577 research outputs found

    Terrain Classification from Body-mounted Cameras during Human Locomotion

    Get PDF
    Abstract—This paper presents a novel algorithm for terrain type classification based on monocular video captured from the viewpoint of human locomotion. A texture-based algorithm is developed to classify the path ahead into multiple groups that can be used to support terrain classification. Gait is taken into account in two ways. Firstly, for key frame selection, when regions with homogeneous texture characteristics are updated, the fre-quency variations of the textured surface are analysed and used to adaptively define filter coefficients. Secondly, it is incorporated in the parameter estimation process where probabilities of path consistency are employed to improve terrain-type estimation. When tested with multiple classes that directly affect mobility a hard surface, a soft surface and an unwalkable area- our proposed method outperforms existing methods by up to 16%, and also provides improved robustness. Index Terms—texture, classification, recursive filter, terrain classification I

    TrackletMapper: Ground Surface Segmentation and Mapping from Traffic Participant Trajectories

    Full text link
    Robustly classifying ground infrastructure such as roads and street crossings is an essential task for mobile robots operating alongside pedestrians. While many semantic segmentation datasets are available for autonomous vehicles, models trained on such datasets exhibit a large domain gap when deployed on robots operating in pedestrian spaces. Manually annotating images recorded from pedestrian viewpoints is both expensive and time-consuming. To overcome this challenge, we propose TrackletMapper, a framework for annotating ground surface types such as sidewalks, roads, and street crossings from object tracklets without requiring human-annotated data. To this end, we project the robot ego-trajectory and the paths of other traffic participants into the ego-view camera images, creating sparse semantic annotations for multiple types of ground surfaces from which a ground segmentation model can be trained. We further show that the model can be self-distilled for additional performance benefits by aggregating a ground surface map and projecting it into the camera images, creating a denser set of training annotations compared to the sparse tracklet annotations. We qualitatively and quantitatively attest our findings on a novel large-scale dataset for mobile robots operating in pedestrian areas. Code and dataset will be made available at http://trackletmapper.cs.uni-freiburg.de.Comment: 19 pages, 14 figures, CoRL 2022 v

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Lidar-based Obstacle Detection and Recognition for Autonomous Agricultural Vehicles

    Get PDF
    Today, agricultural vehicles are available that can drive autonomously and follow exact route plans more precisely than human operators. Combined with advancements in precision agriculture, autonomous agricultural robots can reduce manual labor, improve workflow, and optimize yield. However, as of today, human operators are still required for monitoring the environment and acting upon potential obstacles in front of the vehicle. To eliminate this need, safety must be ensured by accurate and reliable obstacle detection and avoidance systems.In this thesis, lidar-based obstacle detection and recognition in agricultural environments has been investigated. A rotating multi-beam lidar generating 3D point clouds was used for point-wise classification of agricultural scenes, while multi-modal fusion with cameras and radar was used to increase performance and robustness. Two research perception platforms were presented and used for data acquisition. The proposed methods were all evaluated on recorded datasets that represented a wide range of realistic agricultural environments and included both static and dynamic obstacles.For 3D point cloud classification, two methods were proposed for handling density variations during feature extraction. One method outperformed a frequently used generic 3D feature descriptor, whereas the other method showed promising preliminary results using deep learning on 2D range images. For multi-modal fusion, four methods were proposed for combining lidar with color camera, thermal camera, and radar. Gradual improvements in classification accuracy were seen, as spatial, temporal, and multi-modal relationships were introduced in the models. Finally, occupancy grid mapping was used to fuse and map detections globally, and runtime obstacle detection was applied on mapped detections along the vehicle path, thus simulating an actual traversal.The proposed methods serve as a first step towards full autonomy for agricultural vehicles. The study has thus shown that recent advancements in autonomous driving can be transferred to the agricultural domain, when accurate distinctions are made between obstacles and processable vegetation. Future research in the domain has further been facilitated with the release of the multi-modal obstacle dataset, FieldSAFE

    On Martian Surface Exploration: Development of Automated 3D Reconstruction and Super-Resolution Restoration Techniques for Mars Orbital Images

    Get PDF
    Very high spatial resolution imaging and topographic (3D) data play an important role in modern Mars science research and engineering applications. This work describes a set of image processing and machine learning methods to produce the “best possible” high-resolution and high-quality 3D and imaging products from existing Mars orbital imaging datasets. The research work is described in nine chapters of which seven are based on separate published journal papers. These include a) a hybrid photogrammetric processing chain that combines the advantages of different stereo matching algorithms to compute stereo disparity with optimal completeness, fine-scale details, and minimised matching artefacts; b) image and 3D co-registration methods that correct a target image and/or 3D data to a reference image and/or 3D data to achieve robust cross-instrument multi-resolution 3D and image co-alignment; c) a deep learning network and processing chain to estimate pixel-scale surface topography from single-view imagery that outperforms traditional photogrammetric methods in terms of product quality and processing speed; d) a deep learning-based single-image super-resolution restoration (SRR) method to enhance the quality and effective resolution of Mars orbital imagery; e) a subpixel-scale 3D processing system using a combination of photogrammetric 3D reconstruction, SRR, and photoclinometric 3D refinement; and f) an optimised subpixel-scale 3D processing system using coupled deep learning based single-view SRR and deep learning based 3D estimation to derive the best possible (in terms of visual quality, effective resolution, and accuracy) 3D products out of present epoch Mars orbital images. The resultant 3D imaging products from the above listed new developments are qualitatively and quantitatively evaluated either in comparison with products from the official NASA planetary data system (PDS) and/or ESA planetary science archive (PSA) releases, and/or in comparison with products generated with different open-source systems. Examples of the scientific application of these novel 3D imaging products are discussed
    • …
    corecore