we

replace all of the inner nodes in the tree with a non-robust classifier, thus prioritizing the robustness

152

of the top-level split, the error rate of the model improves. This is especially noticeable on CIFAR10

with 𝜖 = 8
255 , where we observe a 22.73% error rate reduction. Finally, in our experiments, UBS

and FT improves the clean performance of our models by around 1 − 2% which means UBS and FT

are effective, however, they are not necessary to improve the clean performance of the verifiably

robust models.

Comparing against CROWN-IBP using F-MNIST and CIFAR10 DM-Large models. The

performance of the DM-Large models created using IGRP-UBS and NDT-FT is given in Table 5.12.

Compared to the CROWN-IBP, our approach still greatly improves the clean performance of the

model, while maintaining or improving the inter-group error. We also see that our results are much

better on CIFAR10, compared to F-MNIST, which we attribute to the increased complexity of

the dataset. The increased complexity increases the hardness of separating similar classes during

verification, so our approach, which accounts for similarity, naturally improves in performance

compared to the baseline model. When UBS and FT are applied, we see a slight improvement

in performance, especially on CIAFR10. Finally, we note that compared to results in Tables 5.11

and Table 5.12 here, increasing the capacity of the model does not appear to greatly impact the

performance difference between the baseline model and adaptive verifiable training.

Enforcing Multiple Robustness Criteria

We showed that our approach improves the clean performance of verifiable training by enforcing

large robustness criteria on the most dissimilar classes. Here we demonstrate that our methods can

further enforce multiple robustness criteria for different group splits. For that purpose, we add a

new inner or outer loss term to the IGRP loss function or change the robustness of one or more tree

nodes. In Table 5.13, we present results for models trained with multiple robustness criteria. For the

top-level group split, we use a large value of 𝜖 . For the splits afterwards, in which a group contains

more than two labels (e.g., [Airplane, Ship, Automobile, Truck]), we use a small value of 𝜖 . Finally,

when a group split consists of only two labels (e.g., [Automobile, Truck]), we do not enforce any

153

Dataset Inter-Group 𝜖 Method Error Inter-Group Error Verified Inter-Group Error

F-MNIST

0.1

CROWN-IBP 15.10% 9.07% 17.80%

IGRP-UBS 12.97% 8.12% 19.09%
Full NDT-FT 16.03% 10.26% 15.56%

Mixed NDT-FT 12.79% 10.26% 15.56%

0.3

CROWN-IBP 26.12% 13.27% 23.99%

IGRP-UBS 21.60% 12.93% 24.98%
Full NDT-FT 29.47% 16.37% 23.40%

Mixed NDT-FT 19.00% 16.37% 23.40%

CIFAR10

2
255

CROWN-IBP 38.03% 7.22% 15.15%

IGRP-UBS 29.96% 5.88% 14.51%
Full NDT-FT 35.72% 6.29% 11.47%

Mixed NDT-FT 14.32% 6.29% 11.47%

8
255

CROWN-IBP 57.48% 14.82% 27.12%

IGRP-UBS 41.41% 10.15% 24.43%
Full NDT-FT 58.12% 12.25% 20.64%

Mixed NDT-FT 20.04% 12.25% 20.64%

Table 5.12: Performance of our IGRP-UBS and NDT-FT models using DM-Large architecture.

robustness criteria.

Dataset Inter-Group 𝜖 Intra-Group 𝜖 Method Error Verified Inter-Group Error Verified Intra-Group Error

F-MNIST 0.3 0.1

CROWN-IBP (0.1) 15.40% 99.98% 23.31%
CROWN-IBP (0.3) 26.22% 23.39% 30.70%

IGRP 24.11% 25.61% 29.62%
IGRP-UBS 20.12% 25.10% 28.52%
Mixed NDT 18.97% 23.99% 26.49%

Mixed NDT-FT 19.49% 21.59% 25.95%

CIFAR10 8
255

2
255

CROWN-IBP
(

2
255

)
44.25% 58.92% 43.42%

CROWN-IBP
(

8
255

)
57.10% 24.60% 46.60%

IGRP 51.58% 24.89% 45.27%
IGRP-UBS 48.13% 25.43% 44.75%
Mixed NDT 38.48% 21.43% 41.42%

Mixed NDT-FT 36.79% 20.28% 40.26%

Table 5.13: Results when training models with multiple robustness criteria. We set the inter-group
𝜖 to be large as based on our hypothesis, very dissimilar groups (e.g., Animals vs Vehicles in
CIFAR10) should be more easily separable in the input space. Within each group composed of
similar classes, we set the intra-group robustness to be small as these are the groups that are normally
hard to separate.

As before, inter-group error measures the error with respect to the top-level split. We denote

154

the error rate of groups trained using the small value of 𝜖 as the intra-group error. We note that

although we employ multiple robustness criteria, our models outperform the clean performance

of the baseline model trained with large 𝜖 . Compared to the baseline CROWN-IBP model trained

with large 𝜖 , our models had a lower natural and intra-group error rate, while still maintaining

inter-group and intra-group performance. Compared to the baseline CROWN-IBP model trained

with small 𝜖 , our models often had a slightly higher natural error rate, due to the need to optimize

inter-group error against large 𝜖 . Interestingly on CIFAR10, our Mixed NDT models outperformed

both baseline models with respect to natural error.

Dataset 𝜖 Method Depth Error Inter-Group Error Verified Inter-Group Error

CIFAR100 2
255

CROWN-IBP N/A 68.98% 21.61% 38.72%
Full NDT 7 86.67% 23.71% 28.70%

Truncated Mixed NDT 3 59.23% 23.71% 28.70%
Truncated Mixed NDT 2 53.94% 23.71% 28.70%
Truncated Mixed NDT 1 42.66% 23.71% 28.70%

Table 5.14: Results on CIFAR100 showing the effect of truncated NDT. The inter-group error is
measured using the group split at the root node of the NDT. By reducing the depth of tree and
increasing the number of outputs at the leaf node, we can maintain the inter-group error (i.e., the
robustness of the root node), while reducing the error rate of the overall model.

Truncated NDT

In our earlier experiments, every node in the NDT was a binary classifier, which means that for a

balanced tree, the depth of the tree is log2(𝑘), where k is the number of class labels. On CIFAR100,

we discovered that both the Full and Mixed NDT models had a very high error rate compared to the

baseline CROWN-IBP model due to the increased tree depth. The deeper a tree is, the more errors

near the root of the tree will affect overall performance due to error propagation. For CIFAR10,

which only had 9 binary classifiers and a tree depth of 3, these errors did not drastically hurt the

overall performance. However, for CIFAR100, there were 99 binary classifier resulting in a tree

depth of 7.

In addition to error propagation, high-error nodes near the bottom of the tree, likely due to a lack

155

of data and data imbalance, contributed to the NDT’s poor performance. To address both issues, we

reduced the depth of the tree by merging the lower robust binary classifiers into a single non-robust

classifier. If a sub-tree in the NDT contains classifiers that are all trained for the same robustness

criteria, we compressed the sub-tree into a single classifier.

The final classifier has an output equal to the number of outgoing edges at the end of the original

sub-tree. Experimental results showed that we would achieve similar or better performance with

this approach. Thus, our truncated mixed NDT is composed of two types of nodes. At the root

and inner nodes, we use robust binary classifiers trained with 𝜖 = 2
255 . At the leaf nodes, we use

non-robust classifiers, created from compressing the rest of the tree. The leaf nodes determine the

final classification output. Note that although the NDT is robust at more than just the root node, we

still measure the inter-group error based on the top-level group split at the root. Table 5.14 presents

the truncated tree results on CIFAR100.

