
Demand-driven, Concurrent Discrete 
Event Simulation 

Cohn Smart 

Doctor of Philosophy 
University of Edinburgh 

2001 

C. 



To Catherine Smart, without whom this thesis would never have been started, 

and to David L. Lyle, without whom it would never have been completed. 



Abstract 

The simulation of complex systems can consume vast amounts of computing 

power. In common with other disciplines faced with complex systems, simulation-

ists have approached the management of complexity from two angles: sub-system 

evaluation and level of abstraction. Sub-system evaluation attempts to determine 

the global behaviour by determining the local behaviour and then joining these 

behaviours together. Altering the level of abstraction tries to reduce the detail in 

the system in areas which are less critical to the model. 

Data-driven evaluation, where the computation is sparked by the arrival of 

sufficient data, has been widely used as a basis for discrete event simulation. 

Demand-driven evaluation uses a different impetus for computation. It actively 

demands that data be sent in order for it to complete the processing. The demands 

that each processing unit issues, in turn, cause other processing units to become 

active. The repeated demand for finer and finer sub-solutions will eventually be 

satisfied which results, in turn, with the solution of the original demand. Demand-

driven evaluation provides a coherent approach to the problem of simulating large 

systems at different levels of abstraction, at a cost comparable to data-driven 

evaluation. A model for both data- and demand-driven evaluation is described 

which captures the total communication and computation load for each node in 

the system. 

I\lodels are provided for the upper-bound of processor and communication 

usage. The runtime dynamics of data and demand-driven systems are investigated 

with particular emphasis on the relation between the costs of generating and 

transmitting an event. 

Demand-driven discrete event simulation, using time intervals, is able to pro-

vide a platform with dynamic communication between the nodes, local control 

of processing, efficiently uses processor power, and is conservative. If the struc-

ture being simulated is free from deadlock, then the simulation will be also. The 



client-server approach means that the evaluation is easy to distribute over avail-

able processors. The use of a calendar and time intervals means that the system 

is able to automatically identify, and exploit, both structural and temporal par-

allelism in the underlynig system. 
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Chapter 1 

Introduction 

The problem of efficiently executing regular, parallel programs has been much 

studied, and machines such as the Connection Machine[41] were designed to fa-

cilitate such computation. Such early parallel machines were designed for parallel 

computation from the outset. Recently there has been a change of focus, away 

from monolithic systems, towards utilising a networks of workstations where the 

parallelism is supported more by the operating system and less by dedicated 

hardware. Examples of such systems are the SETI©Home[50] and Beowulf[861 

projects. 

The area of irregular computations, however, has been less extensively exam-

ined. Irregular computations are characterised by an execution pattern which 

cannot be predicted in advance and which is very sensitive to the input data. 

Parallel discrete event simulation is one such irregular computation and is used 

throughout to illustrate the methods employed. 

1.1 The structure of the thesis 

Chapter 1: Introduction. This chapter introduces distributed discrete-event 

simulation as a means to explore irregular computation and, after a review 

of the major approaches to time synchronisation in such systems, proposes a 

new method that addresses an aspect of efficiency which has been overlooked 

by the other approaches. 

Chapter 2: Background. This chapter steps back from simulation and looks 

at the more generic problems of the production and synchronisation of data 



in distributed systems, and how it relates to the desirable features of a 

dynamic communications topology, freedom from deadlock, local control 

and efficient use of resources. 

Chapter 3: Demand-driven Simulation. This chapter discusses some of the 

costs and benefits associated with demand-driven simulation. The costs 

are resource consumption, be they bandwidth, processor or time. It pro-

vides arguments in mitigation of a number of the costs involved as well as 

strategies to reduce the overall cost of simulating a system. 

Chapter 4: Performance models. This chapter first describes, in detail, the 

behaviour of Chandry-Misra-Bryant, ELSA and demand-driven systems. Af-

ter providing background definitions, models are derived which express the 

upper-bound of the gross computation and communication behaviour of 

those systems. 

Chapter 5: Experimental results. This chapter uses a number of different 

circuits to examine the dynamic nature of the simulation and, in particu-

lar, to focus on the parallelism and performance which is available as the 

computing resource increases. 

Chapter 6: Summary and Conclusions. This chapter summarises our work, 

provides some discussion of our conclusions and gives some directions for 

further work in the area of demand-driven systems. 

