150,997 research outputs found

    Automated Discrimination of Pathological Regions in Tissue Images: Unsupervised Clustering vs Supervised SVM Classification

    Get PDF
    Recognizing and isolating cancerous cells from non pathological tissue areas (e.g. connective stroma) is crucial for fast and objective immunohistochemical analysis of tissue images. This operation allows the further application of fully-automated techniques for quantitative evaluation of protein activity, since it avoids the necessity of a preventive manual selection of the representative pathological areas in the image, as well as of taking pictures only in the pure-cancerous portions of the tissue. In this paper we present a fully-automated method based on unsupervised clustering that performs tissue segmentations highly comparable with those provided by a skilled operator, achieving on average an accuracy of 90%. Experimental results on a heterogeneous dataset of immunohistochemical lung cancer tissue images demonstrate that our proposed unsupervised approach overcomes the accuracy of a theoretically superior supervised method such as Support Vector Machine (SVM) by 8%

    An Automated Computer-aided Diagnosis System for Abdominal CT Liver Images

    Get PDF
    AbstractIn this paper, we present a computer-aided diagnosis (CAD) system for abdominal Computed Tomography liver images that comprises four main phases: liver segmentation, lesion candidate segmentation, feature extraction from each candidate lesion, and liver disease classification. A hybrid approach based on fuzzy clustering and grey wolf optimisation is employed for automatic liver segmentation. Fast fuzzy c-means clustering is used for lesion candidates extraction, and a variety of features are extracted from each candidate. Finally, these features are used in a classification stage using a support vector machine. Experimental results confirm the efficacy of the proposed CAD system, which is shown to yield an overall accuracy of almost 96% in terms of healthy liver extraction and 97% for liver disease classification

    Improved support vector clustering algorithm for color image segmentation

    Get PDF
    Color image segmentation has attracted more and more attention in various application fields during the past few years. Essentially speaking, color image segmentation problem is a process of clustering according to the color of pixels. But, traditional clustering methods do not scale well with the number of training sample, which limits the ability of handling massive data effectively. With the utilization of an improved approximate Minimum Enclosing Ball algorithm, this article develops an fast support vector clustering algorithm for computing the different clusters of given color images in kernel-introduced space to segment the color images. We prove theoretically that the proposed algorithm converges to the optimum within any given precision quickly. Compared to other popular algorithms, it has the competitive performances both on training time and accuracy. Color image segmentation experiments on both synthetic and real-world data sets demonstrate the validity of the proposed algorithm

    A Time Efficient Approach for Decision-Making Style Recognition in Lane-Change Behavior

    Get PDF
    Fast recognizing driver's decision-making style of changing lanes plays a pivotal role in safety-oriented and personalized vehicle control system design. This paper presents a time-efficient recognition method by integrating k-means clustering (k-MC) with K-nearest neighbor (KNN), called kMC-KNN. The mathematical morphology is implemented to automatically label the decision-making data into three styles (moderate, vague, and aggressive), while the integration of kMC and KNN helps to improve the recognition speed and accuracy. Our developed mathematical morphology-based clustering algorithm is then validated by comparing to agglomerative hierarchical clustering. Experimental results demonstrate that the developed kMC-KNN method, in comparison to the traditional KNN, can shorten the recognition time by over 72.67% with recognition accuracy of 90%-98%. In addition, our developed kMC-KNN method also outperforms the support vector machine (SVM) in recognition accuracy and stability. The developed time-efficient recognition approach would have great application potential to the in-vehicle embedded solutions with restricted design specifications

    Harnessing machine learning for fiber-induced nonlinearity mitigation in long-haul coherent optical OFDM

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has attracted a lot of interest in optical fiber communications due to its simplified digital signal processing (DSP) units, high spectral-efficiency, flexibility, and tolerance to linear impairments. However, CO-OFDM’s high peak-to-average power ratio imposes high vulnerability to fiber-induced non-linearities. DSP-based machine learning has been considered as a promising approach for fiber non-linearity compensation without sacrificing computational complexity. In this paper, we review the existing machine learning approaches for CO-OFDM in a common framework and review the progress in this area with a focus on practical aspects and comparison with benchmark DSP solutions.Peer reviewe
    • …
    corecore