As we see in the table, both the baseline and the Full NDT models have extremely poor

performance on CIFAR100 when trained using 𝜖 = 2
255 . We observe that by cutting the depth of

the tree in half, there is a 7.75% reduction in the error rate. Further reductions in depth improve

clean performance while preserving the inter-group error, as the root node is unaffected during

truncation. From these experiments, we see that there is a trade-off; reducing the depth of the tree

indeed improves performance, but limits the granularity of the robustness criteria we can enforce.

5.4 Conclusion

Adversarial examples are a concerning vulnerability for machine learning models as these

models are used in many different security- and safety-critical domains. Therefore formal guarantees

for the desired properties are crucial to determine whether a trained model is trustworthy and

reliable. Even the state-of-the-art complete verifiers like 𝛼, 𝛽-CROWN introduced in Chapter 4 are

not sufficient to verify most practically large models for common desired robustness properties. As

such, verifiable training provides important and necessary guarantees as to the performance of these

models in adversarial scenarios, scaling the verifiable robustness to larger models. Unfortunately,

156

many of the state-of-the-art verifiable training techniques still suffer from one of these two aspects:

(1) many of them using tight incomplete verifiers in training have much slower training efficiency

compared to regular training procedure, and (2) most of them fall short as most models have poor

performance on medium to large scale datasets, which makes them challenging to use in practice.

In Section 5.2, we designed, implemented, and evaluated MixTrain to reduce the verifiable

training time and scale verifiable training of neural networks. On average, MixTrain outperforms

the state-of-the-art verifiably robust training methods [43, 44] achieving 13.2% improvement in test

accuracy while taking 15× less training time and 10× less memory. Compared to the state-of-the-art

adversarial training methods [18], MixTrain takes up to 3x less training time with a bonus of much

higher verified robustness accuracy. MixTrain has also been extended to many other applications

including PDF malware detections [209], neural network pruning with verifiable robustness [210,

211], achieving state-of-the-art performances.

Recently, there are other efficient verifiable training methods proposed including IBP [46]

and CROWN-IBP [31] that can achieve similar or slightly better verified accuracy compared to

MixTrain. However, their efficiency mainly comes from sacrificing the verification tightness in

training. With tighter incomplete verifiers proposed in the future, MixTrain would potentially be the

better framework to use for efficient and scalable verifiable training.

On the other hand, much of the verified accuracy performance loss of verifiably trained models

can be attributed to the failure to resolve conflicts between overlapping estimated robustness regions

between similar classes during training. However, is there a need to enforce the same robustness

constraint on every input? In practice, the cost of a misclassification is usually lower if two classes

share a high degree of similarity. Mislabeling inputs from one class as a different but similar class

may not be a very costly mistake depending on the task domain. For example, mistaking a Speed

Limit sign as a Stop sign may cause the vehicle to come to a dangerous halt. However, mistaking

a Speed Limit sign as a different Speed Limit sign does not drastically alter the behavior of an

autonomous vehicle. The vehicle still moves, albeit, at a faster or slower speed. In fact, such a

mistake may occur naturally given the close visual similarity of the two classes. In such scenarios,

157

it is more important to have the model be more robust to the noise resulting in high-cost mistakes.

In Section 5.3, we propose adaptive verifiable training, a new approach to verifiable training

that enables current and future verifiable training techniques to train models that enforce multiple

robustness criteria. Absent pre-defined class groupings, we propose using agglomerative clustering

on the final layer weights of a pre-trained model to automatically subdivide the classes into groups

and sub-groups of similar classes. Given two or more groups, robustness criteria 𝜖 is enforced

during training based on the similarity of the groups. As the similarity between groups decreases,

we can enforce stricter robustness criteria. We design two different methods to apply adaptive

verifiable training. Our Inter-Group Robustness Prioritization (IGRP) method follow traditional

verifiable training techniques and use a customized loss function to enforce multiple robustness

criteria on a single model. Our Neural Decision Tree method trained multiple robust and non-robust

sub-classifiers and organized them into a decision tree ensemble. Compared to state-of-the-art

training techniques, we show that both methods result in improved clean accuracy and verified

accuracy considering multiple adaptive robustness criteria.

158

Chapter 6: Conclusion and Open Challenges

In this dissertation, we discuss different approaches for efficient and scalable neural network

verification using branch and bound (BaB). Specifically, we have discussed two basic branch and

bound complete neural network verifiers ReluVal [25] and Neurify [26] in Chapter 3, designed

improved complete verifiers 𝛼-CROWN [35] BaB and 𝛽-CROWN [36] BaB running on GPUs

leading to state-of-the-art complete verifier 𝛼, 𝛽-CROWN in Chapter 4, and finally developed

two general verifiable training frameworks MixTrain [26] and adaptive verifiable training [48] in

Chapter 5 to further scale the verification to large datasets and models. In this section, we conclude

this dissertation and discuss a few open challenges remaining under this topic.

6.1 Open Challenge 1: More Scalable BaB-Based Complete Verifiers

In Chapter 3 and 4, we have discussed the state-of-the-art complete verifiers. Particularly,

𝛼, 𝛽-CROWN have achieved the best performance over most existing methods and won the latest

International Competition of Neural Network Verification (VNN-COMP 2021) [42]. Also, our

ReluVal and Neurify are important pioneering works proposing basic BaB strategies towards

efficient complete verification, inspiring many currently state-of-the-art tools.

However, state-of-the-art complete verifiers can only verify relatively small verification prob-

lems, unable to verify large models within reasonable verification time. As discussed at the

beginning of Chapter 5, it is mainly because (1) larger models will lead to looser approximations

of incomplete verifiers like bound propagation methods used in BaB, and (2) the BaB verification

procedure requires to refine more neurons, which exponentially increases the verification cost.

Therefore, existing complete verifiers are not strong enough for verifying large models for practical

usage (e.g., ResNets for vision datasets [152, 153] or Transformers for language datasets [154, 155]).

159

It remains an open challenge to further improve the design of BaB based verification algorithm such

that we can verify larger models in a much faster manner.

6.2 Open Challenge 2: BaB-Friendly Verifiable Training

In Chapter 5, we proposed two new verifiable training frameworks MixTrain and adaptive

verification training to improve verifiable training scalability and trained verified accuracy. Imple-

mentation instances with symbolic interval analysis [25, 26] and CROWN-IBP [45] have shown

great success of the proposed frameworks while they can also incorporate any future verifiable

training methods can to enjoy their benefits. Existing efficient verifiable training methods [31, 46,

44] including our proposed frameworks tend to use efficient but loose incomplete verifiers like IBP

(naive interval propagation) [46] since they can lead to similar trained verified accuracy within

much shorter training time. However, loose approximation causes a too hard verifiable training

objective to converge, leading to poor clean accuracy. Intuitively, using tighter verifiers for training

would be the natural solution to this challenge. For instance, BaB based verification is widely

used in state-of-the-art complete verifiers but has never been considered in the verifiable training

so far. Unfortunately, directly applying these BaB based complete verifiers like 𝛼, 𝛽-CROWN for

each training sample will cause unaffordable computation costs. It would be an interesting future

research topic to study how to develop better verifiable training that could consider BaB based

complete verifier in training. On the other hand, it would also be a promising direction to abstract

and learn crucial properties in regular training process that are friendly to BaB-based complete

verifiers such that we can have improved verifiable robustness during evaluation using them.

