
IEEE TRANS. ON MULTIMEDIA, VOL. 15, NO. 2, PP. 291-303, MAR. 2013. ACCEPTED VERSION 1

Error Tolerant Multimedia Stream Processing:
There’s Plenty Of Room At The Top (Of The

System Stack)
Yiannis Andreopoulos, Member, IEEE

Invited Paper

Abstract—There is a growing realization that the expected
fault rates and energy dissipation stemming from increases in
CMOS integration will lead to the abandonment of traditional
system reliability in favor of approaches that offer reliability
to hardware-induced errors across the application, runtime
support, architecture, device and integrated-circuit (IC) layers.
Commercial stakeholders of multimedia stream processing (MSP)
applications, such as information retrieval, stream mining sys-
tems, and high-throughput image and video processing systems
already feel the strain of inadequate system-level scaling and
robustness under the always-increasing user demand. While such
applications can tolerate certain imprecision in their results,
today’s MSP systems do not support a systematic way to exploit
this aspect for cross-layer system resilience. However, research
is currently emerging that attempts to utilize the error-tolerant
nature of MSP applications for this purpose. This is achieved by
modifications to all layers of the system stack, from algorithms
and software to the architecture and device layer, and even the IC
digital logic synthesis itself. Unlike conventional processing that
aims for worst-case performance and accuracy guarantees, error-
tolerant MSP attempts to provide guarantees for the expected
performance and accuracy. In this paper we review recent
advances in this field from an MSP and a system (layer-by-layer)
perspective, and attempt to foresee some of the components of
future cross-layer error-tolerant system design that may influence
the multimedia and the general computing landscape within the
next ten years.

Index Terms—error-tolerant multimedia; stochastic com-
puting; throughput-distortion computation; new computation
paradigms; cross-layer system resilience

I. INTRODUCTION

ADVANCES in computer-based information processing
hinge on the premise of inexpensive doubling of the pro-

cessing capability of microprocessors every 18 to 24 months
(Moore’s law). However, today it is widely acknowledged that
this is threatened by fundamental limitations of silicon-based
transistor integration that lead to excessive energy dissipation
and unacceptable fault rates for future microprocessors [1]–
[5]. In a last strive to avoid such limitations, the micropro-
cessor industry has extended conventional single-processor
architectures to networks of processors (cores), ranging from

The author is with the Electronic and Electrical Engineering Depart-
ment, University College London, Roberts Building, Torrington Place,
London, WC1E 7JE, Tel. +442076797303, Fax. +442073889325, Email:
i.andreopoulos@ucl.ac.uk. Copyright (c) 2010 IEEE. Personal use of this
material is permitted. However, permission to use this material for any other
purposes must be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org.

2~16 large cores (multicore) to 4096 small cores on a single
integrated circuit die (manycore) [5]. This final attempt to
sustain computational information processing advances is,
however, not expected to be a panacea, as it significantly
increases interconnection and programming complexity, as
well as the energy consumption and fabrication costs [5].
It seems that R. P. Feynman’s acclaimed “There’s plenty
of room at the bottom” philosophy1 is now in jeopardy
for silicon CMOS technology. As such, it becomes evident
that we must look at applications and their exact precision
and resilience requirements in the event that it shall become
necessary to trade-off precision for speed, energy consumption
and resilience to computational errors. Multimedia stream pro-
cessing (MSP) is a particularly pertinent class of applications
for trading off precision for increased system resilience and
decreased utilization of system resources. This is due to the
inherent error-tolerant nature of MSP applications, but also
due to their significant computational and energy requirements
stemming from today’s high-volume data streams. Hence, by
reversing the existing scaling paradigm, a growing number of
researchers investigate whether there is “plenty of room at the
top” of the system stack for ultra-efficient, error-tolerant, MSP
in multicore, manycore and custom hardware platforms.

A. New Research Vision for Error-tolerant MSP - An Analogy
to Signal Processing for Communications

Unlike the signal processing systems area, signal processing
for communications has reached a similar barrier early on: it
was discovered in the early 1960’s that it is not physically
(or economically) viable to amplify the transmission power
of a wireless or wired communication system so that the
received signal would always be error free; instead, it was
acknowledged that transmission errors are not aberrations,
but, rather, that they are inherent to communications and
must be treated as such. Thus, all communications systems
today are designed to withstand certain error rates at all
layers of the communication protocol stack by introducing
signal compression (to reduce the required bandwidth) and
redundancy (to alleviate transmission-channel impairments).
The aim is to provide for graceful resilience and performance
scaling according to transmission rates and the tolerated

1R. P. Feynman, There’s Plenty of Room at the Bottom; talk given on Dec.
29th, 1959 at the annual meeting of the American Physical Society at Caltech,
Pasadena, CA.

IEEE TRANS. ON MULTIMEDIA, VOL. 15, NO. 2, PP. 291-303, MAR. 2013. ACCEPTED VERSION 2

Figure 1. Multimedia stream processing applications viewed from a system
perspective. Compute-intensive routines consist of digital signal processing
primitives (e.g. convolution, decomposition and template matching), linear
algebra routines (e.g. matrix multiplication, system inversion and matrix fac-
torizations), data-dependent algorithms such as entropy coding or probability
table updates, etc.

signal distortion. Following this analogy, perhaps it is time
to consider computational multimedia stream processing as
a computation channel [6], [7] or as a stochastic computing
system [8], [9] optimizing for expected performance and not
for the worst case. Instead of solely striving for advances in
“channel quality” (i.e. increasing fault-free CMOS integration
and processor operating frequencies at substantial cost and
complexity), we can instead design multimedia processing in
software and hardware that can withstand certain error rates
at all layers of the system stack [1], [2], [4]. Similar to com-
munications systems, the aim would be to obtain graceful and
resilient approximations of the output results with increased
processing (i.e. “channel”) resources. Owing to their potential
error-tolerance capability, many multimedia stream processing
applications currently have enormous scaling potential left
unexploited [1], [6]–[8], [10], [11].

B. Multimedia Stream Processing Systems and Applications

We define an MSP system as any system that organizes
an application into streams of data inputs (such as image
pixels, sensor measurements, web-page crawler results, etc.)
processed by numerical linear algebra and signal process-
ing routines. Stream processing routines (or “kernels”) are
performance-critical functions that are restricted from arbitrary
data accesses except within their predefined inputs and outputs
[12]. A general system overview of stream processing is shown
in Figure 1. As indicated in the figure, the level of parallelism
in a practical implementation tends to increase for compute-
intensive routines used within high-level routines. At the same
time, data movement increases substantially, thereby creating a
bottleneck in terms of energy consumption and cycles required
for data transfer to and from processing cores. Because of
this bottleneck and the fact that multimedia processing is,
in general, tolerant to imprecision, MSP presents a very
important class of applications amenable to resource-precision
tradeoffs.

Examples of multimedia stream processing systems fitting
the schematic of Figure 1 are: document retrieval engines [13],
multimedia low-level or high-level analysis [14], coding and
visualization [15], computer graphics, games and computer

vision algorithms [16], etc. Pictorial illustrations of how such
applications fit the system overview of Figure 1 are given
in Figure 2. From a computational perspective it is almost
easier to list the multimedia applications that do not lend
themselves to stream processing, since so many are compatible
with this paradigm. Thus, it can be said that MSP systems
are the backbone of our digital society: from world-wide-web
indexing to voice or action recognition and mobile media,
MSP systems perform the bulk of the operations required for
these increasingly-complex services in real time.

C. Error Tolerance in Multimedia Stream Processing Systems

All MSP applications aim for average error or mean squared
error guarantees against ground-truth or “oracle” systems
rather than worst case error. For example, all face recognition,
machine learning and webpage ranking algorithms optimize
for the expected recall percentage (or percentage of misde-
tection/misclassification) against ground-truth results and not
for the worst-case. Within commercial services (e.g. Google
page ranking or image search) individual users will not notice
the occasional degradation of the recall accuracy by a few
percentile points, but they will notice service interruptions due
to system failure or inadequate server capacity. In addition,
most inputs in MSP applications stem from imperfect sampling
processes (audio/visual sensors, web-crawler data, etc) and
lossy signal compression performed for bandwidth reduction
introduces further artifacts. Consequently, MSP systems today
waste precious resources doing overly-precise calculations.
This means that, in return for throughput increase (in samples,
queries, or measurements per second), many, if not most, MSP
applications can accept graceful degradation in their results’
accuracy under stochastic performance guarantees.

Have precision vs. computation aspects been adequately ex-
ploited so far in systems? Current high-performance multicore
and manycore systems (aka “CPUs” and “GPUs”) do provide
a few data types that can be used to adjust data precision (i.e.
8/16/32/64-bit integers and 16/32/64-bit floating-point repre-
sentations). Moreover, within reconfigurable computing archi-
tectures based on field-programmable gate arrays (FPGAs),
the wordlength can be adjusted according to the algorithm
specification [17], [18]. However, the problem of allocating
optimal wordlength per input data component, memory, and
interconnect unit is known to be NP hard [17], [18] and one
can only provide for a static configuration (and precision)
during runtime [17]. Thus, while the computing architecture
can be configured for a specific algorithm [18], a completely
new configuration will be required for a different algorithm
(or, in most cases, even for a different precision requirement).
Importantly, such a configuration cannot be calculated and
applied dynamically, at runtime, without significant overhead.
Even in software designs, where one could perform type
conversions at runtime (e.g. 32-bit float to 16-bit signed int),
such conversions are prohibitively costly in SIMD (single-
instruction-multiple-data) CPU or GPU processing. Thus, all
general-purpose hardware and linear algebra and signal pro-
cessing routines today are optimized for 32/64-bit floating-
point.

IEEE TRANS. ON MULTIMEDIA, VOL. 15, NO. 2, PP. 291-303, MAR. 2013. ACCEPTED VERSION 3

Figure 2. Multimedia stream processing applications viewed from a system perspective. Compute-intensive routines consist of digital signal processing
primitives (e.g. convolution, decomposition and template matching), linear algebra routines (e.g. matrix multiplication, system inversion and matrix
factorizations), data-dependent algorithms such as entropy coding or probability table updates, etc.

