1,809 research outputs found

    Global supply-chain effects of COVID-19 control measures

    Get PDF
    Countries have sought to stop the spread of coronavirus disease 2019 (COVID-19) by severely restricting travel and in-person commercial activities. Here, we analyse the supply-chain effects of a set of idealized lockdown scenarios, using the latest global trade modelling framework. We find that supply-chain losses that are related to initial COVID-19 lockdowns are largely dependent on the number of countries imposing restrictions and that losses are more sensitive to the duration of a lockdown than its strictness. However, a longer containment that can eradicate the disease imposes a smaller loss than shorter ones. Earlier, stricter and shorter lockdowns can minimize overall losses. A ‘go-slow’ approach to lifting restrictions may reduce overall damages if it avoids the need for further lockdowns. Regardless of the strategy, the complexity of global supply chains will magnify losses beyond the direct effects of COVID-19. Thus, pandemic control is a public good that requires collective efforts and support to lower-capacity countries

    Supply chains create global benefits from improved vaccine accessibility

    Get PDF
    Ensuring a more equitable distribution of vaccines worldwide is an effective strategy to control global pandemics and support economic recovery. We analyze the socioeconomic effects - defined as health gains, lockdown-easing effect, and supply-chain rebuilding benefit - of a set of idealized COVID-19 vaccine distribution scenarios. We find that an equitable vaccine distribution across the world would increase global economic benefits by 11.7% ($950 billion per year), compared to a scenario focusing on vaccinating the entire population within vaccine-producing countries first and then distributing vaccines to non-vaccine-producing countries. With limited doses among low-income countries, prioritizing the elderly who are at high risk of dying, together with the key front-line workforce who are at high risk of exposure is projected to be economically beneficial (e.g., 0.9%~3.4% annual GDP in India). Our results reveal how equitable distributions would cascade more protection of vaccines to people and ways to improve vaccine equity and accessibility globally through international collaboration

    An abstract machine for parallel graph reduction

    Get PDF
    technical reportAn abstract machine for parallel graph reduction on a shared memory multiprocessor is described. This is intended primarily for normal order (lazy) evaluation of functional programs. It is absolutely essential in such a design to adapt an efficient sequential model since during execution under limited resources available, performance will be reduced in the limit to that of the sequential engine. Parallel evaluation of normal order functional languages performed naively can result in poor overall performance despite the availability of sufficient processing elements and parallelism in the application. Needless context switching, task migration and continuation building may occur when a sequential thread of control would have sufficed. Furthermore, the compiler using static information cannot be fully aware of the availability of resources and their optimal utilization at any moment in run time. Indeed this may vary between runs which further aggravates the job of the compiler writer in generating optimal and compact code for programs. The benefits derived from this model are: 1) it is based on the G-machine so that execution under limited resources will default to a performance close to that of the G-machine; 2) the additional instructions needed to control the complexities of parallel evaluation are extremely simple, almost trivializing the job of the compiler writer; 3) attempts are made where possible to avoid context switching and task migration by retaining a sequential thread of control (made more clear in the paper), and 4) the method has demonstrated good overall performance on a shared memory multiprocessor

    Demand-driven, concurrent discrete event simulation

    Get PDF

    Specific "scientific" data structures, and their processing

    Full text link
    Programming physicists use, as all programmers, arrays, lists, tuples, records, etc., and this requires some change in their thought patterns while converting their formulae into some code, since the "data structures" operated upon, while elaborating some theory and its consequences, are rather: power series and Pad\'e approximants, differential forms and other instances of differential algebras, functionals (for the variational calculus), trajectories (solutions of differential equations), Young diagrams and Feynman graphs, etc. Such data is often used in a [semi-]numerical setting, not necessarily "symbolic", appropriate for the computer algebra packages. Modules adapted to such data may be "just libraries", but often they become specific, embedded sub-languages, typically mapped into object-oriented frameworks, with overloaded mathematical operations. Here we present a functional approach to this philosophy. We show how the usage of Haskell datatypes and - fundamental for our tutorial - the application of lazy evaluation makes it possible to operate upon such data (in particular: the "infinite" sequences) in a natural and comfortable manner.Comment: In Proceedings DSL 2011, arXiv:1109.032

    Impacts of COVID-19 on the Energy System

    Get PDF
    This Briefing Paper explores the impact the COVID-19 pandemic had on the UK’s energy sector over the course of the first government-mandated national lockdown that began on 23 March 2020. Research from several aspects of the Integrated Development of Low-carbon Energy Systems (IDLES) programme at Imperial College London is presented in one overarching paper. The main aim is to determine what lessons can be learnt from that lockdown period, given the unique set of challenges it presented in our daily lives and the changes it brought about in energy demand, supply, and use. Valuable insights are gained into how working-from-home policies, electric vehicles, and low-carbon grids can be implemented, incentivised, and managed effectively

    Globalization and Protection of Employment

    Get PDF
    Unionists and politicians frequently claim that globalization lowers employment protection of workers. This paper tests this hypothesis in a panel of 28 OECD countries from 1985 to 2003, differentiating between three dimensions of globalization and two labor market segments. While overall globalization is shown to loosen protection of the regularly employed, it increases regulation in the segment of limited-term contracts. We find the economic one to drive deregulation for the regularly employed, but the social one to be responsible for the better protection of workers in atypical employment. We offer political economy arguments as explanations for these differential effects.Globalization; international trade; integration; employment protection; labor standards; unions; cross-country analysis; panel data analysis
    • 

    corecore