283 research outputs found

    Error tolerant multimedia stream processing: There's plenty of room at the top (of the system stack)

    Get PDF
    There is a growing realization that the expected fault rates and energy dissipation stemming from increases in CMOS integration will lead to the abandonment of traditional system reliability in favor of approaches that offer reliability to hardware-induced errors across the application, runtime support, architecture, device and integrated-circuit (IC) layers. Commercial stakeholders of multimedia stream processing (MSP) applications, such as information retrieval, stream mining systems, and high-throughput image and video processing systems already feel the strain of inadequate system-level scaling and robustness under the always-increasing user demand. While such applications can tolerate certain imprecision in their results, today's MSP systems do not support a systematic way to exploit this aspect for cross-layer system resilience. However, research is currently emerging that attempts to utilize the error-tolerant nature of MSP applications for this purpose. This is achieved by modifications to all layers of the system stack, from algorithms and software to the architecture and device layer, and even the IC digital logic synthesis itself. Unlike conventional processing that aims for worst-case performance and accuracy guarantees, error-tolerant MSP attempts to provide guarantees for the expected performance and accuracy. In this paper we review recent advances in this field from an MSP and a system (layer-by-layer) perspective, and attempt to foresee some of the components of future cross-layer error-tolerant system design that may influence the multimedia and the general computing landscape within the next ten years. © 1999-2012 IEEE

    Novel Time Domain Based Upper-Limb Prosthesis Control using Incremental Learning Approach

    Full text link
    The upper limb of the body is a vital for various kind of activities for human. The complete or partial loss of the upper limb would lead to a significant impact on daily activities of the amputees. EMG carries important information of human physique which helps to decode the various functionalities of human arm. EMG signal based bionics and prosthesis have gained huge research attention over the past decade. Conventional EMG-PR based prosthesis struggles to give accurate performance due to off-line training used and incapability to compensate for electrode position shift and change in arm position. This work proposes online training and incremental learning based system for upper limb prosthetic application. This system consists of ADS1298 as AFE (analog front end) and a 32 bit arm cortex-m4 processor for DSP (digital signal processing). The system has been tested for both intact and amputated subjects. Time derivative moment based features have been implemented and utilized for effective pattern classification. Initially, system have been trained for four classes using the on-line training process later on the number of classes have been incremented on user demand till eleven, and system performance has been evaluated. The system yielded a completion rate of 100% for healthy and amputated subjects when four motions have been considered. Further 94.33% and 92% completion rate have been showcased by the system when the number of classes increased to eleven for healthy and amputees respectively. The motion efficacy test is also evaluated for all the subjects. The highest efficacy rate of 91.23% and 88.64% are observed for intact and amputated subjects respectively.Comment: 15 Pages, 8 Figures, This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Code Generation and Global Optimization Techniques for a Reconfigurable PRAM-NUMA Multicore Architecture

    Full text link

    Advancement of Computing on Large Datasets via Parallel Computing and Cyberinfrastructure

    Get PDF
    Large datasets require efficient processing, storage and management to efficiently extract useful information for innovation and decision-making. This dissertation demonstrates novel approaches and algorithms using virtual memory approach, parallel computing and cyberinfrastructure. First, we introduce a tailored user-level virtual memory system for parallel algorithms that can process large raster data files in a desktop computer environment with limited memory. The application area for this portion of the study is to develop parallel terrain analysis algorithms that use multi-threading to take advantage of common multi-core processors for greater efficiency. Second, we present two novel parallel WaveCluster algorithms that perform cluster analysis by taking advantage of discrete wavelet transform to reduce large data to coarser representations so data is smaller and more easily managed than the original data in size and complexity. Finally, this dissertation demonstrates an HPC gateway service that abstracts away many details and complexities involved in the use of HPC systems including authentication, authorization, and data and job management

    Foreword and editorial - July issue

    Full text link

    PC-grade parallel processing and hardware acceleration for large-scale data analysis