This lack of runtime adaptability to the algorithmic preci-
sion is now beginning to limit the scaling potential of such
systems quite severely, especially in view of the “power wall”
problem of CMOS technology [5], [11], [19]. Planet-level
SP services like Google, Facebook, Twitter & Amazon EC2
already feel the strain of energy consumption and throughput
limitation created by millions of tasks per second. Faced with
a 100-fold predicted increase of processing volume within the
next few years due to new applications and new users, their
only avenue for handling such demand would be to utilize sys-
tematic approaches for precision/fault-tolerance/performance.
This is also reflected in recent exascale computing studies,
which state that, to achieve the leap from petaFLOP to ex-
aFLOP computing (from 1015 to 1018 operations per second)
by 2020: “The [numerical] libraries must be able to find
optimal mapping of the required precision in terms of speed,
precision, and energy usage.” and “Ideally, the user could
specify the required precision for the result, and the algorithm
would choose the best combination of precision on the local
hardware in order to achieve it. The actual mechanics would
be hidden from the user.” [[19], pp. 27,31]. This critical aspect
of dynamic precision adaptation within MSP is prominently
highlighted in this paper, and algorithm-oriented and systems-
oriented possible solutions are reviewed in Sections II and III.

D. Paper Organization

In this paper we survey previous and on-going efforts for
error tolerance in multimedia systems with a view towards en-
abling future high-performance multimedia systems to circum-
vent the limitations of technology scaling. Section II takes an

application-oriented approach and presents a review of existing
work on complexity-precision scaling and error tolerance in
multimedia stream processing systems. In a complementary
manner, Section III takes a system-oriented view and presents
some recent and emerging research efforts2 in all layers of the
system stack, from high-performance software libraries to the
hardware components layer. Section IV attempts to consolidate
these two viewpoints by highlighting possibilities for advanced
multimedia computing systems that incorporate error tolerance
both for specific applications and for specific system layers
in an integrated manner. Finally, Section V provides some
concluding remarks.

II. ERROR-TOLERANT MULTIMEDIA SYSTEMS FOR
RESOURCE-DISTORTION ADAPTATION

In this section, we review multimedia applications and
their potential for tolerance to errors by the production of
approximate results, either by component adaptation (e.g.
changes in the transform decomposition of a video coding
system) or by system-level resource-precision optimization.
We separate the discussion in three categories: (a) stream
representation, analysis and coding; (b) information indexing
and multimedia retrieval systems; (c) learning and recognition
applications. These three classes of applications encompass a
wide range of MSP systems used in practice.

2This section also highlights related papers published in the same issue as
this overview paper.

IEEE TRANS. ON MULTIMEDIA, VOL. 15, NO. 2, PP. 291-303, MAR. 2013. ACCEPTED VERSION 4

A. Stream Representation, Analysis and Coding

These are applications that make heavy use of ma-
trix multiplication, matrix-vector products, short-length
convolution, multidimensional transform decompositions,
and data-dependent memory-intensive processing as their
computationally-intensive kernels (see Figure 1 and Figure
2). Examples are: transform analysis and synthesis, motion
estimation and compensation, entropy encoding or decoding,
graphics rendering and animation [15], [16], super-resolution
and construction of large 3D scenes from multiple views [20],
etc.

1) General Theory: Pearl examined the notion of complex-
ity for inexact computations [21] and established bounds on
the minimum complexity of assigning a number of distinct
calculations to a number of machines (or “computation units”)
under predetermined average distortion in the result. It is
shown that providing exact complexity estimates is hard as
both complexity and distortion are problem-dependent. For
example, in an approximate sorting algorithm that performs
swaps of two elements at each step, complexity can be defined
as the number of steps performed; at the same time, distortion
is “the damage incurred [to the application] by receiving the
partially sorted list [..] instead of the fully sorted one” [21].
On the other hand, when generating specified binary sequences
of finite length with sequential circuits (e.g. in the case of
channel decoding with the Vitterbi algorithm), complexity can
be defined as the number of states the machine must employ,
while distortion can be defined by the Hamming distance [21].
Pearl shows that complexity bounds of such problems depend
on the maximum number of possible assignments of tasks
to computation units, which is lower bounded via Shannon’s
rate-distortion function when computed on the input data.
This indicates that, asymptotically, both the complexity of a
computer program and its execution time vary according to the
rate-distortion function of the input stream to be processed.
This was indeed proven much later by Sow and Eleftheriadis
[22] under the assumption of an elementary computing system
(Turing machine). For systems aiming at signal representa-
tions, denoising and coding, the investigation of links between
the rate-distortion and the complexity-distortion functions re-
mains an active area of research [23], [24].

Given that complexity bounds for Turing machine automata
under approximate results may not map well to real-world ex-
ecution time complexity of a modern-day computing machine,
several authors proposed theoretical analysis for specific cases
of transforms decompositions in coding systems. Goyal and
Vetterli [25] investigated the relationship between scalar quan-
tization and transform decompositions in coding of Gaussian
sources. Assuming signal-dependent optimal decompositions
(such as the Karhunen-Loeve transform) they show that, unlike
the conventional design (Figure 3), scalar quantization can
precede the transform, a bitplane quantizer can be employed
and, under a discrete approximation of the transform design
(i.e. integer-to-integer mapping), very similar rate-distortion
performance can be achieved even under the widely-used case
of scalar entropy coding. Moreover, the use of an integer-to-
integer transform allows for complexity reduction because the

Figure 3. Top: Conventional transform coding system; Bottom: Reversal of
quantization and transform leading to the utilization of a low-bitwidth integer
transform and universal entropy coding.

same entropy code can be used for all transform coefficients
and the wordlength used for the implementation can be re-
duced significantly [26].

Advanced aspects on reversing the order of quantization
and transform in analysis or coding systems were also inves-
tigated independently by Nawab, Chandrakasan, et al [27],
[28], Andreopoulos et al [29]–[31], and Lee et al [32] with
respect to incremental (progressive) computation and fixed-
quantization for Fourier transforms and discrete wavelet trans-
forms computations. Discretizing the input to the transform by
processing input images in a bitplane-by-bitplane manner has
the advantage that it can be computed using look-up tables
or small-bitwidth computations. This was proposed for the
discrete cosine transforms (DCT) [33] and the discrete wavelet
transform [29]. Such approaches also have the advantage
that each input layer can be processed independently (thus
introducing bit-level parallelism) and computational faults
introduced by the hardware can be addressed in an inherently
layered manner by scheduling the most significant bitplanes
to the most reliable computational cores or units [33]. In
addition, the required quantization and transform precision can
be optimally adapted according to the energy consumption
or complexity (computations) budget and the application’s
precision profile [29], [32].

2) Rate-Distortion-Complexity Modeling of Multimedia
Analysis and Coding Systems: Beyond the interplay between
the quantization and the transform decomposition and its
impact in the rate-distortion-complexity (R-D-C) space, other
works investigated new representations that can enable scal-
able R-D-C models of transform systems. For Fourier analysis,
Chen and Sundaram proposed the preprocessing of signals by
fixed polynomial basis functions followed by weighted Fourier
transforms of the pre-computer basis functions [34]. This en-
abled operational complexity-distortion points not achievable
by conventional fast Fourier transform (FFT) computations.
For R-D-C scalability of larger systems (e.g. an entire image
or video encoder or decoder), it was identified early on that
appropriate complexity metrics are required [35]–[38]. Rather
than focusing on execution time [39], task-specific complexity
metrics can be defined, such as the number of entropy coding
operations, the number of motion compensated prediction
operations and the number of symbol encoding or decoding
operations [35]–[38] [40]–[42]. These algorithm-specific met-

IEEE TRANS. ON MULTIMEDIA, VOL. 15, NO. 2, PP. 291-303, MAR. 2013. ACCEPTED VERSION 5

rics have been termed as generic complexity metrics (GCMs)
and their impact in real systems was defined as real complexity
metrics (RCMs) [35]. A particular algorithm and its realization
in software or hardware can be modeled with respect to its
GCMs and their mapping to RCMs. GCM decomposition
frameworks for the analysis of the operations performed for
a particular video encoding or decoding were proposed in
recent work [36]. For multi-view image coding and decoding
systems, GCM-alike complexity models and their mapping to
real complexity (in terms of time and memory usage) and
the corresponding rate-distortion (R-D) characteristics were
proposed [40], [41]. The link between complexity metrics
and data flow models and directed acyclic graphs has been
discussed in the overview paper of Lee et al [43]. Importantly,
similar to previous works, the authors highlight that R-D opti-
mization is only a subcase of the general R-D-C optimization
problem of a multimedia encoder or decoder.

3) Links to System-level Complexity Adaptation and
Complexity-Distortion Scalability : The R-D-C characteristics
of representation, analysis and coding systems for multimedia
streams have also been studied from a practical standpoint.
Several authors proposed complexity profile measurement of
the video encoders and decoders embedded in real systems
with the emphasis on creating a complexity verifier for stream
admission control or complexity-driven adaptation [39], [44]–
[46]. These are based on systematic measurements of execu-
tion time with the usage of different parameters for transform
and analysis (motion estimation/compensation, deblocking) as
well as different entropy coding modes. The key idea behind
these frameworks is adaptation, i.e. the flexible and dynamic
(runtime) reconfiguration of a multimedia analysis or coding
system. This is a very active area of research with work
on dynamic voltage scaling (DVS) for multimedia systems
[47]–[49], algorithmic modifications in computer graphics for
complexity scalability with approximate results [15], [16],
predictive energy-precision scalability [48], [50], [51] and
game-theoretic parameter R-D-C adaptation of video coding
systems [52]. Most research efforts in this area consider a
few tasks (e.g. decoding and inverse prediction of a few
video frames) and attempt to provide DVS for energy saving
under worst-case based or average based cycle prediction
per task. Given that multiple tasks can be performed at
different precision and complexity (cycles) [47], [48], [51],
R-D-C adaptation can be achieved in this manner. Through
the use of linear programming for the optimal scheduling
of multiple multimedia processing and decoding tasks under
delay deadlines, a bound has been derived recently on the
optimal scheduling under zero miss rate (i.e. all tasks finishing
prior to their deadline) and an on-line algorithm achieving
performance very close to the bound has been demonstrated
for video coding based on multi-level motion-compensated
prediction [51].

