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Terrain Classification from Body-mounted

Cameras during Human Locomotion
N. Anantrasirichai, Member, IEEE, J. Burn, and David Bull, Fellow, IEEE

Abstract

This paper presents a novel algorithm for terrain type classification based on monocular video

captured from the viewpoint of human locomotion. A texture-based algorithm is developed to classify the

path ahead into multiple groups that can be used to support terrain classification. Gait is taken into account

in two ways. Firstly, for key frame selection, when regions with homogeneous texture characteristics are

updated, the frequency variations of the textured surface are analysed and used to adaptively define filter

coefficients. Secondly, it is incorporated in the parameter estimation process where probabilities of path

consistency are employed to improve terrain-type estimation. When tested with multiple classes that

directly affect mobility a hard surface, a soft surface and an unwalkable area - our proposed method

outperforms existing methods by up to 16%, and also provides improved robustness.

Index Terms

texture, classification, recursive filter, terrain classification

I. INTRODUCTION

Humanoid robots have been developed in recent decades to replicate human movement, and cameras are

frequently employed as primary sensors, to emulate the way our eyes perceive the navigable environment.

Visual information can enhance a robot’s capabilities in terms of scene/object recognition and adaptation
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according to environment, aspects that are key for locomotion control and path planning. In this paper,

we propose the use of such information to predict the type of terrain ahead of the robot via textures

presented in single-view videos. In addition to humanoid robots, this work could also benefit robots with

multiple legs which are required to function in dangerous areas where wheeled robots are not suitable.

It is also relevant to the design of aids for the visually impaired.

Several authors have previously proposed algorithms for terrain classification. In the main, these provide

only binary classification, such as whether an area is road or vegetation [1]. When more complicated

classifications are required, to recognise multiple classes or to provide probabilities of terrain prediction,

a vision-based method is often combined with other sensors to confirm terrain types [2], [3], or a stereo-

based vision system is used to assist geometric analysis of the near areas [4], [5]. While geometry-based

approaches can provide the shape of the surface and are invariant to lighting conditions, texture-based

visual analysis can focus on areas of interest and offer better resolution for finer classification tasks.

There are only a few approaches that solely use on monocular video (colour and textural features) for

multi-class prediction [6], [7]. Although, both the visually based and hybrid methods mentioned above

perform well, most of them have only been proposed for wheeled vehicles.

A recognition technique using a bag of visual words was introduced in [8] for small legged robots.

However, this work employs video captured from a camera facing vertically downwards, at a small

distance from the ground. An example of a humanoid robot application is given in [9], where texture

features are exploited to discriminate between only two classes, in order to determine whether the path is

traversable. Generally humanoid and legged robots only exploit vision to control their walking [10], but

not vice versa. The use of gait bounce signals and terrain classification is mentioned in [11] when different

floor materials affect different limb motions. However, this works only with small and light-weight legged

robots and does not exploit visual information.

To the best of our knowledge, this is the first paper on texture-based terrain identification for legged

robots that exploits walking behaviours to improve classification performance. We present a textured-

based terrain classification method for a legged system using a single camera that offers the following

novel contributions: i) a recursive temporal filter with adaptive filter coefficients computed from major

uncertainties; ii) a compensation for the perspective foreshortening; iii) a new path consistency estimation;

iv) a technique for performance improvement in terms of classification accuracy and computational cost

using the motion characteristics of a biped humanoid robot.

The system used in this paper is demonstrated in Fig. 1, showing a camera located at a distance h

from the ground and at an angle θx from the vertical axis. The proposed method is illustrated in Fig.
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2. It employs a recursive filter where filter coefficients are updated adaptively from frequency projection

and path consistency. The recursive filter ensures that information from a sequence of frames is weighted

appropriately. Frequency Projection – i.e. the textural change due to a forward moving camera, and Path

Consistency – i.e. the possibility of combining different materials across frames, are employed to estimate

the uncertainty of the information as it passes between frames. The algorithm begins by segmenting key

frames into non-overlapping regions. These key frames are selected from the sharpest frames of the

walking cycle, as determined by the plot of sharpness values measured from the mean of highpass

magnitudes. Only key frames are segmented, so as to reduce computational time, employing a wavelet-

based watershed segmentation [12]. Many existing methods divide an image into equal-sized rectangular

patches [6], [13]. Although these require less computational time for segmentation, an increased number

of patches can lead to higher overall complexity in feature extraction and classification. Moreover, our

method achieves better boundary definition for different textures, an aspect that is important in order to

indicate where robots need to change their motions or directions.

Next our classification process is applied to each region and the associated classification probability

is stored. These regions are tracked across successive frames until the next key frame, when the regions

are updated. The outcome of classification for each region is accomplished using a recurrence relation of

probability within a temporal sliding window defined adaptively according to walking cycle. A shorter

window is used when walking fast, because each area and object disappears sooner than when walking

slowly. We compute the decaying weights based on the major possible uncertainties due to walking and

camera settings, which are motion blur, path consistency and frequency variation caused by perspective

view. These factors cause a change in texture characteristics and the information from the affected areas

is weighted accordingly. The model used in the classifier is updated when new information from the

upcoming path is obtained.