6.3 Open Challenge 3: BaB-Based Complete Verifiers for Realistic Properties

Most existing verification works focus on simple robustness properties like 𝑙𝑝 norm or box data

ranges, especially on simple vision datasets MNIST and CIFAR10. However, realistic settings

involve much more complicated property definitions that need to be verified. For instance, to verify

160

the safety properties of neural networks installed on autonomous vehicles that guide direction

according to videos captured by cameras, we can no longer use the safety properties bounded within

a 𝑙𝑝 norm. Instead, the safety property definitions should consider more semantic information (e.g.,

do not turn left since there is another car on the left side), which will bring great challenges to current

verifiers heavily tuned for current simple robustness properties. Many recent works have already

proposed various physical-world attacks which can hardly defended by the current verification

methods [212, 213, 214, 215, 216, 217, 218]. Further, many realistic problems, especially security

applications like cryptojacking [219] and Twitter spam account detections [220, 221], desire global

robustness properties (i.e., all possible inputs should satisfy the properties) [222, 101, 223] or

cost-aware threat models as pointed out in [224, 225, 226]. How to extend existing BaB based

complete verifiers to these realistic scenarios and practical machine learning systems would be an

important future direction.

161

References

[1] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. “Deep
neural networks for acoustic modeling in speech recognition: The shared views of four
research groups”. In: IEEE Signal Processing Magazine (2012).

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with deep
convolutional neural networks”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2012.

[3] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. “Mastering the
game of go without human knowledge”. In: Nature. Nature Publishing Group, 2017.

[4] Cara Bloom, Joshua Tan, Javed Ramjohn, and Lujo Bauer. “Self-driving cars and data
collection: Privacy perceptions of networked autonomous vehicles”. In: Symposium on
Usable Privacy and Security (SOUPS). 2017.

[5] Mike Marston and Gabe Baca. “ACAS-Xu initial self-separation flight tests”. In: NASA
Technical Reports Server (2015).

[6] MIT Tech Notes. “Airborne Collision Avoidance System X”. In: MIT Lincoln Laboratory
(2015).

[7] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. “Intriguing properties of neural networks”. In: International
Conference on Learning Representations (ICLR). 2013.

[8] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. “Deepxplore: Automated whitebox
testing of deep learning systems”. In: Proceedings of 26th Symposium on Operating Systems
Principles (SOSP). ACM. 2017.

[9] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and harnessing
adversarial examples”. In: International Conference on Learning Representations (ICLR).
2015.

[10] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. “Deepfool: A sim-
ple and accurate method to fool deep neural networks”. In: Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2016.

162

[11] Nicholas Carlini and David Wagner. “Towards evaluating the robustness of neural networks”.
In: IEEE Symposium on Security and Privacy (S&P). 2017.

[12] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and
Ananthram Swami. “Practical black-box attacks against machine learning”. In: Proceedings
of ACM on Asia Conference on Computer and Communications Security (ASIA CCS). 2017.

[13] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. “Adversarial examples in the physical
world”. In: Artificial Intelligence Safety and Security. 2018.

[14] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. “Delving into transferable adversar-
ial examples and black-box attacks”. In: International Conference on Learning Representa-
tions (ICLR). 2017.

[15] Anh Nguyen, Jason Yosinski, and Jeff Clune. “Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images”. In: Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2015.

[16] Weilin Xu, Yanjun Qi, and David Evans. “Automatically evading classifiers”. In: Proceed-
ings of Network and Distributed Systems Symposium (NDSS). 2016.

[17] Francesco Croce and Matthias Hein. “Reliable evaluation of adversarial robustness with
an ensemble of diverse parameter-free attacks”. In: International Conference on Machine
Learning (ICML). 2020.

[18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. “Towards deep learning models resistant to adversarial attacks”. In: International
Conference on Learning Representations (ICLR). 2018.

[19] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. “Reluplex:
An efficient SMT solver for verifying deep neural networks”. In: International Conference
on Computer Aided Verification (CAV). 2017.

[20] Ruediger Ehlers. “Formal verification of piece-wise linear feed-forward neural networks”.
In: International Symposium on Automated Technology for Verification and Analysis (ATVA).
2017.

[21] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. “Safety verification of deep
neural networks”. In: International Conference on Computer Aided Verification (CAV).
2017.

[22] Nicholas Carlini, Guy Katz, Clark Barrett, and David L Dill. “Provably Minimally-Distorted
Adversarial Examples”. In: arXiv preprint arXiv:1709.10207 (2017).

163

[23] Vincent Tjeng, Kai Xiao, and Russ Tedrake. “Evaluating Robustness of Neural Networks
with Mixed Integer Programming”. In: International Conference on Learning Representa-
tions (ICLR). 2019.

[24] Ailsa H Land and Alison G Doig. “An automatic method for solving discrete programming
problems”. In: 50 Years of Integer Programming 1958-2008. 2010.

[25] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. “Formal security
analysis of neural networks using symbolic intervals”. In: USENIX Security Symposium
(USENIX Security). 2018.

[26] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. “Efficient
formal safety analysis of neural networks”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2018.

[27] Rudy R Bunel, Ilker Turkaslan, Philip Torr, Pushmeet Kohli, and Pawan K Mudigonda.
“A unified view of piecewise linear neural network verification”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2018.

[28] Michael J. Cloud Ramon E. Moore R. Baker Kearfott. Introduction to Interval Analysis.
SIAM, 2009.

[29] Mykel J Kochenderfer, Jessica E Holland, and James P Chryssanthacopoulos. Next-generation
airborne collision avoidance system. Tech. rep. Massachusetts Institute of Technology-
Lincoln Laboratory Lexington United States, 2012.

[30] Jingyue Lu and M Pawan Kumar. “Neural network branching for neural network verifica-
tion”. In: International Conference on Learning Representation (ICLR) (2020).

[31] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. “Efficient
neural network robustness certification with general activation functions”. In: Advances in
Neural Information Processing Systems (NeurIPS). 2018.

[32] Eric Wong and Zico Kolter. “Provable Defenses against Adversarial Examples via the
Convex Outer Adversarial Polytope”. In: International Conference on Machine Learning
(ICML). 2018.

[33] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. “Certified defenses against ad-
versarial examples”. In: International Conference on Learning Representations (ICLR).
2018.

[34] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri,
and Martin Vechev. “Ai2: Safety and robustness certification of neural networks with
abstract interpretation”. In: IEEE Symposium on Security and Privacy (S&P). 2018.

164

[35] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh.
“Fast and complete: Enabling complete neural network verification with rapid and massively
parallel incomplete verifiers”. In: International Conference on Learning Representations
(ICLR). 2021.

[36] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
“Beta-crown: Efficient bound propagation with per-neuron split constraints for complete and
incomplete neural network verification”. In: Advances in Neural Information Processing
Systems (NeurIPS) (2021).

[37] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
Kailkhura, Xue Lin, and Cho-Jui Hsieh. “Automatic perturbation analysis for scalable
certified robustness and beyond”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2020.

[38] Rudy Bunel, Alessandro De Palma, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet
Kohli, Philip H. S. Torr, and M. Pawan Kumar. “Lagrangian Decomposition for Neural
Network Verification”. In: Conference on Uncertainty in Artificial Intelligence (UAI). 2020.

[39] Alessandro De Palma, Harkirat Singh Behl, Rudy Bunel, Philip H. S. Torr, and M. Pawan
Kumar. “Scaling the Convex Barrier with Active Sets”. In: International Conference on
Learning Representations (ICLR). 2021.

