unknown

Error tolerant multimedia stream processing: There's plenty of room at the top (of the system stack)

Abstract

There is a growing realization that the expected fault rates and energy dissipation stemming from increases in CMOS integration will lead to the abandonment of traditional system reliability in favor of approaches that offer reliability to hardware-induced errors across the application, runtime support, architecture, device and integrated-circuit (IC) layers. Commercial stakeholders of multimedia stream processing (MSP) applications, such as information retrieval, stream mining systems, and high-throughput image and video processing systems already feel the strain of inadequate system-level scaling and robustness under the always-increasing user demand. While such applications can tolerate certain imprecision in their results, today's MSP systems do not support a systematic way to exploit this aspect for cross-layer system resilience. However, research is currently emerging that attempts to utilize the error-tolerant nature of MSP applications for this purpose. This is achieved by modifications to all layers of the system stack, from algorithms and software to the architecture and device layer, and even the IC digital logic synthesis itself. Unlike conventional processing that aims for worst-case performance and accuracy guarantees, error-tolerant MSP attempts to provide guarantees for the expected performance and accuracy. In this paper we review recent advances in this field from an MSP and a system (layer-by-layer) perspective, and attempt to foresee some of the components of future cross-layer error-tolerant system design that may influence the multimedia and the general computing landscape within the next ten years. © 1999-2012 IEEE

    Similar works