The algorithm is highly effective yet simple, and maintains the video processing load within the bounds

of what is likely to be feasible for real-time computation. Moreover, unlike existing methods where

obstacle detection is separately achieved using geometry-based algorithms (either with visual information

[14], [15] or other sensors [16] or both [17]), our method is inspired by human vision which actually

exploits monocular vision to perceive information at a distance. Obstacles, defined as unwalkable areas,

are detected simultaneously with other terrain types using texture information.

The remainder of this paper is organised as follows. Related work is reviewed in Section II, and

the proposed framework is overviewed in Section III. The proposed texture-based classification method,

comprising a recursive probability estimation, an uncertainty-based combination and a model updating
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Fig. 2. Process of terrain classification for tracked regions

technique, is explained in Section IV. The influences of locomotion are described in Section V, and the

method performance is evaluated in Section VI. Finally, Section VII presents the conclusions of the study.

II. TEXTURE-BASED TECHNIQUES FOR LOCOMOTION

In locomotion applications, textures extracted from frames of a video sequence were initially employed

for optical flow calculation. Later, they were widely used for classification purposes [18]–[20], including

terrain classification [21]. Classification of textures is however not straightforward due to the high

variability of the data within and between images, particularly in natural scenes where effects, such
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as texture non-homogeneity, light variation, and shadows are common.

Texture analysis is generally performed in the spatial domain and/or the transform domain to measure

local variations in image intensity. In the spatial domain, statistical models are often applied, including

second-order grey level statistics (e.g. contrast, angular second moment, entropy or correlation), grey level

run length statistics and co-occurrence matrices [22]. In the transform domain, conventional approaches

make use of the Fourier power spectrum. Later, filter banks were employed to perform spatial-frequency

analysis as these can extract more robust frequency characteristics for spatially and temporally varying

natural images [20], [23]. Features can be extracted at a pixel level, but generally these perform poorly.

Alternatively region-based techniques can be used that spatially group the pixels of an object or areas

that contain similar characteristics [24] thereby achieving better performance particularly in the presence

of noise. As locomotion applications generally require real-time processing, speeded up robust features

(SURF) [25] have also used to identify key features in texture areas [8], [26].

Extracted texture features can provide descriptions of a given terrain region, so are suitable for

distinguishing navigable paths for autonomous vehicles. The authors in [6] proposed a fast multi-class

prediction algorithm which employs simple descriptors in different regions and applies more complicated

approaches when more time is available. The texture-based method in [7] further applies a temporal label

transfer where the results of previous frames are copied to corresponding patches in the current frame.

Recent reviews of visual terrain classification and techniques used in terrain traversability analysis can

be found in [27] and [28].

For humanoid robot research, motion planning techniques primarily focus on 3D geometric recon-

struction using onboard stereo cameras [29]–[31] or laser range sensors [32]–[34]. Environments may

also be simplified using edge detection to indicate the obstacles [10], [35]. However, such techniques

have only been applied to indoor scenes. Recently, texture information has become a focus for improving

locomotion. This has been inspired by human vision system (HVS) where texture gradient cues are crucial

for obtaining depth estimation in case of limited field of view (e.g. monocular vision) or when viewing

at ranges beyond 2-3m [36]. In [9], texture information in monocular images is employed together with

a laser to identify the traversable areas, for a robot.

III. OVERVIEW OF THE PROPOSED FRAMEWORK

We classify the regions appearing in each frame into 3 classes: (1) hard surfaces (e.g. tarmac, bricks,

tiles, deck, rough metal, cement); (2) soft surfaces (e.g. grass, soil, sand, gravels, snow, mud); and (3)

unwalkable areas (e.g. static and moving obstructions). These classes could influence a robot’s posture
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and dynamic stability when walking on the surface. The diagram of the proposed framework is illustrated

in Fig. 3. The process starts by generating the instant walking pattern, using the sharpness value of each

input frame. This is defined over a sliding window and is employed for selecting the next key frame and

skipped frames. Each frame is thus processed as either a key frame, a skipped frame or a normal frame,

as described below:

• In normal frames, the regions of previous frame are matched to the corresponding areas in the current

frame using a multi-scale gradient matching method [37]. To reduce computation time, the regions in

the previous frame that are classified as hard surfaces are warped together (similarly applied to soft

surfaces). These are generally parts of a uniformly orientated surface from the one-point perspective

which can exploit the same homograph parameters. Conversely, each unwalkable region generally

contains an individual transformation, hence they are warped separately.

• Key frames are segmented into non-overlapping regions for which the texture characteristics of

adjacent areas are different. We employ a wavelet-based watershed segmentation [12] where the

gradient map is generated using the Dual-Tree Complex Wavelet Transform (DT-CWT) [38]. The

newly formed regions are used in the initial classification process. Next the regions that are not

classified as unwalkable areas are matched to the corresponding regions in the previous frames,

while the unwalkable regions are processed using a refreshment scheme (described in Section IV-B).