B. Information Indexing and Multimedia Retrieval

The predominant computational kernels of this class of
multimedia stream processing algorithms include matrix and
vector products, singular value decomposition calculations,

linear solvers, template (or string) matching and distance
metric calculation, etc. Application examples utilizing such
kernels are: document clustering [53], multimedia retrieval en-
gines (such as images/video/music/forensic-indices/metadata-
based retrieval [54]), webpage ranking systems [13], etc.
Given the prevalence of such systems, significant emphasis
has been placed on their efficient parallelization of their
computationally-intensive elements (kernels) in computer clus-
ters or GPUs [55].

By changing the overall design perspective of the indexing
and retrieval problem, distributed approaches for “approxi-
mately correct” indexing and retrieval with no single point
of failure have emerged3 [56]. The architecture of these
approaches is inherently robust to computational errors or even
system crashes: a number of machines contain partial indexing
of the database of documents and they are queried randomly or
pseudorandomly. This provides approximate results with the
accuracy depending on the configuration of the nodes to be
queried and the number of results required per query. Thus,
such systems can be designed to have no single point of failure
[56].

Finally, concerning multimedia retrieval systems in particu-
lar, the survey of Datta et al [57] points to various high-level
analysis and retrieval systems that are robust to noise in the
input data or in the calculated low-level feature points used for
matching and retrieval processes (e.g. corner and edge points
in images). Well known studies have already analyzed the re-
silience of low-level feature extraction to noise [58] and recent
work [59]–[61] has indicated significant complexity-precision
tradeoffs in feature extraction algorithms by incremental or
approximate computation of their computationally-intensive
kernels (transforms, distance metric calculations, matrix-vector
products) in space or frequency domain. Hence, one can envis-
age that, subject to complexity and error tolerance constraints,
systems that provide best-effort multimedia retrieval will begin
to emerge in the future. Concerning audio retrieval, state-of-
the-art approximate computation software designs for convo-
lution were proposed recently [7], and their coupling with a
music matching and an MPEG-7 descriptor system indicates
that near three-fold improvement of processing throughput can
be achieved with no effect in the precision of the analysis and
retrieval process.

C. Computationally-intensive Learning and Recognition Tasks

The dominant computation kernels of this category are
the same as the ones of the previous subsection. Learning
algorithms for large data sets have traditionally been known
to be robust to noise in the input or processed data [62].
Thus, the scalability and robustness options provided by such
systems are inherently suitable for error-tolerant designs that
adapt system resources according to the desired precision. For
example, game-theoretic optimization of distributed classifier
chains under precision-complexity constraints was shown to
achieve significant resource-precision scalability for speaker
recognition from voice recordings [63]. Asanovic et al [64]

3See also http://yacy.net/ for an example open-source instantiation.

http://yacy.net/

IEEE TRANS. ON MULTIMEDIA, VOL. 15, NO. 2, PP. 291-303, MAR. 2013. ACCEPTED VERSION 6

and Anastasia and Andreopoulos [6] demonstrated that back-
propagation learning algorithms with matrix operations are
robust to significant noise levels in the performed computa-
tions. Specifically, it has been found that back-propagation
learning can be implemented reliably, even when the update
process is converted from floating-point to 16-bit fixed-point
representation [64], or to noisy computation by compand-
ing and packing with (approximately) 24dB signal-to-noise
ratio (against the single-precision floating-point results [6]).
Since the latter approach is an emerging approach proposed
recently, it is reviewed in more detail in the next section. Face
recognition by independent component analysis [65] or 2D
principal component analysis [66] was also shown to be robust
to amplitude distortions [6] as long as the input image pixel’s
phase remains undistorted. Similarly, state-of-the-art object
recognition in scale-space representations [67] was shown to
be very robust even under amplitude changes and random
noise insertion in the input image data that reduces the input
accuracy to less that 5 bits/pixel. From an implementation
perspective, this indicates that occasional memory read/write
errors are not expected to affect the performance of an object
or face recognition algorithm. However, errors in loop indexes
that will distort the order (i.e. phase) of the input data, as well
as faults in loop indexing variables, can have a severe effect
in the recognition performance. This means that for learning
and recognition tasks, protecting the data-memory space using
error control coding (ECC) circuits is not important, as learn-
ing and recognition algorithms will scale their recognition rate
gracefully in the presence of data errors. However, protection
of data loop indexing and instruction memory variables is
important as errors in the algorithm flow could cause severe
distortions.

III. SYSTEM-ORIENTED OVERVIEW OF ERROR-TOLERANT
MULTIMEDIA STREAM PROCESSING

Given the possibilities for resource/distortion scaling pre-
sented for the broad classes of multimedia stream processing
applications of the previous section, we elaborate on the dif-
ferent possibilities of practical system adjustment for resource
scaling and resilience under approximations of outputs or the
potential existence of processing errors stemming from the
software, scheduling, architecture, or hardware layers. Unlike
the previous section that focused on particular classes of
multimedia stream processing algorithms, here we summarize
research advances in system layers, from the software layer to
the architecture, device and IC layers.

A. Advances in Approximate (Precision-aware) Multimedia
Stream Processing Software Components

In the software layer, the de-facto standard libraries for
high-performance MSP today are the Basic Linear Algebra
Subprograms (BLAS), the Linear Algebra Package (LAPACK)
and digital signal processing or computer vision libraries.
Several optimized designs exist for these, focusing on single-
instruction-multiple-data architectures (e.g. NAG, Goto [68],
ATLAS, Intel IPP, OpenCV, Matlab, and AMD ACML),
manycore platforms (e.g. Matlab Parallel Computing Toolbox,

PLASMA/MAGMA [69]), and embedded processors (e.g.
Eigen for ARM Neon).

All high-performance realizations of MSP algorithms try
to make maximum usage of computational kernels of such
libraries to ensure their realization remains as modular and
highly-optimized as possible. This modularization also al-
lows for automated design flows that can optimally select
hardware resources from a multi-component architecture for
data-dominated MSP algorithm flows [17], [18] [70]. Fi-
nally, the importance of this modularization of algorithmic
components into high-performance computational kernels of
software libraries is demonstrated by the recent definition
of the reconfigurable video coding specification [71] within
MPEG video coding standards.

We first review conventional acceleration and fault-tolerance
approaches and then present some emerging ideas on
throughput-distortion scaling of computation for linear alge-
bra operations that form the compute- and memory-intensive
software kernels (primitives) of the error-tolerant MSP appli-
cations of the previous section.

1) Acceleration Techniques and Conventional Fault Toler-
ance : Acceleration techniques for these libraries generally
follow two different approaches: tailoring and customizing the
computational routines to particular systems (e.g. to exploit
problem-specific sparsity for sparse linear solvers) [72], or
exploiting mixed precision for accelerated processing in cer-
tain computations, e.g. for iterative linear solvers [73]. In both
cases, notable accelerations have been reported via the use
of manycore platforms, hybrid multicore/manycore systems,
or reconfigurable systems [18]. State-of-the-art designs today
use Streaming SIMD Extensions (SSE) for multicore proces-
sors and automated parallelization within the compilation and
scheduling, e.g. via the CUDA and OpenCL frameworks.

In terms of tolerance to hardware-induced errors, conven-
tional fault tolerance techniques follow ECC approaches in
software [74], [75] or hardware [55], [76]. These approaches
create redundant computations composed of mixtures of the
existing input data in a linear operation (e.g. matrix product or
convolution) and form checkpoints from the redundant compu-
tations in order to check the useful results for correctness using
parity bits or Hamming codes. They generally incur 70~150%
performance penalty in terms of the achieved giga floating-
point operations per second (GFLOPS) [75], [76] and they
can only detect and correct a limited number of errors per
computation, typically one or two errors per input substream
of data. Complementary to such general-purpose fault-tolerant
approaches, error tolerance in software or hardware for MSP
was proposed by Breuer, Ortega et al [77]–[79] by exploiting
the fact that multimedia operations such as motion estimation
and filtering tend to create localized errors that can be masked
from the user if detected or treated properly. As an example,
Chung and Ortega [78] analyzed the motion estimation of
an MPEG encoder based on an RTL implementation of the
algorithm and concluded that most hardware-induced faults
either did not create an error in the output or they only led to
bandwidth increases due to erroneous motion vector estimation
or redundant frame transmissions.

While these approaches for acceleration and error tolerance

IEEE TRANS. ON MULTIMEDIA, VOL. 15, NO. 2, PP. 291-303, MAR. 2013. ACCEPTED VERSION 7

Figure 4. General framework of throughput-distortion adaptation in MSP
applications utilizing high-performance linear algebra and digital signal pro-
cessing software libraries [6], [7].

are certainly encouraging, they still fail to capture the massive
parallelism offered by the hardware platforms themselves or,
for mixed-precision methods, the speed-vs.-accuracy trade-off
between single and double-precision floating point. In fact, it
is becoming all the more evident that massively parallel archi-
tectures today are significantly underutilized [80]. To quantify
this, one can assess the efficiency of a particular computation
via the peak performance figure of merit. Peak performance
can be defined as the ratio between the practically-obtained
processing throughput over the maximum-possible processing
throughput for a particular SP algorithm on a given platform.
While well-known linear algebra libraries today achieve over
0.9 (or 90%) peak performance in single cores [68], this figure
is significantly lower for multicore and manycore processors.
For example, the latest performance figures for manycore
processors from NVIDIA indicate peak performance of 0.52
(52%) or less for basic matrix multiplication routines [80].
This means that (at least) 48% of the available processing
cycles’ budget is wasted in data I/O between cores and
memory, cache misses and stall cycles. This substantial drop
of peak performance illustrates the difficulty in exploiting
multicore and manycore processors to their limit.