1.2 What is Simulation? 

Computer simulation involves the construction of a mathematical model of a 

system in which mathematical symbols and equations are used to represent the 

relationships between objects in the system. The calculations indicated by the 

model's equations are then performed repeatedly, using a computer with time 

incremented discretely, to represent the passage of real-world time. The computer 

simulation indicates the behaviour of the mathematical model and from this is 

inferred the behaviour of the modelled system. 
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Computer simulation is currently used in a wide range of applications, espe-

cially in engineering and the physical sciences, where systems are expensive or 

difficult to analyse. Much of what is known about many safety critical applica-

tions is derived from computer simulation; for example, if testing of the real world 

system under extreme conditions would involve excessive risks, then simulation 

must be used to determine the system's likely behaviour. Similarly, the likely 

performance of a new system is often assessed from simulation studies. This is 

particularly so when, for safety reasons, a system cannot be allowed to 'go live' 

in an untested configuration, or when it is impractical to experiment with the 

environment with which the system interacts. 

Clearly, the integrity of the computer simulation is of critical importance; the 

simulation must be designed with care, so that the results obtained are valid, 

accurate and useful. 

Most systems may be defined as a collection of elements which inherently 

execute concurrently and interact one with another to achieve some global func-

tion. For example, the human heart, lungs and bloodstream form a physiological 

system whose purpose is to provide oxygen for the body; each component ex-

ists and operates largely autonomously, yet the overall function is achieved by 

the interaction of the components. By analogy, any model should include what-

ever concurrency and inter-process interactions exist in the real-world system, 

and the simulation should be able to handle that concurrency and inter-process 

interaction. 

The ready availability of low-cost parallel processing elements makes it in-

creasingly attractive to use true parallel processing and true process interaction 

in simulation. A number of specific problem domains have been explored and a 

variety of systems have been reported (a few of these systems are examined in 

detail below). These reports have shown that complex systems can be modelled 

easily and economically, keeping a close relationship between the model and the 

real-world system, and without compromising the natural concurrent nature of 

the real-world system. In addition, the use of parallel computers can lead to 

substantial performance gains. 
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There are two classes of model available: continuous and discrete. A contin-

uous model is used where the system varies continually with time. A discrete 

simulation is used when we are more concerned with the transitions from state 

to state than with the times at which they occur. We shall look only at discrete 

models. 

1.3 Types of Discrete Simulation 

An event is an action which can occur within the system being simulated. 

In a discrete simulation the state of the system is assumed to remain constant 

between events. By making the interval between events smaller and smaller, an 

approximation of a continuous system can be achieved, though there will always 

be inaccuracies. 

1.3.1 Time Advance 

The method for advancing time in a discrete simulation system can be used to 

partition the methods into two classes: 

• Time-driven simulation. This method is also known as compiled mode sim-

ulation. In this system, the continuous flow of time is modelled as a suc-

cession of equally spaced steps. The entire system is evaluated for each of 

those steps. A disadvantage of this method is the inherent assumption that 

the state of the system at time t + R can be determined by some function of 

the state at time t and the inputs to the system at time t+6t. This method 

also fails to record changes to the system in the interval (t, t + öt). It does, 

however, have the advantage that no scheduling is necessary (as the whole 

system is evaluated every St). Also, it is relatively simple to implement 

on parallel or distributed machines as there is no synchronisation required 

between the components of the system to impede the execution. 

• Event driven simulation. If we consider the system to be simulated as a 

number of elements, each of which maintains a local state which, in turn, 

is used as the input state to a number of other elements, then an event 
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driven simulation can be employed. The number of elements whose inputs 

change at any given time is generally quite small and much of the execution 

time in a time driven simulation is wasted, either recalculating an output 

whose inputs have not changed, or in checking to see what has changed. An 

alternative approach is to mark each change in state with the time at which 

that change takes effect. The simulator thus knows what, and when, states 

change. For some systems, the overhead in maintaining this extra state 

information makes the event driven system perform poorly compared with 

time-driven systems although it can perform better if the state changes are 

rare (either in time or space). 

A timing model is used to mimic the time taken by a element to determine the 

new output value when one or more input values change. A number of different 

timing models are available. 

• Unit delay assumes that every change of an input state requires exactly one 

time unit before its effect appears as an output state. It is worth noting 

that a change in the input state does imply a change in the output state. 