This is because detecting obstacles is considered to be very important; and thus, any results from

previous frames should not affect the decision of these being obstacles in the current frame.

• For skipped frames, a warping process is performed only under conditions of fast movement (e.g.

running, rapid camera panning, etc.), since the associated large displacements can cause tracking

difficulty. Here we use a simple threshold applied to the walking speed. If the current walking speed

is faster than 5 km/h, the region tracking process will be applied. Possible improvements, such as

using global displacements, will be developed in future work. None of the skipped frames are used

in the classification process because the texture features from blurred frames could deteriorate the

overall performance.

Next, for normal and key frames, the texture features are extracted for each region. These are employed

in the classification process and stored for model updating when the classes of such regions are predicted

at a sufficient confidence level. In the classification process, a support vector machine (SVM) [39] is

employed to compute the probability of each region, and then the recursive probability estimation process

is applied for the final decision. Further details of each stage in the algorithm are provided in the following
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Fig. 3. The proposed terrain classification framework

sections.

IV. PROPOSED TEXTURE-BASED TERRAIN CLASSIFICATION

A. Texture Features

Texture is an efficient tool for characterising various material properties, such as structure, orientation,

roughness, smoothness, or regularity differences within an image. The texture features used in our work

are given in Table I and these include Intensity level distribution, Wavelet features and the Local binary

pattern, extracted from each region. Only the intensity (Y) channel, extracted from the YCbCr colour

transformation, is used here.

For the intensity level distribution, five parameters are extracted, including mean, variance, skewness,

kurtosis and entropy. As one of the most important aspects of texture is scale, which provides both spatial

and frequency information, a multi-resolution approach is utilised based on wavelet features. We employ

the Dual-Tree Complex Wavelet Transform (DT-CWT) [38] which employs two different real discrete

wavelet transforms (DWT) to provide the real and imaginary parts of the CWT. This increases directional

selectivity over the DWT and is able to distinguish between positive and negative orientations giving six
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TABLE I

LIST OF FEATURES USED IN CLASSIFICATION

Features # dimensions

Intensity level distribution (ILD)

Mean, Variance, Skewness,

Kurtosis, Entropy 5

Complex wavelet transform (CWT)

(4 decomposition levels)

Mean, Variance of magnitudes 8

Mean of magnitudes of each sub-band 48

Local Binary Pattern (LBP)

Histogram 59

distinct sub-bands at each level, corresponding to ±15◦, ±45◦, ±75◦. This provides near shift-invariance

and good directional selectivity. With 4 decomposition levels, the mean and variance of magnitudes across

all subbands in each region produce 8 features and those of each subband produce further 48 features

(2×4 levels×6 subband/level).

The Local binary pattern labels the pixels in an image by thresholding the neighbourhood of each

pixel, considering the result as a binary number [40]. Uniform patterns are generated using 8 sampling

points on a circle of radius 1 pixel. There are a total of 256 patterns, 58 of which are uniform, which

produces 59 output labels. A histogram with 59 bins is obtained, and the frequency of each bin is used

as one feature.

Other textural features were also investigated, including run-length measures [41], the grey-level co-

occurrence matrix [22] and Gabor filter parameters [42]. However, the features in Table I were found

to give the best terrain classification performance for body-mounted cameras. A support vector machine

(SVM) was employed to exploit these texture features to compute the probability of each terrain class.

B. Recursive probability estimation

One of advantages of continuous video is the large amount of information provided in both the spatial

and temporal dimensions. In addition, it also provides a basis for temporal noise filtering. The simplest way

to exploit temporal information is to use averaging across a group of frames. Provided that successive

frames are accurately registered, the average is generally better than any of the individual frames. A
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recursive averaging process is employed here using exponentially decaying weighting of previous frames

(wk), in order to address the issue of error integration.

A multi-pass algorithm could be used to produce a classification result for a single frame, with a

fresh sliding (N+1)-frame window comprising current, backward and forward frames. Unfortunately this

would be computationally demanding because the registration process would need to be repeated for all

N frames for each time shift. Also, buffering the forward frames is not ideal for a real time application.

Therefore, we apply a recursive strategy to tracked regions. Eq. 1 describes data processing for class

c, c ∈ {1, 2, 3}, of region r in the current frame n with previous N frames. This probability combination

is similar to applying an N th-order recursive filter with adaptive filter coefficients wk.

