36,529 research outputs found

    NASA/NBS (National Aeronautics and Space Administration/National Bureau of Standards) standard reference model for telerobot control system architecture (NASREM)

    Get PDF
    The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control

    Towards Analytics Aware Ontology Based Access to Static and Streaming Data (Extended Version)

    Full text link
    Real-time analytics that requires integration and aggregation of heterogeneous and distributed streaming and static data is a typical task in many industrial scenarios such as diagnostics of turbines in Siemens. OBDA approach has a great potential to facilitate such tasks; however, it has a number of limitations in dealing with analytics that restrict its use in important industrial applications. Based on our experience with Siemens, we argue that in order to overcome those limitations OBDA should be extended and become analytics, source, and cost aware. In this work we propose such an extension. In particular, we propose an ontology, mapping, and query language for OBDA, where aggregate and other analytical functions are first class citizens. Moreover, we develop query optimisation techniques that allow to efficiently process analytical tasks over static and streaming data. We implement our approach in a system and evaluate our system with Siemens turbine data

    Exploiting a graphplan framework in temporal planning

    Get PDF
    Graphplan (Blum and Furst 1995) has proved a popular and successful basis for a succession of extensions. An extension to handle temporal planning is a natural one to consider, because of the seductively time-like structure of the layers in the plan graph. TGP (Smith and Weld 1999) and TPSys (Garrido, Onaindía, and Barber 2001; Garrido, Fox, and Long 2002) are both examples of temporal planners that have exploited the Graphplan foundation. However, both of these systems (including both versions of TPSys) exploit the graph to represent a uniform flow of time. In this paper we describe an alternative approach, in which the graph is used to represent the purely logical structuring of the plan, with temporal constraints being managed separately (although not independently). The approach uses a linear constraint solver to ensure that temporal durations are correctly respected. The resulting planner offers an interesting alternative to the other approaches, offering an important extension in expressive power

    PDDL2.1: An extension of PDDL for expressing temporal planning domains

    Get PDF
    In recent years research in the planning community has moved increasingly towards application of planners to realistic problems involving both time and many types of resources. For example, interest in planning demonstrated by the space research community has inspired work in observation scheduling, planetary rover ex ploration and spacecraft control domains. Other temporal and resource-intensive domains including logistics planning, plant control and manufacturing have also helped to focus the community on the modelling and reasoning issues that must be confronted to make planning technology meet the challenges of application. The International Planning Competitions have acted as an important motivating force behind the progress that has been made in planning since 1998. The third competition (held in 2002) set the planning community the challenge of handling time and numeric resources. This necessitated the development of a modelling language capable of expressing temporal and numeric properties of planning domains. In this paper we describe the language, PDDL2.1, that was used in the competition. We describe the syntax of the language, its formal semantics and the validation of concurrent plans. We observe that PDDL2.1 has considerable modelling power --- exceeding the capabilities of current planning technology --- and presents a number of important challenges to the research community

    Flexible Execution of Plans with Choice

    Get PDF
    Dynamic plan execution strategies allow an autonomous agent to respond to uncertainties while improving robustness and reducing the need for an overly conservative plan. Executives have improved this robustness by expanding the types of choices made dynamically, such as selecting alternate methods. However, in methods to date, these additional choices introduce substantial run-time latency. This paper presents a novel system called Drake that makes steps towards executing an expanded set of choices dynamically without significant latency. Drake frames a plan as a Disjunctive Temporal Problem and executes it with a fast dynamic scheduling algorithm. Prior work demonstrated an efficient technique for dynamic execution of one special type of DTPs by using an off-line compilation step to find the possible consistent choices and compactly record the differences between them. Drake extends this work to handle a more general set of choices by recording the minimal differences between the solutions which are required at run-time. On randomly generated structured plans with choice, we show a reduction in the size of the solution set of over two orders of magnitude, compared to prior art

    Fast Distributed Multi-agent Plan Execution with Dynamic Task Assignment and Scheduling

    Get PDF
    An essential quality of a good partner is her responsiveness to other team members. Recent work in dynamic plan execution exhibits elements of this quality through the ability to adapt to the temporal uncertainties of others agents and the environment. However, a good teammate also has the ability to adapt on-the-fly through task assignment. We generalize the framework of dynamic execution to perform plan execution with dynamic task assignment as well as scheduling. This paper introduces Chaski, a multi-agent executive for scheduling temporal plans with online task assignment. Chaski enables an agent to dynamically update its plan in response to disturbances in task assignment and the schedule of other agents. The agent then uses the updated plan to choose, schedule and execute actions that are guaranteed to be temporally consistent and logically valid within the multi-agent plan. Chaski is made efficient through an incremental algorithm that compactly encodes all scheduling policies for all possible task assignments. We apply Chaski to perform multi-manipulator coordination using two Barrett Arms within the authors' hardware testbed. We empirically demonstrate up to one order of magnitude improvements in execution latency and solution compactness compared to prior art

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201
    corecore