[40] Rudy Bunel, Jingyue Lu, Ilker Turkaslan, P Kohli, P Torr, and P Mudigonda. “Branch and
bound for piecewise linear neural network verification”. In: Journal of Machine Learning
Research (JMLR) (2020).

[41] Alessandro De Palma, Rudy Bunel, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet
Kohli, Philip HS Torr, and M Pawan Kumar. “Improved Branch and Bound for Neural
Network Verification via Lagrangian Decomposition”. In: arXiv preprint arXiv:2104.06718
(2021).

[42] Stanley Bak, Changliu Liu, and Taylor Johnson. “The Second International Verification
of Neural Networks Competition (VNN-COMP 2021): Summary and Results”. In: arXiv
preprint arXiv:2109.00498 (2021).

[43] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. “Scaling provable
adversarial defenses”. In: Advances in Neural Information Processing Systems (NeurIPS).
2018.

[44] Matthew Mirman, Timon Gehr, and Martin Vechev. “Differentiable abstract interpretation
for provably robust neural networks”. In: International Conference on Machine Learning
(ICML). 2018.

165

[45] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Duane Boning, and Cho-Jui Hsieh.
“Towards stable and efficient training of verifiably robust neural networks”. In: International
Conference on Learning Representations (ICLR). 2020.

[46] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin,
Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. “On the effectiveness of interval
bound propagation for training verifiably robust models”. In: Proceedings of IEEE Interna-
tional Conference on Computer Vision (ICCV). 2019.

[47] Shiqi Wang, Yizheng Chen, Ahmed Abdou, and Suman Jana. “Mixtrain: Scalable training
of formally robust neural networks”. In: arXiv preprint arXiv:1811.02625 (2018).

[48] Shiqi Wang, Kevin Eykholt, Taesung Lee, Jiyong Jang, and Ian Molloy. “Adaptive Verifiable
Training Using Pairwise Class Similarity”. In: Proceedings of AAAI Conference on Artificial
Intelligence (AAAI). 2021.

[49] Vladimir Naumovich Vapnik. “An overview of statistical learning theory”. In: IEEE trans-
actions on neural networks. 1999.

[50] Vladimir Vapnik. “Principles of risk minimization for learning theory”. In: Advances in
Neural Information Processing Systems (NIPS). 1992.

[51] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
International Conference for Learning Representations (ICLR). 2015.

[52] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. “On the convergence of adam and
beyond”. In: International Conference for Learning Representations (ICLR). 2018.

[53] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. “On the importance of
initialization and momentum in deep learning”. In: International Conference on Machine
Learning (ICML). 2013.

[54] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov,
Giorgio Giacinto, and Fabio Roli. “Evasion attacks against machine learning at test time”. In:
Joint European Conference on Machine Learning and Knowledge Discovery in Databases
(ECML PKDD). 2013.

[55] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and
Patrick McDaniel. “Ensemble adversarial training: Attacks and defenses”. In: International
Conference on Learning Representations (ICLR) (2018).

[56] Anish Athalye, Nicholas Carlini, and David Wagner. “Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples”. In: International
Conference on Machine Learning (ICML). 2018.

166

[57] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. “Security and
privacy in machine learning”. In: IEEE European Symposium on Security and Privacy
(EuroS&P). 2018.

[58] Marius Mosbach, Maksym Andriushchenko, Thomas Trost, Matthias Hein, and Diet-
rich Klakow. “Logit pairing methods can fool gradient-based attacks”. In: arXiv preprint
arXiv:1810.12042 (2018).

[59] Francesco Croce, Jonas Rauber, and Matthias Hein. “Scaling up the randomized gradient-
free adversarial attack reveals overestimation of robustness using established attacks”. In:
International Journal of Computer Vision (IJCV). 2020.

[60] Tianhang Zheng, Changyou Chen, and Kui Ren. “Distributionally adversarial attack”. In:
Proceedings of AAAI Conference on Artificial Intelligence (AAAI). 2019.

[61] Yusuke Tashiro, Yang Song, and Stefano Ermon. “Diversity can be transferred: Output diver-
sification for white-and black-box attacks”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2020.

[62] Sven Gowal, Jonathan Uesato, Chongli Qin, Po-Sen Huang, Timothy Mann, and Pushmeet
Kohli. “An alternative surrogate loss for pgd-based adversarial testing”. In: arXiv preprint
arXiv:1910.09338 (2019).

[63] Shiqi Wang, Yizheng Chen, Ahmed Abdou, and Suman Jana. “Enhancing gradient-based
attacks with symbolic intervals”. In: arXiv preprint arXiv:1906.02282 (2019).

[64] Francesco Croce and Matthias Hein. “Minimally distorted adversarial examples with a fast
adaptive boundary attack”. In: International Conference on Machine Learning (ICML).
2020.

[65] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and
Ananthram Swami. “Practical black-box attacks against machine learning”. In: Proceedings
of ACM on Asia Conference on Computer and Communications Security (ASIA CCS). 2017.

[66] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. “Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute
models”. In: Proceedings of ACM Workshop on Artificial Intelligence and Security. 2017.

[67] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. “Black-box adversarial
attacks with limited queries and information”. In: International Conference on Machine
Learning (ICML). 2018.

[68] Andrew Ilyas, Logan Engstrom, and Aleksander Madry. “Prior convictions: Black-box
adversarial attacks with bandits and priors”. In: International Conference on Learning
Representations (ICLR). 2019.

167

[69] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song. “Generating
adversarial examples with adversarial networks”. In: International Joint Conference on
Artificial Intelligence (IJCAI). 2018.

[70] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein.
“Square attack: A query-efficient black-box adversarial attack via random search”. In:
European Conference on Computer Vision (ECCV). 2020.

[71] Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas
Flammarion, Mung Chiang, Prateek Mittal, and Matthias Hein. “RobustBench: A standard-
ized adversarial robustness benchmark”. In: arXiv preprint arXiv:2010.09670 (2020).

[72] Huan Zhang, Shiqi Wang, Kaidi Xu, Yihan Wang, Suman Jana, Cho-Jui Hsieh, and J Zico
Kolter. A Branch and Bound Framework for Stronger Adversarial Attacks of ReLU Networks.
2022.

[73] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. “Output range
analysis for deep feedforward neural networks”. In: NASA Formal Methods Symposium.
2018.

[74] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. “Reachability analysis of deep
neural networks with provable guarantees”. In: International Joint Conference on Artificial
Intelligence (IJCAI). 2018.

[75] Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth Mis-
ener. “Efficient verification of reLU-based neural networks via dependency analysis.” In:
Proceedings of AAAI Conference on Artificial Intelligence (AAAI). 2020.

[76] Patrick Henriksen and Alessio Lomuscio. “DEEPSPLIT: An efficient splitting method for
neural network verification via indirect effect analysis”. In: Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI). 2021.

[77] Patrick Henriksen and Alessio Lomuscio. “Efficient neural network verification via adaptive
refinement and adversarial search”. In: Proceedings of European Conference on Artificial
Intelligence (ECAI). 2020.

[78] Vahid Hashemi, Panagiotis Kouvaros, and Alessio Lomuscio. “OSIP: Tightened Bound
Propagation for the Verification of ReLU Neural Networks”. In: International Conference
on Software Engineering and Formal Methods (SEFM). 2021.

[79] Vicenc Rubies Royo, Roberto Calandra, Dusan M Stipanovic, and Claire Tomlin. “Fast
neural network verification via shadow prices”. In: arXiv preprint arXiv:1902.07247 (2019).