P r,c
n =

N∑
k=0

wr
kP

r,c
n−k (1)

Refreshment scheme: In each key frame, the segmentation process is performed. This will either generate

new regions corresponding to the first appearance of objects at distance or will update the existing regions

to reduce tracking error. The regions that are classified as walkable regions (class 1 and class 2), are

applied to the recursive probability estimation process with the best matched regions of the previous

frames. In contrast, the P r,3
0 of the region that is classified as unwalkable regions (class 3), is not

combined with that of any regions of the previous frames, but acts as the refresh point and will be used

in the recursive process for the next frame. This means, at the key frame: N = 0, P r,3
n = P r,3

n−0, and at the

next frame: N = 1, P r,3
n = wr

0P
r,3
n−0 +wr

1P
r,3
n−1 and so on. We set this rule because the detected unwalkable

regions in the key frame often correspond to new objects that appear on the walking path and require

attention, whereas other regions are the continuous paths that are already visible in previous frames.

Experiments show that the refreshment scheme can improve the classification accuracy by approximately

5% for general outdoor paths and by up to 10% for other complicated routes that have many obstacles.

C. Uncertainty-based Combination

Leading on from Section IV-B, an important step in our algorithm is the probability combination.

In this section, we explain the proposed scheme to compute wk in Eq. 1. Generally the shape of the

probability density distribution conveys the amount of certainty of information, i.e. a narrow distribution

implies that most probability is concentrated in a narrow band, while a wide shape means the probability

is spread over a wider range. This indicates confidence in a value. Therefore, the variance σ2 of the

probability distribution is used to compute the weight as shown in Eq. 2.
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wr
k =

(
1

σ2
k,r

)/( N∑
k=0

1

σ2
k,r

)
(2)

The uncertainty occurring due to walking and environmental conditions is considered when estimating

each σ2
k,r. The variance of the probability distribution of the frame that is further from the current frame

is generally larger since uncertain conditions increase. Firstly, the change of texture frequency distribution

on the image plane along the direction of foreshortening is analysed. Secondly, the consistency of the

path ahead is exploited to adapt the weights used for probability combination. Later in Section V we

describe a technique which uses the walking cycle for key frame selection, adaptive sliding window

calculation and blur frame suppression.

1) Projective frequency compensation: Since the walking path appears from a one-point perspective,

the corresponding areas in the different frames may contain different frequency characteristics depending

on the position on the image where the ground surface projects to. We therefore analyse the frequency

change on an image plane due to a camera under forward motion. Fig. 4 shows the geometric system we

use. Frequencies projected on the image plane in horizontal and vertical directions are estimated from

the local frequency fS on a ridge surface S of the terrain at an incident angle θx with the image plane.

We assume θy=0◦ and θz=0◦ regardless of whether the head (camera) turns left-right or moves side-

side during walking1. The horizontal projective frequency fHy in the image plane at y comes from the

projection tH of T = 1
fS

as shown in Fig. 4 (Middle). Using the property of similar triangles, fHy = 1
tH

can be estimated as Eq. 3, where F and Z0 are focal length and surface distance from the camera,

respectively.

tH =
T

Z0
(F − y tan(θx)) (3a)

fHy =
Z0fS

F − y tan(θx)
(3b)

We estimate the vertical projective frequency fVy at position y from an average between the local

projective frequency at just above and below point y, fVy1 = 1
∆y1

and fVy2 = 1
∆y2

, respectively. The

estimation starts with the projection tV of T on the plane that is parallel to S and intersects the image

plane at y as shown in Fig. 4 (Bottom), which is computed as tV = T
Z0

(F − y tan(θx)). Again, using

the property of similar triangles, ∆y1 and ∆y2 are computed from Eq. 4 and 5, respectively.

1The impact of camera panning on the overall performance of the system is described in Section VI-B1

February 17, 2015 DRAFT



11

x
x

x y
yy

z

z

f Z

w

w

w

0

i

i

s

s s

x

τ

ns S

σσ

θ
yθ

θx
θx

image plane

F Z0C

surface
T

tH

F-ytanθx 

S

y

y

image plane

F Z0

θ

θ

T

tV

C

surface

T

x

x

Δy1

Δy2

tV

F-ytanθx

y-
t  

co
s θ

x
V S

Fig. 4. Graphical representation used for estimating frequency on image plane. Top: Projective geometry. Middle: Geometry

when θy = 0◦ and θz = 0◦ for fH
y estimation. Bottom:2D geometry of y-z plane for fV

y estimation

∆y1 tan(θx)

F − y tan(θx)
=
tV cos(θx)−∆y1

tV cos(θx) + y
(4a)

∆y1 =
tV cos(θx)(F − y tan(θx))

F + tV sin(θx)
(4b)
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F − tV sin(θx)

F
=
y − tV cos(θx)

y −∆y2
(5a)

∆y2 =
tV cos(θx)(F − y tan(θx))

F − tV sin(θx)
(5b)

Replacing tV , fVy is estimated as shown in Eq. 6.

fVy =
fVy1 + fVy2

2
=

FZ0fS
cos(θx)(F − y tan(θx))2

(6)

It can be seen that an inverse fVy is a parabolic function of y which agrees with the estimation in

[43] where the non-linear spatial frequency in the image plane caused from the perspective projection is

approximated as the gradient of phases.
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The values fHy and fVy are scaled in the range 0-1 across the image height, f̃ϕy = (fϕy −

fϕ(−Mh/2))/(f
ϕ
(Mh/2)−f

ϕ
(−Mh/2)), ϕ ∈ {H,V }, where Mh is an image height. Thus, knowledge of Z0 and

fS is not required. Fig. 5 compares the estimated frequency with the actual local frequency on the image

plane when the surface is inclined at various θx. The surface is generated by projecting the rectangular

image of a bi-directional sinusoid to each θx. The position in the y direction is also normalised so that

the results of different surface angles can be plotted on the same graph.

