202 research outputs found

    Comparative analysis and implementation of structured edge active contour

    Get PDF
    This paper proposes modified chanvese model which can be implemented on image for segmentation. The structure of paper is based on Linear structure tensor (LST) as input to the variant model. Structure tensor is a matrix illustration of partial derivative information. In the proposed model, the original image is considered as information channel for computing structure tensor. Difference of Gaussian (DOG) is featuring improvement in which we can get less blurred image than original image.In this paper LST is modified by adding intensity information to enhance orientation information. Finally Active Contour Model (ACM) is used to segment the images. The proposed algorithm is tested on various images and also on some images which have intensity inhomogeneity and results are shown. Also, the results with other algorithms like chanvese, Bhattacharya, Gabor based chanvese and Novel structure tensor based model are compared.It is verified that accuracy of proposed model is the best. The biggest advantage of proposed model is clear edge enhancement

    An Information Tracking Approach to the Segmentation of Prostates in Ultrasound Imaging

    Get PDF
    Outlining of the prostate boundary in ultrasound images is a very useful procedure performed and subsequently used by clinicians. The contribution of the resulting segmentation is twofold. First of all, the segmentation of the prostate glands can be used to analyze the size, geometry, and volume of the gland. Such analysis is useful as it is known that the former quantities used in conjunction with a PSA blood test can be used as an indicator of malignancy in the gland itself. The second purpose of accurate segmentation is for treatment planning purposes. In brachetherapy, commonly used to treat localized prostate cancer, the accurate location of the prostate must be found so that the radioactive seeds can be placed precisely in the malignant regions. Unfortunately, the current method of segmentation of ultrasound images is performed manually by expert radiologists. Due to the abundance of ultrasound data, the process of manual segmentation can be extremely time consuming and inefficient. A much more desirable way to perform the segmentation process is through automatic procedures, which should be able to accurately and efficiently extract the boundary of the prostate gland with minimal user intervention. This is the ultimate goal of the proposed approach. The proposed segmentation algorithm uses a probability distribution tracking framework to accurately and efficiently perform the task at hand. The basis for this methodology is to extract image and shape features from available manually segmented ultrasound images for which the actual prostate region is known. Then, the segmentation algorithm seeks a region in new ultrasound images whose features closely mirror the learned features of known prostate regions. Promising results were achieved using this method in a series of in silico and in vivo experiments

    A Framework for Image Segmentation Using Shape Models and Kernel Space Shape Priors

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TPAMI.2007.70774Segmentation involves separating an object from the background in a given image. The use of image information alone often leads to poor segmentation results due to the presence of noise, clutter or occlusion. The introduction of shape priors in the geometric active contour (GAC) framework has proved to be an effective way to ameliorate some of these problems. In this work, we propose a novel segmentation method combining image information with prior shape knowledge, using level-sets. Following the work of Leventon et al., we propose to revisit the use of PCA to introduce prior knowledge about shapes in a more robust manner. We utilize kernel PCA (KPCA) and show that this method outperforms linear PCA by allowing only those shapes that are close enough to the training data. In our segmentation framework, shape knowledge and image information are encoded into two energy functionals entirely described in terms of shapes. This consistent description permits to fully take advantage of the Kernel PCA methodology and leads to promising segmentation results. In particular, our shape-driven segmentation technique allows for the simultaneous encoding of multiple types of shapes, and offers a convincing level of robustness with respect to noise, occlusions, or smearing

    Statistical region-based active contours for segmentation: an overview

    No full text
    International audienceIn this paper we propose a brief survey on geometric variational approaches and more precisely on statistical region-based active contours for medical image segmentation. In these approaches, image features are considered as random variables whose distribution may be either parametric, and belongs to the exponential family, or non-parametric estimated with a kernel density method. Statistical region-based terms are listed and reviewed showing that these terms can depict a wide spectrum of segmentation problems. A shape prior can also be incorporated to the previous statistical terms. A discussion of some optimization schemes available to solve the variational problem is also provided. Examples on real medical images are given to illustrate some of the given criteria

    Image processing in medicine advances for phenotype characterization, computer-assisted diagnosis and surgical planning