2) Throughput-Distortion Computation via Adaptive Com-
panding and Packing : Ideas have begun to emerge recently on
precision-adaptive MSP with respect to throughput-distortion
scaling of linear algebra and signal processing operations [6],
[7], [81]–[85]. Figure 4 illustrates how such approaches fit
within the system overview of MSP applications of Figure 1.
The key principle of such frameworks comprises two steps:

● Compaction of inputs by quantization and packing or
projection, prior to stream processing at each core. In
this way the core operation remains uninterrupted and
any high-performance software or hardware library can
be used for the realization of the core processing.

● Extraction of the computed results to derive meaningful
approximations of the outputs.

Using these approaches, the precision can be controlled
according to the desired acceleration. Since the process can
be performed in software and does not break the regular data
access patterns or the memory-access locality of each oper-
ation, all high-performance primitives of multicore/manycore

processors (e.g. SSE instructions and automated parallelization
and scheduling in CUDA and OpenCL) can be used. Thus,
significant acceleration or energy scaling can be obtained over
state-of-the-art MSP realizations with processing throughput
that can significantly surpass 100% of the peak performance of
a given platform with graceful degradation of precision. In the
remainder of this subsection we summarize recent advances
on quantized-and-packed linear processing [6], [7], [81]–[84].
The reader is also referred to the work of Borland and
Constantinides in this issue that focuses on scalable precision
analysis and control [85] for custom hardware realizations.

Packed linear image processing hinges on the idea that the
dynamic range of a 32-bit or 64-bit numerical representation
can be used for the concurrent calculation of multiple small-
dynamic-range integer operations if the operands are posi-
tioned (or “packed”) in such numerical representation with
appropriate spacing from each other [81], [82]. This has been
proposed for a variety of image processing operations such
as bound estimation, image cross-correlation and orientation
correlation [81], [82], incremental image convolution and
motion estimation [30], integer block-transform decomposi-
tion [83] and integer wavelet transforms [84]. If the linear
operations are not mapping integers to integers, quantization
can be applied prior to packing [6], [7] which creates an
inherent throughput-distortion tradeoff in the performed linear
operations, as explained in the following.

Consider a linear operation op that can be applied to
M input data (e.g. image, video, audio, etc.) blocks Bm

concurrently4 (with m ∈ {0, . . . ,M − 1} , M ≥ 2), using
operator matrix K:

Um = Bm opK. (1)

This can be a block transform decomposition/reconstruction,
or a convolution/cross-correlation operation using processing
kernel K [81], [82]. In the general case of quantized (ap-
proximate) processing via packing [6], [7], the first step is to
perform companding, e.g.

B̃m = ⟦cBBm⟧, K̃ = ⟦cKK⟧, (2)

where cB, cK are the companding coefficients (determined
based on the precision requirements of the application in
question [6], [7]) and ⟦a⟧ rounds a to the nearest integer.
Operational5 packing then forms a single block D by:

D =
M−1
∑
m=0

B̃mεm, (3)

with ε > 0 an appropriate packing coefficient. Concurrent
processing of multiple inputs then takes place by

R = (D op K̃) . (4)

Considering the use of an operational real-number represen-
tation, such as single or double-precision floating point, the

4The M input blocks can be parts of different images (or other media) that
are processed concurrently, or parts of the same image.

5The term operational refers to an algorithm or representation realizable
by a computer.

IEEE TRANS. ON MULTIMEDIA, VOL. 15, NO. 2, PP. 291-303, MAR. 2013. ACCEPTED VERSION 8

results can be unpacked sequentially [81], [82]. First, all
packed results are shifted to the non-negative region of zero
by:

R+ =R−Lmin ⋅ J (5)

with Lmin = Amin∑M−1
m=0 εm, Amin the minimum possible value

of the results6 of (1) and J the unit matrix (matrix of ones).
Each result is subsequently unpacked iteratively from R+ by
the following:

m = 0 ∶ R+
{0} =R+, U+

{0} = ⌊R+
{0}⌋, (6)

∀m ∈ {1, . . . ,M − 1} ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

R+
{m} =

1

ε
(R+
{m−1} −U+

{m−1}) ,
U+
{m} = ⌊R+

{m}⌋
(7)

where R+
{m} indicates the contents of R+ during the mth

unpacking and ⌊a⌋ the largest integer smaller or equal to
a. Finally, the results are derived from U+

{0}, . . . ,U
+
{M−1}

by offsetting to their original range and performing inverse
companding by (dequantization):

∀m ∈ {1, . . . ,M − 1} ∶ Ũ{m} = cBK,op (U+
{m} +Amin) (8)

with cBK,op the inverse companding operator determined
based on the specifics of the linear operation performed.
For example, for the case of matrix multiplication [6] or
convolution [7], i.e. Um = (BmK) or Um = (Bm⋆K)
respectively, we have (for both): cBK,op = (cBcK)−1. The
execution time reduction for increasing distortion7 stems from
increased values of M (which in turn is controlled by the
companding coefficients cB and cK), as more results are
calculated concurrently – albeit at lower precision [6], [81].
Finally, while the packing approach illustrated by (3)-(7) packs
only the input blocks B̃m , this has been extended recently to
companding and packing of both operands B̃m , and K̃ [6],
[7].

A conceptual illustration of how the floating-point repre-
sentation noise affects the quantized-and-packed results of (4)
is given in Figure 5. This noise is significantly amplified in
packed representations as the “lower” side result (multiplied by
ε = 0.0001) is in the decimal part of the number. This represen-
tation noise creates the notion of computational capacity in this
approach [6]: for given quantization distortion, there is a limit
on the throughput increase achieved via increased packing (i.e.
increased values for M , surpassing M = 2 shown in Figure 5),
beyond which the distortion stemming from the floating-point

6The minimum and maximum possible values of the output can be
calculated a-priori for given op and K, under the known dynamic range
of the input.

7where distortion is defined in the root sum-squared-error sense
∥Um −Um∥2

Figure 5. Conceptual example of the result of (4), with M = 2 packings and
ε = 0.0001.

computation surpasses the companding-induced distortion8.
The interdependency between throughput and distortion and
the notion of computational capacity make this approach a
computation channel for linear signal processing operations.

Summary of results: Recent experiments [6] demonstrated
practical accelerations of up to 175% for approximate linear
convolution operations following the approach summarized
here, even against state-of-the-art realizations such as the
Intel IPP convolution library. Within the MSP frameworks
of a music matching system [54] and an MPEG-7 metadata
calculation from audio streams, it was demonstrated that this
leads to virtually no effect on the applications’ precision [6].
Similarly, other experiments [7] show that the peak perfor-
mance of the generic matrix multiplication (GEMM) routine
of BLAS achieved on a multicore processor can be increased
by up to 92% in comparison to the state-of-the-art double-
precision GEMM routine of the Goto library [68]. This leads to
peak performance of almost 180% for double-precision matrix
multiplication under approximate results [6]. When tested
within a face recognition [66] and a metadata-based analysis
system for music recordings, this approach demonstrated that
the accuracy of the system remains virtually unaffected [6].
Such substantial gains in throughput can be exchanged for
fault tolerance using the well-known methods outlined in
Subsection III.A.1. In terms of theoretical results, it was shown
that an optimal coupling of the quantization-induced and
representation-induced (floating point) noise exists for matrix
multiplication operations of independent identically distributed
input sources [6]; this results in the maximum processing
throughput under a predefined distortion for the output results
(in SNR, versus the full-precision results). It is expected that
such a result could be extended to broader classes of linear
algebra operations.

B. Multicore and Manycore Scheduling and Runtime Support
for Multimedia Stream Processing

From the operating system’s and runtime support’s perspec-
tive, it is generally acknowledged [1]–[5], [86]–[88] that the
critical issues for the execution environment of Figure 1 are:

● estimating the MSP time per core (of thread) for efficient
task allocation in a multicore/manycore environment;

8Or, equivalently: decreasing the companding distortion (by increasing
the companders) leads to increased noise stemming from the floating-point
computations, as more space is needed to pack the quantized inputs and
results (i.e. ε in Figure 5 becomes smaller); thus, for each packing (i.e.
acceleration) M , there is a limit on the quantization accuracy, beyond
which the distortion stemming from floating-point computation surpasses the
quantization distortion.

IEEE TRANS. ON MULTIMEDIA, VOL. 15, NO. 2, PP. 291-303, MAR. 2013. ACCEPTED VERSION 9

● increasing job concurrency for MSP, and
● allowing for error tolerance and graceful degradation

under transient errors or core failures.
All three aspects can be assisted by a multicore/manycore
scheduling approach that encompasses the error-tolerant nature
of MSP applications and their software components. Conven-
tional synchronous data flow (SDF) models [89] approach the
scheduling problem of multiple subtasks in multiple cores as
seen in Figure 6(a). Each subtask of the three MSP tasks a1,
a2, a3, requiring an anticipated number of cycles ci,j [with
1 ≤ i ≤ K and 1 ≤ j ≤ 3 in the example of Figure 6(a)], is
statically scheduled in one of the K available cores by, for
example, following round-robin scheduling, or allocation to
the least-recently-used core. Each subtask’s result is returned
by each of the K cores in the output data streams at time
instants ti,j . Synchronization and combination of the subtasks
takes place before returning the final three results to the
higher-level function. For example, the input subtasks could
be texture, motion-vector, and audio decoding for a video
decoding application. In this case, the output results will need
to be synchronized and combined together to produce the
three decoded audio and video frames a1, a2, a3 before being
flushed to the video player thread for display.

Conventional SDF scheduling for multi-stream processing
can be extended to decrease inter-thread dependencies (e.g.
by duplicating some data structures accessed by multiple
threads), to replicate tasks of a different core if the current
core finished its execution flow and remains idle (for fault
tolerance purposes), to increase cache efficiency by increasing
data locality (e.g. stripe-based processing in video frames),
etc. The work of Li et al [90] comprises a good academic
overview of such techniques within the context of video anal-
ysis and data mining applications. Moreover, the MapReduce
system proposed by Google [88] provides the most prevalent
practical system exemplifying such distributed, fault-tolerant
scheduling. MapReduce performs massively parallel stream
processing tasks over computing clusters by splitting each
input stream into multiple pieces, assigning multiple map and
reduce tasks to individual workers (that are copies of the
algorithm to be performed on each piece) and producing the
results of each task into distinct output files [88]. The map
functionality maintains the key/value pairs that need to be
maintained in memory in order for the compilation of the
final results to be successful. The crucial aspects that make
MapReduce interesting are the massive scaling potential and
the fact that it hides the details of parallelization, fault toler-
ance, locality and load optimization from the user, thus making
it easy to use [88]. The inherently redundant and distributed
nature of MapReduce allows for robustness to unequal load
balancing and network interruptions, as multiple copies and
multiple key/value pairs are kept in different parts of the
computing cluster. This also makes the overall computation
immune to sporadic core failures.