The variance of the probability at the frame which is at distance k from the current frame is estimated

as shown in Eq. 7, where ∂f̃H
y

∂y and ∂f̃V
y

∂y are the differential frequencies between corresponding position y

(centroid of region r) on frame k−1 and k in the horizontal and vertical, respectively. σ2
0,r is the variance

obtained from the probability distribution of the training dataset. We use a Library for Support Vector

Machines (LIBSVM) to compute the probability of each training data (further details about probability

estimation can be found in Chapter 8 in [39]).

σ2
k,r = σ2

k−1,r +
∂f̃Hy
∂y

∂f̃Vy
∂y

(7)

We compared the performance of our method using defined weights based on estimated projective

frequency, with approaches using a uniform weight and several common decayed weight methods. The

most similar weight distribution to ours is a Gaussian with variance equal to filter length, N . However,

these weights are constant across the whole image, whereas ours are adaptive according to the position of

the region being processed. A performance comparison is presented in Fig. 6. The accuracies (%) in this

plot and the rest of this paper were computed from the number of pixels classified correctly (3 classes)

over the total number of pixels in each frame. It can be seen that the wider weight distributions benefit

the prediction for the near areas, while the narrower shapes give better prediction for the far areas. Our

method can clearly be seen to outperform the other approaches considered.

2) Path consistency: A path that contains several different materials or obstructions makes tracking the

corresponding areas between frames less reliable and adds more uncertainty to the probability estimation.

In this case, more weight should be given to the current frame and the weights should decay faster than in

the case of a consistent path. To estimate the probability of path consistency, a row-wise sum of highpass

magnitudes of the DT-CWT is employed, before applying polynomial curve fitting with degree of 2 to

construct error histograms (12 bins for each decomposition level). A degree of 2 is used because the

projective frequency exhibits a near parabolic characteristic as shown in Fig. 5. Fig. 7 shows examples of

both type of paths and their error histograms. With three decomposition levels, the values of the row-wise
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Fig. 6. Classification accuracy comparison of 1000 frames of a video.

sums and the error histograms of level 1-3 are shown in column 1-3 of Fig. 7, respectively. The plots also

show estimations using polynomial curve fitting, with degrees 2, 3 and 4. The error histograms reveal

that the best discrimination between consistent and inconsistent paths is achieved using degree 2 fitting.

The value of each bin of the error histogram is used as a feature for computing probability Pp by SVM

classification. Pp is employed to adjust the weight as shown in Eq. 8 and an example of weights used for

the sliding window of 20 frames with various Pp values is shown in Fig. 8. A small Pp indicates that the

path ahead could be inconsistent, so the weight decays quickly for older previous frames. Pp can also be

sent to the control system to assist awareness of obstructions or changes in terrain type. The boundaries

between regions that are classified as different types can also be used to indicate locations which the

robot should be made aware of. Operating adaptively on the instant video content, the classification

performance is improved as shown in Fig. 9, particularly between frames 550 and 650 where the video

contains movement from bricks to grass.

σ2
k,r = σ2

k−1,r +
1

Pp

∂f̃Hy
∂y

∂f̃Vy
∂y

(8)

D. Classification framework with model update

Areas that have been tracked from a distance generally show clearer frequency characteristics when

they get closer to the observer, since the near areas appear sharper and different terrain types are easier to

distinguish. The terrain classification framework therefore includes a parallel process in which the labels
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of all tracked features from far to middle ranges (row 1 - row 3
4Mh) are updated with more accurate

results from the classification of near areas (row 3
4Mh+1 - row Mh). The new model is used to classify
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Fig. 9. Classification accuracy improvement when the path consistency approach is employed.

previously unseen appearing areas in the next frame. The system is tested by initially modelling 500

samples of soft surfaces and 500 samples of hard surfaces, and then 100 new samples of each type

are included to recompute the model. By using 400 samples of each type for testing, the histogram of

decision values is generated as shown in Fig. 10. The plot clearly reveals an improvement as there are

fewer misclassified samples (showing smaller areas above and below decision value of 0 for hard and soft

surfaces, respectively). As the quantity of training data can become very large, an ensemble classifier,

along with a feature selection method, may be used to improve predictive performance and to reduce
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memory requirement [44].