    Get PDF
    En esta Tesis presentamos nuestras contribuciones al estado del arte en procesamiento digital de imágenes médicas, articulando nuestra exposición en torno a los tres principales objetivos de la adquisición de imágenes en medicina: la prevención, el diagnóstico y el tratamiento de las enfermedades. La prevención de la enfermedad se puede conseguir a veces mediante una caracterización cuidadosa de los fenotipos propios de la misma. Tal caracterización a menudo se alcanza a partir de imágenes. Presentamos nuestro trabajo en caracterización del enfisema pulmonar a partir de imágenes TAC (Tomografía Axial Computerizada) de tórax en alta resolución, a través del análisis de las texturas locales de la imagen. Nos proponemos llenar el vacío existente entre la práctica clínica actual, y las sofisticadas pero costosas técnicas de caracterización de regiones texturadas, disponibles en la literatura. Lo hacemos utilizando la distribución local de intensidades como un descriptor adecuado para determinar el grado de destrucción de tejido en pulmones enfisematosos. Se presentan interesantes resultados derivados del análisis de varios cientos de imágenes para niveles variables de severidad de la enfermedad, sugiriendo tanto la validez de nuestras hipótesis, como la pertinencia de este tipo de análisis para la comprensión de la enfermedad pulmonar obstructiva crónica. El procesado de imágenes médicas también puede asistir en el diagnóstico y detección de enfermedades. Presentamos nuestras contribuciones a este campo, que consisten en técnicas de segmentación y cuantificación de imágenes dermatoscópicas de lesiones de la piel. La segmentación se obtiene mediante un novedoso algoritmo basado en contornos activos que explota al máximo el contenido cromático de las imágenes, gracias a la maximización de la discrepancia mediante comparaciones cross-bin. La cuantificación de texturas en lesiones melanocíticas se lleva a cabo utilizando un modelado de los patrones de pigmentación basado en campos aleatorios de Markov, en un esfuerzo por adoptar la tendencia emergente en dermatología: la detección de la malignidad mediante el análisis de la irregularidad de la textura. Los resultados para ambas técnicas son validados con un conjunto significativo de imágenes dermatológicas, sugiriendo líneas interesantes para la detección automática del melanoma maligno. Cuando la enfermedad ya está presente, el tratamiento digital de imágenes puede asistir en la planificación quirúrgica y la intervención guiada por imagen. La planificación terapeútica, ejemplicada por la planificación de cirugía plástica usando realidad virtual, se aborda en nuestro trabajo en segmentación de hueso/grasa/músculo en imágenes TAC. Usando un abordaje interactivo e incremental, nuestro sistema permite obtener segmentaciones precisas a partir de unos cuantos clics de ratón para una gran variedad de condiciones de adquisición y frente a anatomícas anormales. Presentamos nuestra metodología, y nuestra validación experimental profusa basada tanto en segmentaciones manuales como en valoraciones subjetivas de los usuarios, e indicamos referencias al lector que detallan los beneficios obtenidos con el uso de la plataforma de planifificación que utiliza nuestro algoritmo. Como conclusión presentamos una disertación final sobre la importancia de nuestros resultados y las líneas probables de trabajo futuro hacía el objetivo último de mejorar el cuidado de la salud mediante técnicas de tratamiento digital de imágenes médicas.In this Thesis we present our contributions to the state-of-the-art in medical image processing, articulating our exposition around the three main roles of medical imaging: disease prevention, diagnosis and treatment. Disease prevention can sometimes be achieved by proper characterization of disease phenotypes. Such characterization is often attained from the standpoint of imaging. We present our work in characterization of emphysema from highresolution computed-tomography images via quanti_cation of local texture. We propose to _ll the gap between current clinical practice and sophisticated texture approaches by the use of local intensity distributions as an adequate descriptor for the degree of tissue destruction in the emphysematous lung. Interesting results are presented from the analysis of several hundred datasets of lung CT for varying disease severity, suggesting both the correctness of our hypotheses and the pertinence of _ne emphysema quanti_cation for understanding of chronic obstructive pulmonary disease. Medical image processing can also assist in the diagnosis and detection of disease. We introduce our contributions to this_eld, consisting of segmentation and quanti_cation techniques in application to dermatoscopy images of skin lesions. Segmentation is achieved via a novel active contour algorithm that fully exploits the color content of the images, via cross-bin histogram dissimilarity maximization. Texture quanti_cation in the context of melanocytic lesions is performed using modelization of the pigmentation patterns via Markov random elds, in an e_ort to embrace the emerging trend in dermatology: malignancy assessment based on texture irregularity analysis. Experimental results for both, the segmentation and quanti_cation proposed techniques, will be validated on a signi_cant set of dermatoscopy images, suggesting interesting pathways towards automatic detection and diagnosis of malignant melanoma. Once disease has occurred, image processing can assist in therapeutical planning and image-guided intervention. Therapeutical planning, exempli_ed by virtual reality surgical planning, is tackled by our work in segmentation of bone/fat/muscle in CT images for plastic surgery planning. Using an interactive, incremental approach, our system is able to provide accurate segmentations based on a couple of mouse-clicks for a wide variety of imaging conditions and abnormal anatomies. We present our methodology, and provide profuse experimental validation based on manual segmentations and subjective assessment, and refer the reader to related work reporting on the clinical bene_ts obtained using the virtual reality platform hosting our algorithm. As a conclusion we present a _nal dissertation on the signi_cance of our results and the probable lines of future work towards fully bene_tting healthcare using medical image processing

    Fast Texture Segmentation Model based on the Shape Operator and Active Contour

    Get PDF
    We present an approach for unsupervised segmentation of natural and textural images based on active contour, differential geometry and information theoretical concept. More precisely, we propose a new texture descriptor which intrinsically defines the geometry of textural regions using the shape operator borrowed from differential geometry. Then, we use the popular Kullback-Leibler distance to define an active contour model which distinguishes the background and textural objects of interest represented by the probability density functions of our new texture descriptor. We prove the existence of a solution to the proposed segmentation model. Finally, a fast and easy to implement texture segmentation algorithm is introduced to extract meaningful objects. We present promising synthetic and real-world results and compare our algorithm to other state-of-the-art techniques

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    Embedding Overlap Priors in Variational Left Ventricle Tracking

    Full text link
    corecore