This is the only timing model available to time-driven simulation. 

• Fixed delay assigns individual delays to each element and keeps these delays 

constant throughout the entire simulation. This can be used to mimic the 

granularity (or response time) of the element in question. Should the time 

taken to process a change in state depend on the specific transition being 

experienced by the element (from old input state to new input state) then 

multiple fixed delays can be applied. 

• Variable delay provides a more flexible way to simulate elements. With 

this type, the value of the delay changes to reflect the state of the system. 

For example, a car waiting to cross a train track will have a delay which 

varies with the speed and length of the train; values which may be data 

dependent. 
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1.4 Classical Discrete Event Simulation 

In a classical discrete event simulation system, a queue holds an ordered list of 

event-time pairs. The list is ordered on the time component of the pair. In effect, 

the pair dictates what happens and when it happens. 

Each event can cause a number of other events, including itself, to be scheduled 

in the future. Some systems permit events to be scheduled at the current time, 

while others expressly forbid such scheduling in order to ensure the progress of 

time. No event can cause an event to be scheduled in the past. A simulation 

system, then, consists, in the abstract, of a single queue which holds the scheduled 

events in time order. Events with the same time-stamp are evaluated in an order 

determined by a resolution strategy. This strategy can be as simple as first-

come first-served. In some models, the existence of two conflicting events, such 

as "increase heat" and "decrease heat", scheduled for the same time is an error 

condition which halts the simulation. 

The simulation proceeds by executing the event at the front of the queue (the 

event with the lowest time-stamp) and inserting into the queue any resulting 

events. This continues until either a preset time or condition is reached, or the 

queue becomes empty. 

Early attempts at parallelising the simulation were still based on the single 

queue model of the sequential methodi271. It was thought that, as there could be 

a number of events in the queues with the same time-stamp, a performance gain 

could be achieved by executing all such events on separate processors. While this 

did improve performance, such systems had a number of drawbacks, the most 

notable being that the single queue proved to be a bottleneck in the system. 

While one processor was executing the last of the events with the current time-

stamp, the rest of the system had to wait until it had finished before issuing events 

with a higher time-stamp. If one event scheduled another event with the same 

time-stamp, then the system had to process these sequentially, with the resultant 

loss of parallel performance. 

This was confirmed by Agrawal[2] and others. Work then began on a num-

ber of more complex queuing models which eventually resulted in the Chandy- 
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Misra[19] or Bryant[13] systems, which will be described in Section 1.5. 

1.4.1 Shared-memory multiprocessors 

There have been many attempts to apply parallel computers to discrete-event 

simulation. These may be divided into two main approaches, distributed sim-

ulation and concurrent simulation. Distributed simulation relies on a spatial 

decomposition and partitions the simulation model into components that can be 

executed on different processors. Concurrent simulation is based on a temporal 

decomposition. 

While this thesis concentrates on distributed simulation, some developments in 

shared-memory concurrent simulation[23, 90] are worthy of mention. Many of the 

performance-degrading obstacles found in distributed memory simulations, such 

as communication delay, null messages, and the high cost of deadlock detection 

and recovery, can be reduced. Near ideal speed-up for several queuing network 

simulation models using shared-memory distributed simulation has been reported 

by Wagner and Lazowska[90, 91]. 

Hoeger and Jones[42] have integrated the two distributed and concurrent ap-

proaches. They have produced a distributed simulator with concurrency added 

to each model component. This was done in a shared-memory environment and 

:both approaches were unified to an event-centered view. They partitioned the 

global event queue of the concurrent simulator and provided each model com-

ponent in the distributed simulator with a local concurrent event queue which 

allowed them to add concurrency to each model component. 

1.5 Distributed Simulation 

The field of distributed simulation has received a great deal of interest and nu-

merous methods have been developed to maintain a sufficiently accurate view of 

time across a collection of processing elements. In this section we shall start by 

providing a brief overview of distributed simulation and then follow with a survey 

of the different approaches that have been taken to address the issues raised by 

successive systems. 
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In distributed simulation, the physical system is usually modelled as a set 

of spatially separated physical processes that interact at discrete time instants. 