V. THE INFLUENCE OF WALKING

When the shutter speed of a camera is not fast enough to capture stop motion, such as in low light

conditions or with fast camera motion, some frames will exhibit high levels of motion blur which may alter

measured frequency properties. Fig. 11 shows the sharpness value Ψ of each frame which is computed

from the mean of highpass magnitudes Ψ = (
∑4

l=1

∑6
s=1 |ψl,s|)/nall, where ψl,s is a DT-CWT coefficient

of subband s at decomposition level l, and nall is the total number of DT-CWT coefficients).

Fig. 11 clearly shows the points where the camera is moving faster. This indicates when the body

vaults over the leg at each step during normal walking. Several motion blur removal methods have been

proposed previously [45]; unfortunately deblurring often involves blur estimation or blind deconvolution

which increases complexity and is not feasible for real time applications. In [46], a motion deblurring

technique which does not rely on an iterative process was proposed for video stabilisation. This technique

replaces blurred pixels with the sharp pixels from the neighbouring frames. A transform-based image

fusion can also be employed for deblurring. The large highpass magnitudes of wavelet coefficients are

selected amongst successive aligned frames to produce a sharp fused image in [47]. Here, we make use

of blur information to reduce processing time and simultaneously improve overall classification accuracy

via key- and skipped-frame selection. The performance of our terrain classification is tested with the
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Fig. 11. Sharpness shows walking step (Cw ≈18)

proposed blur compensation and the deblurring methods presented in [46] and [47]. These results are

presented in Section VI-A.

A. Key frame selection and adaptive window

A walking cycle, Cw (unit: frame/step), is employed to predict the next key frame in which the

segmented regions are updated. It is also employed to adapt window size in our recursive method, i.e.

N = Cw. If the walking cycle is short (e.g. walk fast or run), a shorter window is used.

We estimate Cw using the sharpness values, as shown in Fig. 11. The values obtained from the last

5Kw frames (the number of frames just needs to be large enough to capture the walking behaviour at

that time), where Kw is a number of frames in one walking step. The initial Kw is 20 frames/step2,

which is also reasonable to use if the walking speed is unknown.

The Fast Fourier transform (FFT) is employed to perform dominant frequency estimation. Consequently,

the next key frame will be Cw frames from the previous key frame which is detected as a local maximum.

Adaptively selecting key frames will prevent using blurred frames for segmentation. The maximum value

of Cw is limited to the framerate for the case of missing the next local maximum (sharpest frame of the

next step). If Cw reaches the maximal limit, the earliest frame that is sharper than the average sharpness

value is selected as the key frame. Setting Cw equal to framerate ensures that the system is guaranteed

2Based on the average step length of 90 cm and walking speed of 5 km/h [48], one step takes approximately 20 frames when

a 30 fps camera is used (Kw = framerate[fps]·step length[cm/step]
walking speed[cm/s] = 30×90

5×105/(60×60)
= 19.44 frames/step)
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to receive at least one key frame per second. Fig. 12 shows positions of key frames with sharpness value

of each frame in the sequence.

B. Skipping of blurred frames

When an image is excessively blurred, it should not be employed in the classification process. This is

because motion blur causes textural characteristics to change which could deteriorate the classification

performance. It also influences the results for following frames when a recursive technique is employed.

A frame skipping strategy improves overall system performance - not only is classification accuracy

increased, but computational time is also reduced.

To identify the skipped frames, the estimated Cw is also employed. The local minima of the sharpness

values are detected, and then the next Cw ±
⌊
Kw

8

⌋
frames from the previous minimal point are checked

(the maximum number of skipped frames in one walking step is limited to Kw

4 ). There are two cases

for computing the threshold used for defining the skipped frames, which are when walking on i) the

consistent path and ii) the inconsistent path. This can simply employ the result of the path consistent

prediction (described in Section IV-C2) of the previous frame.

• Case I - Consistent path: If the sharpness value of the current frame is less than the maximum of

the local minima of previous 5Kw frames, they are defined as skipped frames.

• Case II - Inconsistent path: If the sharpness value of the current frame is less than the average of

the local minima of previous 5Kw frames, they are defined as skipped frames.

This adaptive threshold ensures that the change of terrain characteristics from high detail texture, such

as grass and bricks, to low detail texture, such as tarmac, will not cause over skipping. An example

sequence showing skipped frames based on sharpness values and path consistency is shown in Fig. 12

(Skipped frames are indicated by red cross). Frames #1050 - #1400 correspond to a tarmac road, so they

have average sharpness values much lower than those of the previous frames where the path is made of

bricks and grass. If the path consistency constraint is not employed, the sharpest frames around these

frames might be defined as the skipped frames.

C. Blur frame suppression

The sharpness value is also employed to adjust the weight applied to each frame (Eq. 1) as shown in

Eq. 9, where gk is the mean of the highpass magnitudes of frame k in the sliding window. The simple

rule employed here is that information from the blurred frames is exploited less than for the case of

sharp frames.
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w̃r
k =

gk

max
(
{gi}Ni=0

)wr
k (9)

VI. RESULTS AND DISCUSSION

The sequences used for testing were in 1920×1080 (Mw × Mh) format with 24-bit RGB colour

acquired at 30 fps, using a Canon EOS 5D with a fixed 28mm lens. Automatic mode was used so the

camera selected the aperture, ISO and white balance values best suited to the general shooting conditions.