Whether for a single computing cluster or for a set of clus-
ters, error-tolerant scheduling can encompass a significantly-
higher number of possible cycles’ budgets, characterized by
vectors ci,j , which are coupled with the corresponding ex-
pected distortion impact (indicated by vectors di,j) caused in

the particular MSP element when the core processing utilizes
a different cycle count. The variability in cycles-distortion op-
erational points can occur due to: (i) hardware-induced errors;
(ii) the error-tolerance capabilities of the application itself;
(iii) the throughput-distortion scaling capabilities allowed by
the signal processing or linear algebra computational kernel
as illustrated in the previous subsection. This error-tolerant
scheduling scenario is shown in Figure 6(b). Depending on
the particular core configuration and the utilized cycles, the
resulting output data streams are produced at times t

′

i,j (that
will be different from the original times ti,j) and will be
synchronized and combined together to return the final three
results â1, â2, â3 (which are potentially approximate, i.e.
âj ≠ aj) to the higher-level MSP routine.

Such error-tolerant scheduling creates a significantly-larger
exploration space where resilience-distortion-complexity
tradeoffs can be formed based on the adopted scheduling
approach. We summarize here some of the recent work in
this area. Liu et al investigated fault-generating processors
under scheduling with multiple possible voltage (frequency)
levels for each core [91]. It is shown that, despite being an
NP-complete problem, a near optimal scheduling solution
(in terms of minimum energy efficiency and maximum
resiliency to transient hardware errors) can be accomplished
in polynomial time. In this issue, Mastronarde et al [87]
propose a dynamic scheduling solution based on the
formulation of the scheduling problem as a Markov decision
process. Validation is performed by simulations with a
multi-processor architecture that allows for dynamic power
scaling. Leem et al [92] propose the error-resilient system
architecture (ERSA) framework for high error resilience
to high-order bit errors in inputs of probabilistic clustering
aimed at recognition and mining systems. Under robust
scheduling in a multicore environment, it is shown that
ERSA retains high accuracy even under very high error
rates for the input streams. Subramanyan et al [93] propose
error-tolerant scheduling by extending the conventional
concept of redundant thread execution to include feedback
from the leading thread to the trailing thread. This means
that the high parallelization possible in modern multicore and
manycore processor environments is used more efficiently
since the overall execution of the two threads remains robust
to transient errors while the execution time is accelerated due
to the collaborative exchange of messages between the two
threads executing the same MSP algorithm. Liu et al [89]
propose to extend the error-tolerant SDF model of Figure
6(b) to include reconfiguration at the core level itself, based
on FPGA realizations. For correlated multi-stream processing,
significant improvement in throughput per unit-area of
hardware is demonstrated against the static SDF scheduling
of Figure 6(a). Finally, Anastasia and Andreopoulos [31]
demonstrate energy-distortion tradeoffs by combining
incremental computation with time-driven execution via a
control thread that terminates the execution of the multimedia
processing thread once the allocated time (or number of
cycles) has been surpassed. Due to the inherent robustness
of incremental computation, graceful degradation is achieved
in the output results even under aggressive scheduler-driven

IEEE TRANS. ON MULTIMEDIA, VOL. 15, NO. 2, PP. 291-303, MAR. 2013. ACCEPTED VERSION 10

Figure 6. Task concurrency and synchronization for the production of three
output results from three groups of K streamed inputs (subtasks), following
the hierarchy of MSP system components of Figure 1; (a) Conventional
SDF model with fixed job cycles; (b) Error-tolerant adaptive scheduling with
multiple cycles-distortion pairs.

termination of the execution with no performance penalty
against the conventional (non-incremental) computation of
the MSP algorithm.

C. Error-tolerant Architecture, Hardware Components and
Cross-layer Reliability

Within system-level design, all conventional CMOS-based
technologies ensure that processor chips remain fault-free
during their lifetime. This has shaped the commonly accepted
notion of “digital” in applications as being “lossless”, de-
spite the fact that: (i) all practical multimedia inputs (such
as image/video samples or other sensor-derived data) are
approximations of the physical reality; (ii) perfect reliabil-
ity (and bit-level reproducibility of linear algebra routines)
now comes at considerable cost (chip designers today have
highly-complex fault detection mechanisms in their design
and fabrication flows [55]); and (iii) the fundamental scaling
limitations of CMOS technology will lead to significantly-
increased fault rates for SRAM and latch circuits below 22nm
[86]. For these reasons, an emerging field of cross-layer system
reliability research [1] is now gaining significant traction.
This concept distinguishes between error-tolerant and error-
intolerant applications (e.g. safety-critical applications). Errors
can be controlled at different layers of the system stack
[94], [95]. For example, error detection can be entirely be
implemented in hardware while error recovery can done within
a combined hardware/architecture/application approach [95].
This has the advantage of leveraging the energy and cycles’
overhead for the detection and correction of hardware-induced
errors between the application, architecture and hardware
component layers. In such cases, chip-level or component-level
error analysis and detection techniques, such as the important
work of Nicolaidis on soft error mitigation [96], [97], can be
complemented with recovery at the architecture and software
level. Since it may be prohibitively expensive to correct all
errors, or many errors may even have a benign effect on
the multimedia application [78], [95] or scheduling [93] (as
indicated by the previous sections), it becomes imperative

to create an intermediate control plane where error reporting
and mitigation decisions can take place. Under this scenario,
the error tolerance capability of a system extends beyond a
simple yes/no answer to whether a system can completely
recover from any combination of F errors within a set of
interconnected hardware components [95]. Rather, designers
are interested to know “how often” and “under what scenarios”
a system is not protected from errors and, in the case of MSP
systems, what is the impact of the erroneous computations on
the output multimedia streams.

Such a view of cross-layer resilience for system-on-chip
(SoC) design for throughput-energy-distortion (T-E-D) trade-
offs in MSP applications is shown in Figure 7 (based on
Carter et al [95]). The key differences between this stack and
the conventional system stack are: (i) the communication of
expected application performance (in terms of T-E-D) from
the application to the operating system or scheduler; (ii) the
assumption of a cross-layer interface (CLI), positioned at the
SoC architecture layer, that propagates information on the de-
tected hardware errors (and possible diagnostics and mitigation
techniques) from the lower layers (circuit and device layer) to
the higher layers (operating system and the application itself);
(iii) the ability to reconfigure hardware components and to
mitigate hardware failures in order to meet the expected T-E-D
performance. While still at a very early stage of development,
such approaches have shown initial promise for error-tolerant
systems [1]–[4], [86], [94], [95].

A critical component of any CLI-based framework is the
error mitigation at the IP block and circuit and device layers.
To this end, previous work has focused on different techniques,
such as Markov random fields [98], stochastic processors [99],
stochastic logic [100], Razor [101], and space-time redundancy
techniques at the integrated circuit level [97]. Within this issue,
we refer the reader to two new contributions on error control
and error mitigation techniques [102], [103], ranging from
cross-layer techniques for protection of multimedia applica-
tions from soft errors, to reliable information processing under
unreliable hardware via detection and estimation techniques.
Most of these techniques aim for deterministic detection of
“erroneous” outputs under the expectation of certain rates of
hardware-induced errors. This can be considered wasteful for
multimedia applications where the inputs are inherently noisy
and the targeted result of the application is a stochastic metric,
e.g. maximization of the expected signal-to-noise-ratio for a
coding system or the expected recall rate for a multimedia
retrieval application. A few notable exceptions that have
emerged in the last few years are: (i) the notion of stochastic
processors [8], [9], [99], (ii) variable-precision hardware [104]
or inexact design [105] and (iii) stochastic logic [100]. In the
first case, the hardware is deliberately under-designed or used
beyond its safety margin via techniques such as voltage over-
scaling in order to produce occasional errors that are software-
correctable. In the second case, arithmetic hardware (typically
multiply-accumulate units) is designed to have multiple pre-
cision levels [104]; alternatively, pruning techniques (using
heuristics) are derived in order to remove computational units
(blocks) according to their expected impact in the precision
of the results [105]. In this way, errors affect the multimedia

IEEE TRANS. ON MULTIMEDIA, VOL. 15, NO. 2, PP. 291-303, MAR. 2013. ACCEPTED VERSION 11

Figure 7. A view of cross-layer resilience for System-on-Chip design focusing
on throughput-energy-distortion (T-E-D) tradeoffs of MSP applications with
a cross-layer interface positioned at the SoC layer [94].

application in a controllable manner. In the last case, the
input is essentially represented by its probability encoding
(probability of appearance of a certain bit sequence) and the
resulting data-path synthesis for numerical computations is
altered to compute the probabilistic encoding of the output
under a given processing flow [100]. Such approaches form a
significant departure from conventional digital logic synthesis
and are particularly suitable for error-tolerant applications like
linear or polynomial computations (e.g. convolution) that are
common in multimedia signal processing.