[80] Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri. “Optimization and
abstraction: A synergistic approach for analyzing neural network robustness”. In: Proceed-

168

ings of ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). 2019.

[81] Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim,
Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, et al. “The marabou frame-
work for verification and analysis of deep neural networks”. In: International Conference
on Computer Aided Verification (CAV). 2019.

[82] Haoze Wu, Alex Ozdemir, Aleksandar Zeljic, Kyle Julian, Ahmed Irfan, Divya Gopinath,
Sadjad Fouladi, Guy Katz, Corina Pasareanu, and Clark Barrett. “Parallelization tech-
niques for verifying neural networks”. In: International Conference on Formal Methods in
Computer-Aided Design (FMCAD). 2020.

[83] Guy Amir, Haoze Wu, Clark Barrett, and Guy Katz. “An SMT-based approach for verifying
binarized neural networks”. In: International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). 2021.

[84] Yizhak Elboher, Justin Gottschlich, and Guy Katz. “An Abstraction-Based Framework for
Neural Network Verification”. In: International Conference on Computer Aided Verification
(CAV). 2020.

[85] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet
Nguyen, Weiming Xiang, Stanley Bak, and Taylor T Johnson. “NNV: the neural network
verification tool for deep neural networks and learning-enabled cyber-physical systems”. In:
International Conference on Computer Aided Verification (CAV). 2020.

[86] Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet
Nguyen, Weiming Xiang, and Taylor T Johnson. “Star-based reachability analysis of deep
neural networks”. In: International Symposium on Formal Methods. 2019.

[87] Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T Johnson. “Verification of
deep convolutional neural networks using imagestars”. In: International conference on
computer aided verification (CAV). 2020.

[88] Ross Anderson, Joey Huchette, Christian Tjandraatmadja, and Juan Pablo Vielma. “Strong
convex relaxations and mixed-integer programming formulations for trained neural net-
works”. In: Mathematical Programming. 2020.

[89] Christian Tjandraatmadja, Ross Anderson, Joey Huchette, Will Ma, Krunal Patel, and Juan
Pablo Vielma. “The convex relaxation barrier, revisited: Tightened single-neuron relaxations
for neural network verification”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2020.

[90] Christoph Müller, Gagandeep Singh, Markus Püschel, and Martin Vechev. “Neural network
robustness verification on GPUs”. In: MLSys Conference. 2021.

169

[91] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui
Hsieh, and Luca Daniel. “Evaluating the robustness of neural networks: An extreme value
theory approach”. In: International Conference on Learning Representations (ICLR). 2018.

[92] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel,
Duane Boning, and Inderjit Dhillon. “Towards fast computation of certified robustness for
ReLU networks”. In: International Conference on Machine Learning (ICML). 2018.

[93] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. “Boosting robustness
certification of neural networks”. In: International Conference on Learning Representations
(ICLR). 2018.

[94] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev.
“Fast and effective robustness certification”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2018.

[95] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. “An abstract domain
for certifying neural networks”. In: Proceedings of ACM on Programming Languages
(POPL). 2019.

[96] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy Mann, and Pushmeet
Kohli. “A dual approach to scalable verification of deep networks”. In: Conference on
Uncertainty in Artificial Intelligence (UAI). 2018.

[97] Aymeric Fromherz, Klas Leino, Matt Fredrikson, Bryan Parno, and Corina Păsăreanu. “Fast
geometric projections for local robustness certification”. In: International Conference on
Learning Representations (ICLR). 2021.

[98] Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. “Cnn-cert:
An efficient framework for certifying robustness of convolutional neural networks”. In:
Proceedings of AAAI Conference on Artificial Intelligence. Vol. 33. 2019.

[99] Huan Zhang, Pengchuan Zhang, and Cho-Jui Hsieh. “RecurJac: An efficient recursive algo-
rithm for bounding jacobian matrix of neural networks and its applications”. In: Proceedings
of AAAI Conference on Artificial Intelligence (AAAI). 2019.

[100] Alessio Lomuscio and Lalit Maganti. “An approach to reachability analysis for feed-forward
relu neural networks”. In: arXiv preprint arXiv:1706.07351 (2017).

[101] Klas Leino, Zifan Wang, and Matt Fredrikson. “Globally-robust neural networks”. In:
International Conference on Machine Learning (ICML). 2021.

[102] Sungyoon Lee, Jaewook Lee, and Saerom Park. “Lipschitz-certifiable training with a tight
outer bound”. In: Advances in Neural Information Processing Systems (NeurIPS). 2020.

170

[103] Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. “Lipschitz-margin training: Scalable
certification of perturbation invariance for deep neural networks”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2018.

[104] Matthias Hein and Maksym Andriushchenko. “Formal guarantees on the robustness of a
classifier against adversarial manipulation”. In: Advances in Neural Information Processing
Systems (NIPS). 2017.

[105] Todd Huster, Cho-Yu Jason Chiang, and Ritu Chadha. “Limitations of the Lipschitz constant
as a defense against adversarial examples”. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. 2018.

[106] Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Russ R Salakhutdinov, and Kamalika
Chaudhuri. “A closer look at accuracy vs. robustness”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2020.

[107] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. “A convex
relaxation barrier to tight robustness verification of neural networks”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2019.

[108] Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin Vechev. “Beyond the
Single Neuron Convex Barrier for Neural Network Certification”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2019.

[109] Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin
Vechev. “PRIMA: General and precise neural network certification via Scalable Convex
Hull Approximations”. In: Proceedings of ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL). 2022.

[110] Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović, and Martin Vechev. “Complete
verification via multi-neuron relaxation guided branch-and-bound”. In: International Con-
ference on Learning Representations (ICLR). 2021.

[111] Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. “Semidefinite relaxations for cer-
tifying robustness to adversarial examples”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2018.

[112] Mahyar Fazlyab, Manfred Morari, and George J Pappas. “Safety verification and robustness
analysis of neural networks via quadratic constraints and semidefinite programming”. In:
IEEE Transactions on Automatic Control (2020).

[113] Krishnamurthy Dj Dvijotham, Robert Stanforth, Sven Gowal, Chongli Qin, Soham De, and
Pushmeet Kohli. “Efficient neural network verification with exactness characterization”. In:
Conference on Uncertainty in Artificial Intelligence (UAI). 2020.

171

[114] Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey Kurakin, Aditi Raghunathan, Jonathan
Uesato, Rudy R Bunel, Shreya Shankar, Jacob Steinhardt, Ian Goodfellow, Percy S Liang,
et al. “Enabling certification of verification-agnostic networks via memory-efficient semidef-
inite programming”. In: Advances in Neural Information Processing Systems (NeurIPS).
2020.

[115] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana.
“Certified robustness to adversarial examples with differential privacy”. In: IEEE Symposium
on Security and Privacy (S&P). 2019.

[116] Frank McSherry and Ilya Mironov. “Differentially private recommender systems: Building
privacy into the netflix prize contenders”. In: Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD). 2009.

[117] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal
Talwar, and Li Zhang. “Deep learning with differential privacy”. In: Proceedings of ACM
SIGSAC Conference on Computer and Communications Security (CCS). 2016.

[118] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. “Differentially private
empirical risk minimization.” In: Journal of Machine Learning Research (JMLR). 2011.

[119] Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. “Certified adversarial robustness via
randomized smoothing”. In: International Conference on Machine Learning (ICML). 2019.