The camera was positioned approximately 160 cm from the ground and at 60◦ from the vertical axis.

Example frames are shown in Fig. 13, where walking speed was 4-6 km/h, measured using GPS on a

mobile phone. We reduced the processing time by segmenting only part of the far area in the key frame

(row 1 - row Mh

3 , col Mw

5 - col 4Mw

5 ), and performing principal component analysis (PCA) to reduce

feature dimensions to 12 - accounted for 99.9% of the variance. The radial basis function (RBF) kernel

was employed in the SVM classification. The parameters used in the RBF were selected by grid search

using cross validation (initially the penalty parameter C was 7 and kernel parameter γ was 7.8).

A. Multi-class classification

We tested our framework with the three classes of terrain described in Section III. Image size was

reduced by a scale factor of 4 to speed up the segmentation process, but features were extracted at full

resolution. For training purposes, only sharp frames from a range of videos including all material types
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Fig. 13. Example frames from walking videos

were used. These were segmented into various region sizes to generate 1000 training samples for each

class3. These videos are independent of the testing videos.

Fig. 14 shows the classification performance using i) individual frames, ii) a weighted average of

features of each frame to compute probability, iii) a weighted average of individual probability of

each frame, and iv) the proposed recursive method. All methods using temporal information improved

classification accuracy (by 100% in these plots). The average-based features in general show the best

probability (Pn close to 1). However in the difficult scenes (Fig. 15), where incorrect classifications

occurred because of high movement or consecutive motion blur, the recursive probability approach

outperformed the others. That is, our method offers better robustness. Fig. 15 shows a further improvement

when updating weights to compensate for motion blur. Examples of the subjective results are shown in

Fig. 16. The right column of the figure shows the results of the high motion-blur frames which can cause

incorrect region warping and incorrect prediction. Our method is however robust to these influences.

We compared our method with the approaches presented in [6], [7] and [8]. These methods partitioned

each frame into near and far patches which exhibited different textural characteristics and which were

processed independently. Table II shows the average classification accuracies for 15 test videos containing

all types of terrains over a walk of duration 40 seconds. Ground-truth videos were manually labelled. The

accuracy of our method was significantly better, improving classification from 66.7% using the method

from [7] to a value of 82% with walking compensation. Our system increased computational time slightly

compared to the methods in [6] and [8] by approximately 8%, but was lower than the method in [7] by

5%. The increase over the method in [6] and [8] is primarily due to the region warping process.

3Dataset is available at http://seis.bris.ac.uk/∼eexna/download.html.
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Fig. 14. Comparison of classification performance when using average and recursive methods.
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Fig. 15. Comparison of classification performance when motion blur is employed.

TABLE II

AVERAGE CLASSIFICATION ACCURACY (%) WHEN WALKING EFFECTS ARE CONCERNED.

Method [6] [7] [8]
w/o walk w walk

compensation compensation

Accuracy 74.2 66.7 78.0 79.4 82.0

We also compared the performance of terrain classification, using the proposed walking compensation,

with the video deblurring approaches proposed in [46] and [47]. These two techniques sharpen the blurred

pixels using information in the spatial and frequency domains of neighbouring frames, respectively. For
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TABLE III

PERFORMANCE COMPARISON BETWEEN WALKING COMPENSATION AND DEBLURRING METHODS

Method
# of frames Accuracy Complexity

for deblurring (%) (times)

Walk compensation - 82.0 1

spatial deblurring [46]

6 80.8 2.0

12 81.4 4.5

Cw 81.8 7.3

freq. deblurring [47]

6 80.5 5.6

12 82.0 9.8

Cw 82.1 14.1

fair comparisons, all systems update the segmented regions at the same key frames. Table III shows the

performance comparison. The complexity was measured as the computational cost compared to that of

when using the walking compensation. We tested three window sizes used in the deblurring process,

namely 12 frames - similar to that used in [46]; 6 frames - for lower computational cost; and Cw frames

- adaptive according to walking cycle of which the average was 18 frames. It is obvious that using

more neighbouring frames achieves better classification, but results in a higher computational time. The

shorter the window, the more likely it does not contain a non-blurred frame, i.e. there are more consecutive

blurred frames than the window length. Based on both classification accuracy and complexity, our walking

compensation outperforms the spatial deblurring method in [46]. This is because a slight misalignment

amongst frames used for deblurring may result in a large change in the texture in the sharpened frames.

The fusion method in [47] does not produce a misalignment, since it includes non-rigid frame registration.

However, it requires significantly higher computational cost, whilst offering an accuracy improvement of

less than 0.1%.