IV. A UNIFIED VIEW OF ERROR-RESILIENT MULTIMEDIA
STREAM PROCESSING

Figure 8 presents a speculation of how the different compo-
nents identified for error tolerance and cross-layer mitigation
of hardware-induced errors could be consolidated in future
MSP system designs. A mixture of algorithmic, hardware and
integration is expected to be required in order to create seam-
less throughput-energy-distortion scalability in future error-
tolerant multimedia stream processing that may operate be-
yond the limitations of fault-free CMOS designs. Starting from
algorithms for multimedia processing, several approaches such
as the ones outlined in Section II and Section III.A could offer
several advances (resource-distortion adaptation, approximate
MSP and result recovery under faults). Resilient scheduling
approaches and mitigation of core failures can incorporate
some of the new approaches outlined in Section III.B. Within
the architecture and the device layer, resilient memory designs
with graceful degradation under hardware-induced errors (via
layers of ECC protection) can offer prioritization for the
components that need high levels of resilience to soft errors
while allowing for voltage overscaling techniques to cause
soft errors on memory components that do not store critically
important data to the MSP application. Stochastic logic at
the IC layer or stochastic computation can become a viable
alternative for logic design flow in error-tolerant applications,
especially aiming for MSP applications with average error
guarantees, such as multimedia analysis, indexing and retrieval
systems. Finally, all such components can function within a
unified control plane comprising a cross-layer interface for T-
E-D scalability and hardware error mitigation.

Figure 8. Possible integration of various components at different layers of
the system stack for error-tolerant multimedia stream processing beyond the
limitations of CMOS technology scaling. The numbers in parentheses refer
to the section of the paper where related research is discussed.

Unlike the application-specific or hardware-specific tech-
niques proposed today for error tolerant computing, the in-
tegration of components illustrated in Figure 8 comprises
an approach oriented towards system layers. Within each
layer, standard components can be designed in a scalable and
resilient manner, similar to the OSI protocol stack in com-
munications. Allowing for seamless parameter exchange and
reconfiguration in this manner may provide very significant
technology scaling to levels unfathomable under the rigid,
worst-case oriented, design flow of existing systems.

V. CONCLUSION

Similar to MMX/SSE/AVX instructions for single-input-
multiple-data (SIMD) processing (1996-present) and Graphics
Processing Units (GPUs, 1999-present), it is possible that the
next revolution in stream processing will also be inspired by
multimedia computing systems: it may center on adaptively
exploiting precision and noise in the input data streams for
ultra-high performance throughput and energy scaling under
approximate results. We have reviewed several approaches
for error-tolerance and application-oriented rate-distortion-
complexity scalability and then presented a summary of dif-
ferent approaches for error-resilient components across the
different layers of the system stack. These approaches indicate
that there seems to be substantial capability for error tolerance
within several classes of multimedia processing algorithms.
This capability can bring important gains in throughput and
resilience of practical implementations in future generations
of CMOS-based integrated processors that may incur errors
from the architecture, device and IC layers of the system
stack. This throughput/distortion scaling potential, stemming
from the error-tolerant nature of multimedia stream processing
algorithms, is labeled in this paper as “plenty of room at the
top of the system stack”. The system-layer oriented summary
of different approaches presented in Figure 8 indicates a
possible stack of error-resilient system components that could
be used in future multimedia stream processing applications
offering throughput-energy-distortion scaling beyond what is
possible today. Addressing each system layer and providing
components that offer error tolerance with controls that can

IEEE TRANS. ON MULTIMEDIA, VOL. 15, NO. 2, PP. 291-303, MAR. 2013. ACCEPTED VERSION 12

be tuned for resource-distortion tradeoffs within a (potentially)
noisy computing environment appears to be a very significant
research challenge for the multimedia systems community in
the next 10 years.

REFERENCES

[1] A. DeHon, N. P. Carter and H. Quinn (Eds), “CCC cross-layer
reliability visioning study,” Computing Community Consortium, Tech.
Rep. [Online]. Available: http://www.relxlayer.org

[2] A. DeHon, H. Quinn, and N. Carter, “Vision for cross-layer optimiza-
tion to address the dual challenges of energy and reliability,” in Proc.
Design, Automat. & Test in Europe Conf. & Expo., DATE’10, 2010,
pp. 1017–1022.

[3] H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Proc.
38th Annual Int. Symp. on Comput. Arch., ISCA’11, 2011, pp. 365–376.

[4] S. Mitra, K. Brelsford, and P. Sanda, “Cross-layer resilience challenges:
Metrics and optimization,” in Proc. Design, Automat. & Test in Europe
Conf. & Expo., DATE’10, 2010, pp. 1029–1034.

[5] D. Patterson, “The trouble with multi-core,” IEEE Spectrum, vol. 47,
no. 7, pp. 28–32, Jul. 2010.

[6] D. Anastasia and Y. Andreopoulos, “Throughput-distortion computa-
tion of generic matrix multiplication: Toward a computation channel
for digital signal processing systems,” IEEE Trans. on Signal Process.,
vol. 60, no. 4, pp. 2024–2037, Apr. 2011.

[7] M. Anam and Y. Andreopoulos, “Throughput scaling of convolution
for error-tolerant multimedia applications,” IEEE Trans. on Multimedia,
vol. 14, no. 2, pp. 797–804, Jun. 2012.

[8] N. Shanbhag, R. Abdallah, R. Kumar, and D. Jones, “Stochastic
computation,” in Proc. Design, Automat. & Test in Europe Conf. &
Expo., DATE’10, 2010, pp. 859–864.

[9] S. Narayanan, J. Sartori, R. Kumar, and D. Jones, “Scalable stochastic
processors,” in Proc. Design, Automat. & Test in Europe Conf. & Expo.,
DATE’10, 2010, pp. 335–338.

[10] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands,
K. Keutzer, D. Patterson, W. Plishker, J. Shalf, S. Williams et al.,
“The landscape of parallel computing research: A view from berkeley,”
UCB/EECS-2006-183, EECS Department, University of California,
Berkeley, Tech. Rep., 2006.

[11] D. Lammers, “The era of error-tolerant computing,” IEEE Spectrum,
vol. 47, no. 11, pp. 15–15, Nov. 2010.

[12] B. Khailany, T. Williams, J. Lin, E. Long, M. Rygh, D. Tovey, and
W. Dally, “A programmable 512 gops stream processor for signal,
image, and video processing,” IEEE J. Solid-State Circ., vol. 43, no. 1,
pp. 202–213, Jan. 2008.

[13] Z. Zhu, I. Cox, and M. Levene, “Ranked-listed or categorized results in
ir: 2 is better than 1,” Proc. Internat. Conf. Nat. Lang. and Inf. Systems,
NLDB’08, pp. 111–123, 2008.

[14] K. Petridis, D. Anastasopoulos, C. Saathoff, N. Timmermann, Y. Kom-
patsiaris, and S. Staab, “M-ontomat-annotizer: Image annotation link-
ing ontologies and multimedia low-level features,” in Proc. Knowledge-
Based Intell. Inf. and Eng. Syst. (LNCS-4253), 2006, pp. 633–640.

[15] T. Yeh, G. Reinman, S. Patel, and P. Faloutsos, “Fool me twice:
Exploring and exploiting error tolerance in physics-based animation,”
ACM Trans. on Graphics, vol. 29, no. 1, article 5, Jan. 2009.

[16] T. Kim and D. James, “Skipping steps in deformable simulation with
online model reduction,” ACM Trans. on Graphics, vol. 28, no. 5,
article 123, 2009.

[17] T. Todman, G. Constantinides, S. Wilton, O. Mencer, W. Luk, and
P. Cheung, “Reconfigurable computing: architectures and design meth-
ods,” vol. 152, no. 2, pp. 193–207, Mar. 2005.

[18] A. Roldao-Lopes, A. Shahzad, G. Constantinides, and E. Kerrigan,
“More flops or more precision? accuracy parameterizable linear equa-
tion solvers for model predictive control,” in Proc. 17th Symp. Field
Program. Cust. Comput. Mach., 2009, pp. 209–216.

[19] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J. Andre,
D. Barkai, J. Berthou, T. Boku, B. Braunschweig et al., “The interna-
tional exascale software project roadmap,” Int. J. of High Perf. Comput.
Appl., vol. 25, no. 1, pp. 3–60, Jan. 2011.

[20] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davi-
son, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon, “KinectFusion:
Real-time dense surface mapping and tracking,” in Proc. 10th Symp.
Mixed and Augm. Real., ISMAR’11, 2011, pp. 127–136.

[21] J. Pearl, “Theoretical bounds on the complexity of inexact computa-
tions,” IEEE Trans. Inf. Theory, vol. 22, no. 5, pp. 580–586, May 1976.

[22] D. Sow and A. Eleftheriadis, “Complexity distortion theory,” IEEE
Trans. Inf. Theory, vol. 49, no. 3, pp. 604–608, Mar. 2003.

[23] N. Vereshchagin and P. Vitányi, “Rate distortion and denoising of in-
dividual data using kolmogorov complexity,” IEEE Trans. Inf. Theory,
vol. 56, no. 7, pp. 3438–3454, Jul. 2010.

[24] K. Vereshchagin and P. Vitanyi, “Algorithmic rate-distortion function,”
in Proc. IEEE Int. Symp. Inf. Theory, 2006, pp. 798–802.

[25] V. Goyal and M. Vetterli, “Computation-distortion characteristics of
block transform coding,” in Proc. IEEEE Int. Conf. on Acoust., Speech,
and Signal Process., ICASSP-97, vol. 4. IEEE, 1997, pp. 2729–2732.

[26] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira,
T. Stockhammer, and T. Wedi, “Video coding with h. 264/avc: tools,
performance, and complexity,” IEEE Circ. and Syst. Mag., vol. 4, no. 1,
pp. 7–28, Jan. 2004.

[27] J. Ludwig, S. Nawab, and A. Chandrakasan, “Low-power digital
filtering using approximate processing,” IEEE J. Solid-State Circ.,
vol. 31, no. 3, pp. 395–400, Mar. 1996.

[28] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data driven signal
processing: an approach for energy efficient computing,” in Proc. Int.
Symp. on Low power Electr. and Design, ISLPED’96, 1996, pp. 347–
352.

[29] Y. Andreopoulos and M. van der Schaar, “Incremental refinement of
computation for the discrete wavelet transform,” IEEE Trans. Signal
Process., vol. 56, no. 1, pp. 140–157, Jan. 2008.

[30] D. Anastasia and Y. Andreopoulos, “Software designs of image pro-
cessing tasks with incremental refinement of computation,” IEEE Trans.
Image Process., vol. 19, no. 8, pp. 2099–2114, Aug. 2010.