[120] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. “Certified adversarial ro-
bustness with additive noise”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2019.

[121] Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck,
and Greg Yang. “Provably robust deep learning via adversarially trained smoothed classi-
fiers”. In: Advances in Neural Information Processing Systems (NeurIPS). 2019.

[122] Greg Yang, Tony Duan, J Edward Hu, Hadi Salman, Ilya Razenshteyn, and Jerry Li.
“Randomized smoothing of all shapes and sizes”. In: International Conference on Machine
Learning (ICML). 2020.

[123] Eric Wong and J Zico Kolter. “Learning perturbation sets for robust machine learning”. In:
arXiv preprint arXiv:2007.08450 (2020).

[124] Avrim Blum, Travis Dick, Naren Manoj, and Hongyang Zhang. “Random smoothing might
be unable to certify ℓ∞ robustness for high-dimensional images”. In: Journal of Machine
Learning Research (JMLR). 2020.

172

[125] Jongheon Jeong and Jinwoo Shin. “Consistency regularization for certified robustness of
smoothed classifiers”. In: Advances in Neural Information Processing Systems (NeurIPS).
2020.

[126] Linyi Li, Maurice Weber, Xiaojun Xu, Luka Rimanic, Tao Xie, Ce Zhang, and Bo Li.
“Provable robust learning based on transformation-specific smoothing”. In: arXiv preprint
arXiv:2002.12398 (2020).

[127] Jeet Mohapatra, Ching-Yun Ko, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel.
“Higher-order certification for randomized smoothing”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2020.

[128] Alexander J Levine and Soheil Feizi. “Improved, deterministic smoothing for L_1 certified
robustness”. In: International Conference on Machine Learning (ICML). 2021.

[129] Linyi Li, Maurice Weber, Xiaojun Xu, Luka Rimanic, Bhavya Kailkhura, Tao Xie, Ce
Zhang, and Bo Li. “Tss: Transformation-specific smoothing for robustness certification”.
In: Proceedings of ACM SIGSAC Conference on Computer and Communications Security
(CCS). 2021.

[130] Motasem Alfarra, Adel Bibi, Philip HS Torr, and Bernard Ghanem. “Data dependent
randomized smoothing”. In: arXiv preprint arXiv:2012.04351 (2020).

[131] Bohang Zhang, Tianle Cai, Zhou Lu, Di He, and Liwei Wang. “Towards certifying l-infinity
robustness using neural networks with l-inf-dist neurons”. In: International Conference on
Machine Learning (ICML). 2021.

[132] Marc Fischer, Maximilian Baader, and Martin Vechev. “Scalable certified segmentation via
randomized smoothing”. In: International Conference on Machine Learning (ICML). 2021.

[133] Miklós Z Horváth, Mark Niklas Mueller, Marc Fischer, and Martin Vechev. “Boosting
randomized smoothing with variance reduced classifiers”. In: International Conference on
Learning Representations (ICLR). 2021.

[134] Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett, Mykel
J Kochenderfer, et al. “Algorithms for verifying deep neural networks”. In: Foundations
and Trends® in Optimization (2021).

[135] Linyi Li, Xiangyu Qi, Tao Xie, and Bo Li. “Sok: Certified robustness for deep neural
networks”. In: arXiv preprint arXiv:2009.04131 (2020).

[136] Kyle D Julian, Jessica Lopez, Jeffrey S Brush, Michael P Owen, and Mykel J Kochenderfer.
“Policy compression for aircraft collision avoidance systems”. In: Digital Avionics Systems
Conference (DASC). 2016.

173

[137] R Baker Kearfott. Rigorous global search: continuous problems. Vol. 13. Springer Science
& Business Media, 2013.

[138] R Baker Kearfott and Manuel Novoa III. “Algorithm 681: INTBIS, a portable interval
Newton/bisection package”. In: ACM Transactions on Mathematical Software (TOMS)
(1990).

[139] Eric Wong and J Zico Kolter. “Provable defenses against adversarial examples via the
convex outer adversarial polytope”. In: International Conference on Machine Learning
(ICML). 2018.

[140] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet: A
large-scale hierarchical image database”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2009.

[141] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. “Towards practical verification of
machine learning: The case of computer vision systems”. In: arXiv preprint arXiv:1712.01785
(2017).

[142] Yann LeCun. “The MNIST database of handwritten digits”. In: http://yann.lecun.com/ex-
db/mnist/ (1998).

[143] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and
CERT Siemens. “DREBIN: Effective and explainable detection of android malware in your
pocket.” In: Proceedings of Network and Distributed Systems Symposium (NDSS). 2014.

[144] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. “End
to end learning for self-driving cars”. In: arXiv preprint arXiv:1604.07316 (2016).

[145] Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie Huang, and Cho-Jui Hsieh. “Robustness
verification for transformers”. In: International Conference on Learning Representations
(ICLR). 2020.

[146] Changliu Liu and Taylor Johnson. VNN COMP 2020.

[147] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from tiny
images”. In: Technical Report TR-2009 (2009).

[148] Leslie Rice, Eric Wong, and Zico Kolter. “Overfitting in adversarially robust deep learning”.
In: International Conference on Machine Learning (ICML). 2020.

[149] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowd-
hary. “Robust deep reinforcement learning with adversarial attacks”. In: arXiv preprint
arXiv:1712.03632 (2017).

174

[150] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-
Jui Hsieh. “Robust deep reinforcement learning against adversarial perturbations on state
observations”. In: Advances in Neural Information Processing Systems (NeurIPS). 2020.

[151] Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. “Robust reinforcement
learning on state observations with learned optimal adversary”. In: International Conference
on Learning Representations (ICLR) (2021).

[152] Sergey Zagoruyko and Nikos Komodakis. “Wide residual networks”. In: arXiv preprint
arXiv:1605.07146 (2016).

[153] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for
image recognition”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2016.

[154] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances in
Neural Information Processing Systems (NIPS). 2017.

[155] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding”. In: Proceedings of 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 2019.

[156] Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth, Relja Arandjelovic, Brendan
O’Donoghue, Jonathan Uesato, and Pushmeet Kohli. “Training verified learners with learned
verifiers”. In: arXiv preprint arXiv:1805.10265 (2018).

[157] Shixiang Gu and Luca Rigazio. “Towards deep neural network architectures robust to
adversarial examples”. In: arXiv preprint arXiv:1412.5068 (2014).

[158] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. “Distilla-
tion as a Defense to Adversarial Perturbations Against Deep Neural Networks”. In: IEEE
Symposium on Security and Privacy (S&P). 2016.

[159] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier.
“Parseval networks: Improving robustness to adversarial examples”. In: International Con-
ference on Machine Learning (ICML). 2017.

[160] Nicolas Papernot and Patrick McDaniel. “Extending defensive distillation”. In: arXiv
preprint arXiv:1705.05264 (2017).

[161] Nicolas Papernot and Patrick McDaniel. “Deep k-nearest neighbors: Towards confident,
interpretable and robust deep learning”. In: arXiv preprint arXiv:1803.04765 (2018).

175

[162] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. “Thermometer encoding:
One hot way to resist adversarial examples”. In: International Conference on Learning
Representations (ICLR). 2018.

[163] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. “Pixelde-
fend: Leveraging generative models to understand and defend against adversarial examples”.
In: International Conference on Learning Representations (ICLR). 2018.

[164] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. “Mitigating adver-
sarial effects through randomization”. In: International Conference on Learning Represen-
tations (ICLR). 2018.