B. A robust framework

1) Horizontal camera motion: We investigated the performance of the proposed framework when the

video content included horizontal movement caused by turning or camera panning. Examples of difficult

cases are shown in Fig. 17, including the results from a slow pan containing high motion blur (left) and

a fast pan with obstacles (right). The result for the slow pan achieved correct prediction in the areas

with low motion blur, whilst suffering where high motion blur occurred; the wall on the right of the
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Fig. 16. Subjective results. Label 1 (green), label 2 (red) and label 3 (blue) correspond to the areas classified as hard surfaces,

soft surfaces and unwalkable areas, respectively. The size of the circle indicates probabilities – bigger implies higher confidence

of classification. The left and right columns are from sharp and blurred frames, respectively. Classification accuracy (top to

bottom) of left column: 87.07%, 89.96%, 86.79%, right column: 79.75%, 67.32%, 75.17%.

image exhibited an incorrect prediction. The system, however, soon restored its performance when the

video returned to normal walking in a forward direction. For the fast pan case, the system achieved

correct results for all areas on the right of the image, including the fence. However, there were missing

areas (on the left of the image) where the system did not perform correct classification. This problem

occurred because the fast-moving camera caused many successive frames to be blurred. These frames

were consequently skipped and the newly appearing regions were not updated. The system however
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Fig. 17. Camera panning scenes (moving from right to left). Left: slow pan. Right: quick pan showing missing area in the left

part.

recovered when the next key frame arrived (at least every one second), and the segmentation process

updated these new areas.

2) Sloped ground: When walking on sloped ground, the performance of the system is possibly lower

because the actual θx is different from the pre-defined value. After the ground returns to being level, the

system will soon recover back to a performance level similar to that of the case of horizontal camera

motion. A long slope might however affect the performance more severely. Hence, we have developed a

parallel process to estimate ground orientation [49], which will be included in the system in the future.

In this section, the effect of θx was tested. Fig. 18 shows the performance when errors in θx are

present. Positive ∆θx and negative ∆θx imply ascending and descending slopes, respectively. Interestingly,

walking uphill affects system performance more than walking downhill. This is because the weight

distribution used in the recursive probability estimation is wider than it should be, which raises a problem

of error integration.

3) Camera type: We tested the robustness of our method by using test sequences from a different

camera to that used for the training dataset. A GoPro Hero3 was used to capture similar scenes to those

in the test videos in Section VI-A. The videos were acquired at 30 fps with 1920×1080 spatial resolution

using a medium wide angle lens. These videos also exhibited lens distortions which affected the projective

frequency analysis in Section IV-C1.

Results are shown in Table IV, where our method, with and without model update, is compared to

the methods in [6], [7] and [8]. We updated the model using the result from: (i) the near area and (ii)

the groundtruth, referred to here as the ‘sensor’ (since a mechanical sensor could be used to confirm the

existence of a hard or soft surface when the robot steps on it). Our method showed improved results, even
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Fig. 18. Comparison of classification accuracy when the errors in θx present.

TABLE IV

AVERAGE CLASSIFICATION ACCURACY (%) WHEN MODEL UPDATE IS EMPLOYED.

Method [6] [7] [8]

without with model update

model near

area
sensor

update

Accuracy 70.4 62.5 71.7 74.2 78.7 80.1

when the update model is not employed. The model updating process further improves the classification

accuracy. With near area information (semi-supervised system) the accuracy was improved by 4.5%, while

using groundtruth improved the system performance by up to 6%. The classification accuracy of each

frame is shown in Fig. 19, which reveals that our method can deal better with difficult scenes. Subjective

results are shown in Fig. 20. The dips in the graph of Fig. 19 correspond either to motion blur or to

changes in surface types. For example, when a new terrain type appears in the far distance, the classifier

reverts to the model from the training camera which is based on different frequency characteristics. This

leads to poorer results. However, as the system continues to receive texture information, the classification

performance improves if walking consistently on the same surface type.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a novel framework for terrain type classification based on video acquired when

walking. This can be used by autonomous robots to make locomotion decisions when traversing difficult

and varied terrain. It also has potential application to guidance aids for the visually impaired. The
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Fig. 19. Classification accuracy per frame of a GoPro video.

Fig. 20. Subjective results of GoPro videos (same labels as Fig. 16). Classification accuracy: (left) 78.99%, (right) 82.23%

proposed scheme employs texture parameters along with information about walking behaviour to compute

the terrain class probability. Using our recursive filtering method with model updating, our framework

outperforms existing methods by up to 16% in terms of classification performance. It also provides a

robust solution, exhibiting resilience to horizontal camera motion and changes in camera type.

We believe that our method outperforms previous approaches because it exploits information in both

temporal and spatial dimensions. It also, for the first time, takes account of blur information during the

walking cycle. Finally, our classifier is updated intelligently as new information appears in the scene.

A possible area for future research is how to deal with classification uncertainty. In cases when the

probability of the selected class is low (or the probabilities of several classes are similar) a means of

further validating surface type is likely to be needed to ensure stability and safety of locomotion.
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