[31] ——, “Scheduling and energy-distortion tradeoffs with operational
refinement of image processing,” in Proc. Design, Automat. & Test
in Europe Conf. & Expo., DATE’10, 2010, pp. 1719–1724.

[32] D. Lee, L. Kim, and J. Villasenor, “Precision-aware self-quantizing
hardware architectures for the discrete wavelet transform,” IEEE Trans.
on Image Process., vol. 21, no. 2, pp. 768–777, Feb. 2012.

[33] T. Xanthopoulos and A. Chandrakasan, “A low-power DCT core using
adaptive bitwidth and arithmetic activity exploiting signal correlations
and quantization,” IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 740–
750, May 2000.

[34] Y. Chen and H. Sundaram, “Basis projection for linear transform
approximation in real-time applications,” in Proc. IEEE Int. Conf.
Acoust., Speech and Signal Process., ICASSP’06, vol. 2, 2006, pp.
II–II.

[35] M. van der Schaar and Y. Andreopoulos, “Rate-distortion-complexity
modeling for network and receiver aware adaptation,” IEEE Trans. on
Multimedia, vol. 7, no. 3, pp. 471–479, Jun. 2005.

[36] Y. Andreopoulos and M. van der Schaar, “Complexity-constrained
video bitstream shaping,” IEEE Trans. on Signal Process., vol. 55,
no. 5, pp. 1967–1974, May 2007.

[37] B. Foo, Y. Andreopoulos, and M. van der Schaar, “Analytical rate-
distortion-complexity modeling of wavelet-based video coders,” IEEE
Trans. on Signal Process., vol. 56, no. 2, pp. 797–815, Feb. 2008.

[38] Y. Andreopoulos and M. van der Schaar, “Adaptive linear prediction
for resource estimation of video decoding,” IEEE Trans. on Circ. and
Syst. for Video Technol., vol. 17, no. 6, pp. 751–764, Jun. 2007.

[39] H. Stolberg, M. Bereković, and P. Pirsch, “A platform-independent
methodology for performance estimation of multimedia signal process-
ing applications,” J. of VLSI Signal Process., vol. 41, no. 2, pp. 139–
151, Feb. 2005.

[40] I. Bauermann and E. Steinbach, “RDTC optimized compression of
image-based scene representations (part i): Modeling and theoretical
analysis,” IEEE Trans. on Image Process., vol. 17, no. 5, pp. 709–723,
May 2008.

[41] ——, “RDTC optimized compression of image-based scene represen-
tations (part ii): Practical coding,” IEEE Trans. on Image Processing,
vol. 17, no. 5, pp. 724–736, Jun. 2008.

[42] D. Turaga, M. van der Schaar, and B. Pesquet-Popescu, “Complexity
scalable motion compensated wavelet video encoding,” IEEE Trans.
Circ. and Syst. for Video Technol., vol. 15, no. 8, pp. 982–993, Aug.
2005.

[43] G. Lee, Y. Chen, M. Mattavelli, and E. Jang, “Algorithm/architecture
co-exploration of visual computing on emergent platforms: overview
and future prospects,” IEEE Trans. Circ. and Syst. for Video Technol.,
vol. 19, no. 11, pp. 1576–1587, Nov. 2009.

[44] J. Valentim, P. Nunes, and F. Pereira, “Evaluating mpeg-4 video de-
coding complexity for an alternative video complexity verifier model,”
IEEE Trans. Circ. and Syst. for Video Technol., vol. 12, no. 11, pp.
1034–1044, Nov. 2002.

http://www.relxlayer.org

IEEE TRANS. ON MULTIMEDIA, VOL. 15, NO. 2, PP. 291-303, MAR. 2013. ACCEPTED VERSION 13

[45] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro, “H.264/AVC
baseline profile decoder complexity analysis,” IEEE Trans. Circ. and
Syst. for Video Technol., vol. 13, no. 7, pp. 704–716, Jul. 2003.

[46] S. Regunathan, P. Chou, and J. Ribas-Corbera, “A generalized video
complexity verifier for flexible decoding,” in Proc. IEEE Int. Conf.
Image Processing, ICIP’03, vol. 3, 2003, pp. 289–292.

[47] W. Yuan and K. Nahrstedt, “Practical voltage scaling for mobile
multimedia devices,” in Proc. 12th ACM Int. Conf. Multimedia, 2004,
pp. 924–931.

[48] Z. He, Y. Liang, L. Chen, I. Ahmad, and D. Wu, “Power-rate-distortion
analysis for wireless video communication under energy constraints,”
IEEE Trans. Circ. and Syst. for Video Technol., vol. 15, no. 5, pp.
645–658, May 2005.

[49] W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and R. Kravets, “Grace-
1: Cross-layer adaptation for multimedia quality and battery energy,”
IEEE Trans. Mobile Comput., vol. 5, no. 7, pp. 799–815, Jul. 2006.

[50] J. Srinivasan and S. Adve, “Predictive dynamic thermal management
for multimedia applications,” in Proc, 17th Int. Conf. on Supercomput.,
ICS’03, 2003, pp. 109–120.

[51] Z. Cao, B. Foo, L. He, and M. van der Schaar, “Optimality and
improvement of dynamic voltage scaling algorithms for multimedia
applications,” IEEE Trans. Circ. and Syst., vol. 57, no. 3, pp. 681–690,
Mar. 2010.

[52] N. Mastronarde and M. van der Schaar, “A bargaining theoretic ap-
proach to quality-fair system resource allocation for multiple decoding
tasks,” IEEE Trans. on Circ. Syst. for Video Technol., vol. 18, no. 4,
pp. 453–466, Apr. 2008.

[53] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-
negative matrix factorization,” in Proc. 26th Int. ACM Conf. on Res.
and Dev. in Inf. Retr., 2003, pp. 267–273.

[54] D. Ellis, C. Cotton, and M. Mandel, “Cross-correlation of beat-
synchronous representations for music similarity,” in Proc. IEEE Int.
Conf. on Acoust., Speech and Signal Process., ICASSP’08, 2008, pp.
57–60.

[55] B. Dally, “The future of GPU computing,” in ACM/IEEE Int. Conf. on
Supercomp., SC’09 (presentation), 2009.

[56] H. Asthana, R. Fu, and I. Cox, “On the feasibility of unstructured peer-
to-peer information retrieval,” Adv. in Inf. Retr. Theory, pp. 125–138,
2011.

[57] R. Datta, D. Joshi, J. Li, and J. Wang, “Image retrieval: Ideas,
influences, and trends of the new age,” ACM Computing Surveys,
vol. 40, no. 2, p. 5, Apr. 2008.

[58] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of interest point
detectors,” Int. J. of Comp. Vis., vol. 37, no. 2, pp. 151–172, Feb. 2000.

[59] Y. Andreopoulos and I. Patras, “Incremental refinement of image
salient-point detection,” IEEE Trans. on Image Process, vol. 17, no. 9,
pp. 1685–1699, Sept. 2008.

[60] D. Jun and D. Jones, “An energy-aware framework for cascaded
detection algorithms,” in IEEE Worksh. on Signal Process. Syst.,
SIPS’10, 2010, pp. 1–6.

[61] P. Mainali, Q. Yang, G. Lafruit, L. Gool, and R. Lauwereins, “Robust
low complexity corner detector,” IEEE Trans. on Circ. and Syst. for
Video Technol., vol. 21, no. 4, pp. 435–445, Apr. 2011.

[62] K. Fukunaga, Introduction to statistical pattern recognition. Elsevier
Acad. Press, ISBN 0122698517, 1990.

[63] B. Foo and M. van der Schaar, “A distributed approach for optimizing
cascaded classifier topologies in real-time stream mining systems,”
IEEE Trans. on Image Process., vol. 19, no. 11, pp. 3035–3048, Nov.
2010.

[64] K. Asanovic and N. Morgan, “Experimental determination of pre-
cision requirements for back-propagation training of artificial neural
networks,” TR-91-036, Univ. of California Berkeley, International
Computer Science Institute, Tech. Rep., 1991.

[65] M. Bartlett, J. Movellan, and T. Sejnowski, “Face recognition by
independent component analysis,” IEEE Trans. on Neural Net., vol. 13,
no. 6, pp. 1450–1464, Jun. 2002.

[66] J. Yang, D. Zhang, A. Frangi, and J. Yang, “Two-dimensional PCA:
a new approach to appearance-based face representation and recogni-
tion,” IEEE Trans. on Pat. Anal. and Mach. Intel., vol. 26, no. 1, pp.
131–137, Jan. 2004.

[67] D. Lowe, “Object recognition from local scale-invariant features,” in
Proc. 7th IEEE Conf. on Comp. Vis., ICCV’99, vol. 2, 1999, pp. 1150–
1157.

[68] K. Goto and R. Van De Geijn, “High-performance implementation of
the level-3 blas,” ACM Trans. on Math. Soft., vol. 35, no. 1, article 4,
Jan. 2008.

[69] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov, “Numerical linear algebra on
emerging architectures: The PLASMA and MAGMA projects,” in J.
of Phys.: Conference Series, vol. 180, no 012037, 2009.

[70] A. Portero, G. Talavera, M. Moreno, J. Carrabina, and F. Catthoor,
“Methodology for energy-flexibility space exploration and mapping
of multimedia applications to single-processor platform styles,” IEEE
Trans. on Circ. and Syst. for Video Technol., vol. 21, no. 8, pp. 1027–
1039, Aug. 2011.

[71] S. Bhattacharyya, J. Eker, J. Janneck, C. Lucarz, M. Mattavelli,
and M. Raulet, “Overview of the mpeg reconfigurable video coding
framework,” J. of Sig. Process. Syst., vol. 63, no. 2, pp. 251–263, Apr.
2011.

[72] L. Buatois, G. Caumon, and B. Levy, “Concurrent number cruncher:
a gpu implementation of a general sparse linear solver,” Int. J. of Par.,
Emerg. and Distr. Systems, vol. 24, no. 3, pp. 205–223, Jun. 2009.