[165] Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. “Efficient defenses against
adversarial attacks”. In: Proceedings of 10th ACM Workshop on Artificial Intelligence and
Security. 2017.

[166] Xiaoyu Cao and Neil Zhenqiang Gong. “Mitigating evasion attacks to deep neural net-
works via region-based classification”. In: Proceedings of 33rd Annual Computer Security
Applications Conference (ACSA). 2017.

[167] Nicolas Papernot et al. “Technical Report on the CleverHans v2.1.0 Adversarial Examples
Library”. In: arXiv preprint arXiv:1610.00768 (2018).

[168] Gamaleldin F Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alex Kurakin,
Ian Goodfellow, and Jascha Sohl-Dickstein. “Adversarial examples that fool both human
and computer vision”. In: Advances in Neural Information Processing Systems (NeurIPS).
2018.

[169] Nicholas Carlini and David Wagner. “Adversarial examples are not easily detected: Bypass-
ing ten detection methods”. In: Proceedings of 10th ACM Workshop on Artificial Intelligence
and Security. ACM. 2017.

[170] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Michael E
Houle, Grant Schoenebeck, Dawn Song, and James Bailey. “Characterizing adversarial
subspaces using local intrinsic dimensionality”. In: International Conference on Learning
Representations (ICLR). 2018.

[171] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. “Countering
adversarial images using input transformations”. In: International Conference on Learning
Representations (ICLR). 2018.

[172] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. “Adversar-
ial example defenses: Ensembles of weak defenses are not strong”. In: arXiv preprint
arXiv:1706.04701 (2017).

176

[173] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. “Synthesizing robust
adversarial examples”. In: arXiv preprint arXiv:1707.07397 (2017).

[174] Nicholas Carlini and David Wagner. “MagNet and “Efficient defenses against adversarial
attacks” are not robust to adversarial examples”. In: arXiv preprint arXiv:1711.08478
(2018).

[175] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars”. In: Proceedings of 40th International
Conference on Software Engineering (ICSE). 2018.

[176] Warren He, Bo Li, and Dawn Song. “Decision boundary analysis of adversarial examples”.
In: International Conference on Learning Representations (ICLR). 2018.

[177] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I
Jordan. “Theoretically principled trade-off between robustness and accuracy”. In: Interna-
tional Conference on Machine Learning (ICML). 2019.

[178] Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan
Kankanhalli. “Attacks which do not kill training make adversarial learning stronger”. In:
International Conference on Machine Learning (ICML). 2020.

[179] Hoki Kim, Woojin Lee, and Jaewook Lee. “Understanding catastrophic overfitting in single-
step adversarial training”. In: Proceedings of AAAI Conference on Artificial Intelligence
(AAAI). 2021.

[180] A Sridhar, Chawin Sitawarin, and David Wagner. “Mitigating adversarial training instabil-
ity with batch normalization”. In: Proceedings of International Conference on Learning
Representation Workshop on Security and Safety in Machine Learning Systems. 2021.

[181] Bai Li, Shiqi Wang, Suman Jana, and Lawrence Carin. “Towards understanding fast adver-
sarial training”. In: arXiv preprint arXiv:2006.03089 (2020).

[182] Eric Wong, Leslie Rice, and J Zico Kolter. “Fast is better than free: Revisiting adversarial
training”. In: International Conference on Learning Representations (ICLR). 2019.

[183] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. “Adversarial training for free!” In:
Advances in Neural Information Processing Systems (NeurIPS). 2019.

[184] Maksym Andriushchenko and Nicolas Flammarion. “Understanding and improving fast
adversarial training”. In: Advances in Neural Information Processing Systems (NeurIPS).
2020.

177

[185] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. “Using self-supervised
learning can improve model robustness and uncertainty”. In: Advances in Neural Information
Processing Systems (NeurIPS) 32 (2019).

[186] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang.
“Unlabeled data improves adversarial robustness”. In: Advances in Neural Information
Processing Systems (NeurIPS) 32 (2019).

[187] Bai Li, Shiqi Wang, Yunhan Jia, Yantao Lu, Zhenyu Zhong, Lawrence Carin, and Suman
Jana. “Towards practical lottery ticket hypothesis for adversarial training”. In: arXiv preprint
arXiv:2003.05733 (2020).

[188] Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. “You only
propagate once: Accelerating adversarial training via maximal principle”. In: Advances in
Neural Information Processing Systems (NeurIPS). 2019.

[189] Aman Sinha, Hongseok Namkoong, and John Duchi. “Certifying some distributional ro-
bustness with principled adversarial training”. In: International Conference on Learning
Representations (ICLR) (2018).

[190] Mislav Balunovic and Martin Vechev. “Adversarial training and provable defenses: Bridging
the gap”. In: International Conference on Learning Representations (ICLR). 2019.

[191] Chen Liu, Mathieu Salzmann, Tao Lin, Ryota Tomioka, and Sabine Süsstrunk. “On the loss
landscape of adversarial training: Identifying challenges and how to overcome them”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2020.

[192] Fatemeh Sheikholeslami, Ali Lotfi, and J Zico Kolter. “Provably robust classification of
adversarial examples with detection”. In: International Conference on Learning Representa-
tions (ICLR). 2020.

[193] Nikola Jovanović, Mislav Balunović, Maximilian Baader, and Martin Vechev. “Certified
defenses: Why tighter relaxations may hurt training”. In: arXiv preprint arXiv:2102.06700
(2021).

[194] Akhilan Boopathy, Tsui-Wei Weng, Sijia Liu, Pin-Yu Chen, Gaoyuan Zhang, and Luca
Daniel. “Fast training of provably robust neural networks by singleprop”. In: arXiv preprint
arXiv:2102.01208 (2021).

[195] Zhouxing Shi, Yihan Wang, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. “Fast certified
robust training via better initialization and shorter warmup”. In: Advances in Neural Infor-
mation Processing Systems (NeurIPS). 2021.

[196] Jiameng Fan and Wenchao Li. “Adversarial training and provable robustness: A tale of two
objectives”. In: Proceedings of AAAI Conference on Artificial Intelligence (AAAI). 2021.

178

[197] Chen Liu, Mathieu Salzmann, and Sabine Süsstrunk. “Training provably robust models
by polyhedral envelope regularization”. In: IEEE Transactions on Neural Networks and
Learning Systems. 2021.

[198] Wang Zhang, Lam M. Nguyen, Subhro Das, Pin-Yu Chen, Sijia Liu, Alexandre Megretski,
Luca Daniel, and Tsui-Wei Weng. Tactics on refining decision boundary for improving
certification-based robust training. 2022.

[199] Matthew Mirman, Gagandeep Singh, and Martin Vechev. “A provable defense for deep
residual networks”. In: arXiv preprint arXiv:1903.12519 (2019).

[200] Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations.
Cambridge University Press, 2009.

[201] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-based learning
applied to document recognition”. In: Proceedings of IEEE 86.11 (1998).

[202] Ya Le and Xuan Yang. “Tiny imagenet visual recognition challenge”. In: CS 231N (2015).

[203] Herbert Robbins and Sutton Monro. “A stochastic approximation method”. In: Herbert
Robbins Selected Papers. Springer, 1985.

[204] Jack Kiefer, Jacob Wolfowitz, et al. “Stochastic estimation of the maximum of a regression
function”. In: The Annals of Mathematical Statistics (1952).

[205] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li
Fei-Fei. “ImageNet large scale visual recognition challenge”. In: International Journal of
Computer Vision (IJCV) (2015).

