1,237 research outputs found

    Performance and Compensation of I/Q Imbalance in Differential STBC-OFDM

    Full text link
    Differential space time block coding (STBC) achieves full spatial diversity and avoids channel estimation overhead. Over highly frequency-selective channels, STBC is integrated with orthogonal frequency division multiplexing (OFDM) to achieve high performance. However, low-cost implementation of differential STBC-OFDM using direct-conversion transceivers is sensitive to In-phase/Quadrature-phase imbalance (IQI). In this paper, we quantify the performance impact of IQI at the receiver front-end on differential STBC-OFDM systems and propose a compensation algorithm to mitigate its effect. The proposed receiver IQI compensation works in an adaptive decision-directed manner without using known pilots or training sequences, which reduces the rate loss due to training overhead. Our numerical results show that our proposed compensation algorithm can effectively mitigate receive IQI in differential STBC-OFDM.Comment: 7 pages, 2 figures, IEEE GLOBECOM 201

    Adaptive Modulation Schemes for Underwater Acoustic OFDM Communication

    Get PDF
    High data rate communication is challenging in underwater acoustic (UA) communication as UA channels vary fast along with the environmental factors. A real-time Orthogonal frequency-division multiplexing (OFDM) based adaptive UA communication system is studied in this research employing the National Instruments (NI) LabVIEW software and NI CompactDAQ device. The developed adaptive modulation schemes enhance the reliability of communication, guarantee continuous connectivity, ensure maximum performance under a fixed BER at all times and boost data rate

    Multiuser Detection and Channel Estimation for Multibeam Satellite Communications

    Full text link
    In this paper, iterative multi-user detection techniques for multi-beam communications are presented. The solutions are based on a successive interference cancellation architecture and a channel decoding to treat the co-channel interference. Beams forming and channels coefficients are estimated and updated iteratively. A developed technique of signals combining allows power improvement of the useful received signal; and then reduction of the bit error rates with low signal to noise ratios. The approach is applied to a synchronous multi-beam satellite link under an additive white Gaussian channel. Evaluation of the techniques is done with computer simulations, where a noised and multi-access environment is considered. The simulations results show the good performance of the proposed solutions.Comment: 12 page

    Frequency-domain receiver design for doubly-selective channels

    Get PDF
    This work is devoted to the broadband wireless transmission techniques, which are serious candidates to be implemented in future broadband wireless and cellular systems, aiming at providing high and reliable data transmission and concomitantly high mobility. In order to cope with doubly-selective channels, receiver structures based on OFDM and SC-FDE block transmission techniques, are proposed, which allow cost-effective implementations, using FFT-based signal processing. The first subject to be addressed is the impact of the number of multipath components, and the diversity order, on the asymptotic performance of OFDM and SC-FDE, in uncoded and for different channel coding schemes. The obtained results show that the number of relevant separable multipath components is a key element that influences the performance of OFDM and SC-FDE schemes. Then, the improved estimation and detection performance of OFDM-based broadcasting systems, is introduced employing SFN (Single Frequency Network) operation. An initial coarse channel is obtained with resort to low-power training sequences estimation, and an iterative receiver with joint detection and channel estimation is presented. The achieved results have shown very good performance, close to that with perfect channel estimation. The next topic is related to SFN systems, devoting special attention to time-distortion effects inherent to these networks. Typically, the SFN broadcast wireless systems employ OFDM schemes to cope with severely time-dispersive channels. However, frequency errors, due to CFO, compromises the orthogonality between subcarriers. As an alternative approach, the possibility of using SC-FDE schemes (characterized by reduced envelope fluctuations and higher robustness to carrier frequency errors) is evaluated, and a technique, employing joint CFO estimation and compensation over the severe time-distortion effects, is proposed. Finally, broadband mobile wireless systems, in which the relative motion between the transmitter and receiver induces Doppler shift which is different or each propagation path, is considered, depending on the angle of incidence of that path in relation to the direction of travel. This represents a severe impairment in wireless digital communications systems, since that multipath propagation combined with the Doppler effects, lead to drastic and unpredictable fluctuations of the envelope of the received signal, severely affecting the detection performance. The channel variations due this effect are very difficult to estimate and compensate. In this work we propose a set of SC-FDE iterative receivers implementing efficient estimation and tracking techniques. The performance results show that the proposed receivers have very good performance, even in the presence of significant Doppler spread between the different groups of multipath components

    Waymark in the Depths: Baseband Signal Transmission and OFDM in Underwater Acoustic Propagation Channel Models

    Get PDF
    In the intricate environment of underwater acoustic propagation, establishing reliable communication channels stands as a formidable challenge, primarily due to the medium's inherent properties, such as high path loss, multipath propagation, and time-varying channel characteristics. "Waymark in the Depths: Baseband Signal Transmission and OFDM in Underwater Acoustic Propagation Channel Models" presents an innovative exploration into enhancing underwater communication systems by leveraging advanced signal processing techniques and channel modeling strategies. At the core of this research lies the integration of Orthogonal Frequency Division Multiplexing (OFDM) with baseband signal transmission, aiming to mitigate the detrimental effects of the underwater acoustic environment on signal integrity and throughput. By dissecting the acoustic channel's unique attributes, the study devises a comprehensive channel model that encapsulates the dynamic nature of underwater acoustics, including the impact of temperature, salinity, and pressure on sound speed and signal dispersion. This model serves as a waymark, guiding the development of tailored OFDM techniques that are optimized for the underwater medium, focusing on maximizing spectral efficiency and minimizing error rates. The research meticulously examines the interplay between baseband signal processing and OFDM in this context, illustrating how their synergistic application can overcome the bandwidth limitations and frequency-selective fading characteristic of underwater channels. Through extensive simulation and experimental validation, the study demonstrates the feasibility of achieving high-speed, reliable underwater communication, highlighting significant improvements in data rates and link stability. Furthermore, the research delves into adaptive modulation schemes and coding strategies, optimized for the derived channel model, to bolster the robustness of the communication link against the unpredictable underwater environment. This pioneering work not only sheds light on the complexities of underwater acoustic signal transmission but also charts a path forward for the next generation of underwater communication systems. By pushing the boundaries of current technological capabilities and offering a solid theoretical foundation, this research contributes significantly to the field of underwater acoustics and opens new horizons for marine exploration, environmental monitoring, and submarine communication networks. Through its comprehensive analysis and innovative approaches, "Waymark in the Depths" not only addresses the technical challenges of underwater signal transmission but also lays down a crucial waymark for future endeavors in the uncharted territories of the ocean's depths
    • …
    corecore