[73] J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Dongarra,
“Exploiting the performance of 32 bit floating point arithmetic in
obtaining 64 bit accuracy (revisiting iterative refinement for linear
systems),” in Proc. ACM/IEEE Conf. on Supercomput., SC’06, 2006,
pp. 50–50.

[74] D. Murray and S. Hand, “Spread-spectrum computation,” in Proc. 4th
USENIX Conf. on Hot Top. in Syst. Depend., 2008, pp. 5–8.

[75] N. Maruyama, A. Nukada, and S. Matsuoka, “Software-based ecc
for gpus,” in Proc. Symp. on Appl. Accel. in High Perf. Comput.,
SAAHPCŠ09, 2009.

[76] J. Sheaffer, D. Luebke, and K. Skadron, “A hardware redundancy and
recovery mechanism for reliable scientific computation on graphics
processors,” in Proc. 22nd ACM/SIGGRAPH/EUROGRAPHICS Symp.
on Graph. Hardw., 2007, pp. 55–64.

[77] M. Breuer, “Hardware that produces bounded rather than exact results,”
in Proc 47th Des. Autom. Conf., 2010, pp. 871–876.

[78] H. Chung and A. Ortega, “Analysis and testing for error tolerant motion
estimation,” in Proc. 20th IEEE Int. Symp. on Defect and Fault Tol. in
VLSI Syst., DFT’05, 2005, pp. 514–522.

[79] K. Lengwehasatit and A. Ortega, “Scalable variable complexity approx-
imate forward dct,” IEEE Circ. and Syst. for Video Technol., vol. 14,
no. 11, pp. 1236–1248, Nov. 2004.

[80] E. Phillips, “CUDA accelerated linpack on clusters,” in ACM/IEEE Int.
Conf. on Supercomp., SC’09 (presentation), 2009.

[81] D. Anastasia and Y. Andreopoulos, “Linear image processing oper-
ations with operational tight packing,” IEEE Signal Process. Lett.,
vol. 17, no. 4, pp. 375–378, Apr. 2010.

[82] A. Kadyrov and M. Petrou, “The Invaders’ algorithm: range of values
modulation for accelerated correlation,” IEEE Trans. on Pat. Anal. and
Mach. Intel., vol. 28, no. 11, pp. 1882–1886, Nov. 2006.

[83] J. Allen, “An approach to fast transform coding in software,” Elsevier
Signal Process.: Image Comm., vol. 8, no. 1, pp. 3–11, Jan. 1996.

[84] C. Lin, B. Zhang, and Y. Zheng, “Packed integer wavelet transform
constructed by lifting scheme,” IEEE Trans. Circ. and Syst. for Video
Technol., vol. 10, no. 8, pp. 1496–1501, Aug. 2000.

[85] D. Borland and G. Constantinides, “A scalable precision analysis
framework,” IEEE Trans. on Multimedia, this issue.

[86] S. Nassif, N. Mehta, and Y. Cao, “A resilience roadmap,” in Proc. Des.,
Autom. & Test in Eur. Conf. & Expo., DATE’10, 2010, pp. 1011–1016.

[87] N. Mastronarde, K. Kanoun, D. Atienza, P. Frossard, and M. van der
Schaar, “Markov decision process based energy-efficient on-line
scheduling for slice-parallel video decoders on multicore systems,”
IEEE Trans. on Multimedia, this issue.

[88] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Comm. of the ACM, vol. 51, no. 1, pp. 107–113, Jan.
2008.

[89] M. Liu, Z. Lu, W. Kuehn, and A. Jantsch, “Fpga-based adaptive
computing for correlated multi-stream processing,” in Proc. Des.,
Automat. & Test in Europe Conf. & Expo., DATE’10, 2010, pp. 973–
976.

[90] W. Li, X. Tong, T. Wang, Y. Zhang, and Y. Chen, “Parallelization
strategies and performance analysis of media mining applications on
multi-core processors,” J. of Signal Process. Syst., vol. 57, no. 2, pp.
213–228, Mar. 2009.

[91] L. Leem, H. Cho, J. Bau, Q. Jacobson, and S. Mitra, “ERSA: Error
resilient system architecture for probabilistic applications,” in Proc.
Des., Autom. & Test in Europe Conf. & Expo., DATE’10, 2010, pp.
1560–1565.

[92] P. Subramanyan, V. Singh, K. Saluja, and E. Larsson, “Multiplexed
redundant execution: A technique for efficient fault tolerance in chip

IEEE TRANS. ON MULTIMEDIA, VOL. 15, NO. 2, PP. 291-303, MAR. 2013. ACCEPTED VERSION 14

multiprocessors,” in Proc. Des., Autom. & Test in Europe Conf. &
Expo., DATE’10, 2010, pp. 1572–1577.

[93] P. Korkmaz, B. Akgul, and K. Palem, “Energy, performance, and
probability tradeoffs for energy-efficient probabilistic cmos circuits,”
IEEE Trans. Circ. and Syst. I: Reg. Papers, vol. 55, no. 8, pp. 2249–
2262, Aug. 2008.

[94] N. Carter, H. Naeimi, and D. Gardner, “Design techniques for cross-
layer resilience,” in Proc. Des., Automat. & Test in Europe Conf. &
Expo., DATE’10. European Design and Automation Association, 2010,
pp. 1023–1028.

[95] M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue
nanometer technologies,” in Proc. 17th IEEE. Int. VLSI Test Symp.,
VTS’99, 1999, pp. 86–94.

[96] ——, “Design for soft error mitigation,” IEEE Trans. Dev. and Mate-
rials Reliab., vol. 5, no. 3, pp. 405–418, Mar. 2005.

[97] K. Nepal, R. Bahar, J. Mundy, W. Patterson, and A. Zaslavsky,
“Designing nanoscale logic circuits based on markov random fields,”
J. of Electron. Test., vol. 23, no. 2, pp. 255–266, Feb. 2007.

[98] ——, “Designing nanoscale logic circuits based on markov random
fields,” J. Electron. Test., vol. 23, no. 2, pp. 255–266, Feb. 2007.

[99] G. Varatkar, S. Narayanan, N. Shanbhag, and D. Jones, “Stochastic
networked computation,” IEEE Trans. Very Large Scale Integr., vol. 18,
no. 10, pp. 1421–1432, Oct. 2010.

[100] W. Qian, X. Li, M. Riedel, K. Bazargan, and D. Lilja, “An architecture
for fault-tolerant computation with stochastic logic,” IEEE Trans. on
Comput, vol. 60, no. 1, pp. 93–105, Jan. 2011.

[101] T. Austin, D. Blaauw, T. Mudge, and K. Flautner, “Making typical
silicon matter with razor,” IEEE Comput., vol. 37, no. 3, pp. 57–65,
Mar. 2004.

[102] J. Sartori and R. Kumar, “Branch and data herding: Reducing control
and memory divergence for error-tolerant gpu applications,” IEEE
Trans. on Multimedia, this issue.

[103] R. A. Abdallah and N. R. Shanbhag, “Robust and energy efficient
multimedia systems via likelihood processing,” IEEE Trans. on Multi-
media, this issue.

[104] H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal, F. Sheikh,
R. Krishnamurthy, and S. Borkar, “A 1.45 GHz 52-to-162GFLOPS/W
variable-precision floating-point fused multiply-add unit with certainty
tracking in 32nm CMOS,” in Proc. IEEE Int. Solid-State Circ. Conf.
Dig of Tech. Papers, ISSCC’12, 2012, pp. 182–184.

[105] A. Lingamneni, K. Muntimadugu, C. Enz, R. Karp, K. Palem, and
C. Piguet, “Algorithmic methodologies for ultra-efficient inexact archi-
tectures for sustaining technology scaling,” in Proc. 9th ACM Conf.
Comput. Front., 2012, pp. 3–12.

Yiannis Andreopoulos (M’00) is Senior Lecturer at
University College London (UK). His research inter-
ests are in wireless sensor networks, error-tolerant
computing and multimedia systems. He received the
2007 “Most-Cited Paper” award from the ELSEVIER
EURASIP SIGNAL PROCESSING: IMAGE COMMU-
NICATION journal and a best-paper award from the
2009 IEEE WORKSHOP ON SIGNAL PROCESSING
SYSTEMS. Dr. Andreopoulos was Special Sessions
Co-chair of the 10TH INTERNATIONAL WORKSHOP
ON IMAGE ANALYSIS FOR MULTIMEDIA INTERAC-

TIVE SERVICES (WIAMIS 2009) and Programme Co-chair of the 18TH IN-
TERNATIONAL CONFERENCE ON MULTIMEDIA MODELING (MMM 2012).
He is an Associate editor of the IEEE TRANSACTIONS ON MULTIMEDIA,
the IEEE SIGNAL PROCESSING LETTERS and the ELSEVIER IMAGE AND
VISION COMPUTING journal.

	I Introduction
	I-A New Research Vision for Error-tolerant MSP - An Analogy to Signal Processing for Communications
	I-B Multimedia Stream Processing Systems and Applications
	I-C Error Tolerance in Multimedia Stream Processing Systems
	I-D Paper Organization

	II Error-tolerant Multimedia Systems For Resource-Distortion Adaptation
	II-A Stream Representation, Analysis and Coding
	II-A1 General Theory
	II-A2 Rate-Distortion-Complexity Modeling of Multimedia Analysis and Coding Systems
	II-A3 Links to System-level Complexity Adaptation and Complexity-Distortion Scalability

	II-B Information Indexing and Multimedia Retrieval
	II-C Computationally-intensive Learning and Recognition Tasks

	III System-oriented Overview of Error-tolerant Multimedia Stream Processing
	III-A Advances in Approximate (Precision-aware) Multimedia Stream Processing Software Components
	III-A1 Acceleration Techniques and Conventional Fault Tolerance
	III-A2 Throughput-Distortion Computation via Adaptive Companding and Packing

	III-B Multicore and Manycore Scheduling and Runtime Support for Multimedia Stream Processing
	III-C Error-tolerant Architecture, Hardware Components and Cross-layer Reliability

	IV A Unified View Of Error-resilient Multimedia Stream Processing
	V Conclusion
	References
	Biographies
	Yiannis Andreopoulos