[206] Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brende. “Towards the first
adversarially robust neural network model on MNIST”. In: International Conference on
Learning Representations (ICLR) (2019).

[207] Jonas Rauber, Wieland Brendel, and Matthias Bethge. “Foolbox: A python toolbox to
benchmark the robustness of machine learning models”. In: arXiv preprint arXiv:1707.04131
(2017).

[208] Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah
A Bargal, and Joseph E Gonzalez. “NBDT: Neural-backed decision trees”. In: International
Conference on Learning Representations (ICLR) (2021).

[209] Yizheng Chen, Shiqi Wang, Dongdong She, and Suman Jana. “On training robust {PDF}
malware classifiers”. In: USENIX Security Symposium (USENIX Security). 2020.

179

[210] Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. “Towards compact and robust
deep neural networks”. In: arXiv preprint arXiv:1906.06110 (2019).

[211] Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. “Hydra: Pruning adversarially
robust neural networks”. In: Advances in Neural Information Processing Systems (NeurIPS).
2020.

[212] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao,
Atul Prakash, Tadayoshi Kohno, and Dawn Song. “Robust physical-world attacks on deep
learning visual classification”. In: Proceedings of IEEE conference on computer vision and
pattern recognition (CVPR). 2018.

[213] Naveed Akhtar and Ajmal Mian. “Threat of adversarial attacks on deep learning in computer
vision: A survey”. In: Ieee Access. 2018.

[214] Takami Sato, Junjie Shen, Ningfei Wang, Yunhan Jia, Xue Lin, and Qi Alfred Chen. “Dirty
road can attack: Security of deep learning based automated lane centering under {physical-
world} attack”. In: USENIX Security Symposium (USENIX Security). 2021.

[215] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Rampazzi,
Qi Alfred Chen, Kevin Fu, and Z Morley Mao. “Adversarial sensor attack on lidar-based per-
ception in autonomous driving”. In: Proceedings of ACM SIGSAC Conference on Computer
and Communications Security (CCS). 2019.

[216] Jiachen Sun, Yulong Cao, Qi Alfred Chen, and Z Morley Mao. “Towards robust {LiDAR-
based} perception in autonomous driving: General black-box adversarial sensor attack and
countermeasures”. In: USENIX Security Symposium (USENIX Security). 2020.

[217] Mark Lee and Zico Kolter. “On physical adversarial patches for object detection”. In: arXiv
preprint arXiv:1906.11897 (2019).

[218] Juncheng Li, Frank Schmidt, and Zico Kolter. “Adversarial camera stickers: A physical
camera-based attack on deep learning systems”. In: International Conference on Machine
Learning (ICML). 2019.

[219] Amin Kharraz, Zane Ma, Paul Murley, Charles Lever, Joshua Mason, Andrew Miller, Nikita
Borisov, Manos Antonakakis, and Michael Bailey. “Outguard: Detecting in-browser covert
cryptocurrency mining in the wild”. In: The World Wide Web Conference (WWW). 2019.

[220] Kyumin Lee, Brian Eoff, and James Caverlee. “Seven months with the devils: A long-term
study of content polluters on twitter”. In: Proceedings of International AAAI Conference on
Web and Social Media (ICWSM). 2011.

180

[221] Heeyoung Kwon, Mirza Basim Baig, and Leman Akoglu. “A domain-agnostic approach to
spam-url detection via redirects”. In: Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD). 2017.

[222] Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang, and
Martin Vechev. “Dl2: Training and querying neural networks with logic”. In: International
Conference on Machine Learning (ICML). 2019.

[223] Yizheng Chen, Shiqi Wang, Yue Qin, Xiaojing Liao, Suman Jana, and David Wagner.
“Learning security classifiers with verified global robustness properties”. In: Proceedings of
ACM SIGSAC Conference on Computer and Communications Security (CCS). 2021.

[224] Yizheng Chen, Shiqi Wang, Weifan Jiang, Asaf Cidon, and Suman Jana. “Cost-Aware
robust tree ensembles for security applications”. In: USENIX Security Symposium (USENIX
Security). 2021.

[225] Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei, Seyum Assefa Abebe, and Sal-
vatore Orlando. “Treant: Training evasion-aware decision trees”. In: Data Mining and
Knowledge Discovery (DAMI). 2020.

[226] Stefano Calzavara, Claudio Lucchese, and Gabriele Tolomei. “Adversarial training of
gradient-boosted decision trees”. In: International Conference on Information and Knowl-
edge Management (CIKM). 2019.

181

	Acknowledgments
	Introduction
	Background and Related Work
	Basic Concepts of Neural Networks
	Adversarial Robustness
	Neural Network Verification
	Threat Model for Neural Network Verification

	Neural Network Verification with Basic Branch and Bound
	ReluVal: Branch and Bound with Iterative Input Split Refinement
	Overview of ReluVal: A Working Example
	Bounding with Symbolic Interval Analysis
	Branching with Iterative Input Split Refinement
	Proof of Correctness

	Neurify: Branch and Bound with ReLU Neuron Split Refinement Using Linear Solver
	Overview of Neurify
	Bounding with Symbolic Linear Relaxation
	Branching with ReLU Neuron Split Refinement
	Implementation Details

	Experimental Results for Neurify and ReluVal
	Experimental Setup and Summary
	ReluVal and Neurify on Standard Verification Benchmarks
	Neurify on Properties with High Input Dimensions
	Ablation Studies for Each Technique

	Conclusion and Future Work

	Branch and Bound with GPU Acceleration for Neural Network Verification
	Background: A Unified Branch and Bound Framework for Verification
	Notations for Neural Network Verification
	Branch and Bound for Complete Verification
	CROWN: An Efficient Incomplete Verifier Using Linear Relaxation

	Complete Verification with -CROWN BaB
	Overview of -CROWN BaB
	-CROWN: An Optimized Linear Relaxation Bound
	Batch Splits
	Completeness with Minimal Usage of LP Bounding Procedure
	Complete Verification Framework -CROWN BaB

	Complete Verification with -CROWN BaB
	-CROWN in Primal Space
	Connections to Dual Space
	Joint Optimization of Free Variables in -CROWN
	Complete Verification Framework -CROWN BaB
	Proofs for -CROWN

	Experimental Evaluation for ,-CROWN
	Comparisons to Complete Verifiers
	Comparisons to Incomplete Verifiers
	Ablation Studies for ,-CROWN BaB and -CROWN BaB

	Generalized -CROWN: Intermediate Bound Refinement for Branch and Bound
	Issues with BaB Refinement Using Existing Bound Propagation Methods
	Potential Intermediate Bound Refinement Using LP Solvers
	Intermediate Bound Refinement as Differentiable Optimizations
	Experimental Evaluation

	Conclusion

	Training Neural Networks for Verification
	Additional Background and Related Work for Verifiable Training
	MixTrain: Scalable Training of Verifiably Robust Neural Networks
	Motivation
	Stochastic Robust Approximation
	Dynamic Mixed Training
	Experimental Results for MixTrain

	Adaptive Verifiable Training Using Pairwise Class Similarity
	Class Similarity Identification
	Inter-Group Robustness Prioritization (IGRP)
	Neural Decision Tree
	Experimental Results for Adaptive Verifiable Training

	Conclusion

	Conclusion and Open Challenges
	Open Challenge 1: More Scalable BaB-Based Complete Verifiers
	Open Challenge 2: BaB-Friendly Verifiable Training
	Open Challenge 3: BaB-Based Complete Verifiers for Realistic Properties

	References