    Get PDF
    Arguably, modern graphics processing units (GPU) are the first commodity, and desktop parallel processor. Although GPU programming was originated from the interactive rendering in graphical applications such as computer games, researchers in the field of general purpose computation on GPU (GPGPU) are showing that the power, ubiquity and low cost of GPUs makes them an ideal alternative platform for high-performance computing. This has resulted in the extensive exploration in using the GPU to accelerate general-purpose computations in many engineering and mathematical domains outside of graphics. However, limited to the development complexity caused by the graphics-oriented concepts and development tools for GPU-programming, GPGPU has mainly been discussed in the academic domain so far and has not yet fully fulfilled its promises in the real world. This thesis aims at exploiting GPGPU in the practical engineering domain and presented a novel contribution to GPGPU-driven linear time invariant (LTI) systems that are employed by the signal processing techniques in stylus-based or optical-based surface metrology and data processing. The core contributions that have been achieved in this project can be summarized as follow. Firstly, a thorough survey of the state-of-the-art of GPGPU applications and their development approaches has been carried out in this thesis. In addition, the category of parallel architecture pattern that the GPGPU belongs to has been specified, which formed the foundation of the GPGPU programming framework design in the thesis. Following this specification, a GPGPU programming framework is deduced as a general guideline to the various GPGPU programming models that are applied to a large diversity of algorithms in scientific computing and engineering applications. Considering the evolution of GPU’s hardware architecture, the proposed frameworks cover through the transition of graphics-originated concepts for GPGPU programming based on legacy GPUs and the abstraction of stream processing pattern represented by the compute unified device architecture (CUDA) in which GPU is considered as not only a graphics device but a streaming coprocessor of CPU. Secondly, the proposed GPGPU programming framework are applied to the practical engineering applications, namely, the surface metrological data processing and image processing, to generate the programming models that aim to carry out parallel computing for the corresponding algorithms. The acceleration performance of these models are evaluated in terms of the speed-up factor and the data accuracy, which enabled the generation of quantifiable benchmarks for evaluating consumer-grade parallel processors. It shows that the GPGPU applications outperform the CPU solutions by up to 20 times without significant loss of data accuracy and any noticeable increase in source code complexity, which further validates the effectiveness of the proposed GPGPU general programming framework. Thirdly, this thesis devised methods for carrying out result visualization directly on GPU by storing processed data in local GPU memory through making use of GPU’s rendering device features to achieve realtime interactions. The algorithms employed in this thesis included various filtering techniques, discrete wavelet transform, and the fast Fourier Transform which cover the common operations implemented in most LTI systems in spatial and frequency domains. Considering the employed GPUs’ hardware designs, especially the structure of the rendering pipelines, and the characteristics of the algorithms, the series of proposed GPGPU programming models have proven its feasibility, practicality, and robustness in real engineering applications. The developed GPGPU programming framework as well as the programming models are anticipated to be adaptable for future consumer-level computing devices and other computational demanding applications. In addition, it is envisaged that the devised principles and methods in the framework design are likely to have significant benefits outside the sphere of surface metrology.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Localized Application for Video Capture for a Multimedia Sensor Node with Name-Based Segment Streaming

    Get PDF
    abstract: The Internet of Things (IoT) has become a more pervasive part of everyday life. IoT networks such as wireless sensor networks, depend greatly on the limiting unnecessary power consumption. As such, providing low-power, adaptable software can greatly improve network design. For streaming live video content, Wireless Video Sensor Network Platform compatible Dynamic Adaptive Streaming over HTTP (WVSNP-DASH) aims to revolutionize wireless segmented video streaming by providing a low-power, adaptable framework to compete with modern DASH players such as Moving Picture Experts Group (MPEG-DASH) and Apple’s Hypertext Transfer Protocol (HTTP) Live Streaming (HLS). Each segment is independently playable, and does not depend on a manifest file, resulting in greatly improved power performance. My work was to show that WVSNP-DASH is capable of further power savings at the level of the wireless sensor node itself if a native capture program is implemented at the camera sensor node. I created a native capture program in the C language that fulfills the name-based segmentation requirements of WVSNP-DASH. I present this program with intent to measure its power consumption on a hardware test-bed in future. To my knowledge, this is the first program to generate WVSNP-DASH playable video segments. The results show that our program could be utilized by WVSNP-DASH, but there are issues with the efficiency, so provided are an additional outline for further improvements.Dissertation/ThesisMasters Thesis Computer Engineering 201
    • …
    corecore