The distributed simulation approach maps each physical process onto a logical 

process (LP) of the simulation engine. Interaction between physical processes is 

handled via time-stamped messages, exchanged between the corresponding logi-

cal processes. Each LP maintains its own local clock - often referred to as Local 

Virtual Time (LVT) - and a local event queue holding messages in time order. 

A synchronisation protocol has to be provided and executed by each logical pro-

cess in order to preserve the dependency between events in this asynchronous 

environment. In the simulation engine, the logical processes are mapped to pro-

cessors; the communication links are embedded in the underlying inter-processor 

communication network. This provides a natural means, not only for exploiting 

parallelism, but also for maintaining the modularity of the simulation. 

Two different styles of synchronisation have, until recently, further divided 

distributed simulation into two classes; conservative and optimistic. 

1.5.1 Conservative Mechanisms 

The essential basis of distributed simulation was first presented by Chandy and 

Misra[19], and independently by Bryant[13. Such systems are sometimes referred 

to as CMB (Chandy, Misra, Bryant) systems. 

In CMB systems, the causality of events across all the LPs is preserved by 

sending time-stamped event messages (<event©t>); the time-stamp is a copy of 

the LVT of the sending LP. A conservative logical process is allowed to process 

safe events only. A safe event is one which has a time-stamp in advance of the 

LVT of the receiving LP, but less than (or equal) to the time-stamps on all other 

messages which the LP will receive. All events must be processed in chronological 

order. This guarantees that the output stream of a LP is in chronological order. 

A communication system preserving the order of messages sent from one LP to 

another (FIFO) is sufficient to ensure that no out of chronological order messages 

will ever arrive at receiving LP. A conservative system can thus be seen as a set 

of all LPs together with a set of directed, reliable, FIFO communication channels 
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that constitute a graph of logical processes. It is important to note that this 

graph has a static topology. 

The communication interface of a logical process maintains an input buffer 

and a clock for each channel pointing to that LP. The buffer stores every message 

arriving through a channel in FIFO order and that channel's clock is set to the 

time-stamp of the earliest unprocessed message (the one at the head of that 

channel's buffer). Initially the value of every channel clock is set to zero. 

The local virtual time is the minimum of the channel clocks. This gives the 

time horizon, up to which it is safe to process events. It is safe because, given 

the FIFO links and a fixed topology, it is not possible for any LP in the system 

to send a message down a channel with a time-stamp less than already sent and 

no LP can send a message without having started at a LVT of 0. 

The event (or events) with a time-stamp equal to the LVT are processed and 

removed from the input buffer and any resultant events dispatched. Given that 

there are now no messages left with a time-stamp equal to LVT the LP can 

perform one of two actions. If there is a message on all of the input arcs then the 

LP can increase its LVT to the new minimum and repeat, or it must wait until 

all the channels have messages before repeating. This "blocking until safe" policy 

leads to two problems: deadlock and memory overflow as shown in Figure 1.1. 

Each LP is waiting for a message to arrive from a LP which is itself blocked 

(deadlock). Also, each process which is blocked is receiving messages from non-

blocked LP which are being queued and left unprocessed in their respective input 

buffers. These input buffers can grow unpredictably and thus cause memory 

overflow. This is possible even in the absence of deadlock. Several methods have 

been proposed to overcome the vulnerability of CMB to deadlock, these fall into 

two principal categories: deadlock avoidance and deadlock detection/recovery. 

1.5.1.1 Deadlock Avoidance 

Deadlock, such as that in Figure 1.1, can be prevented by modifying the com- 

munication protocol so that null messages[60 (messages of the form <null@t>, 

where null is an event with no effect) can be sent. A null message is not related 
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to the simulated model and serves only as a synchronisation method. It is sent 

on every output channel as a statement that that LP has reached a certain value 

of LVT and thus will never send out a message with a time-stamp less than t. A 

null message is sent to every target LP for which the sending LP did not generate 

any other message. The effect is to notify every target LP of the sending LP's 

new LVT. The receiving LP can use this information to increase the channel clock 

on the corresponding link and thus permit other events to be processed. 
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Figure 1.1: Deadlock and Memory overflow. The number beneath each channel 
denotes the time-stamp of the earliest unprocessed message (the channel clock). 

In Figure 1.1, after the LP in the middle had sent <nu1l19> to the neigh-

bouring LPs, both of them could increase their LVT to 19 and in turn issue new 

event messages to other LPs. The null message protocol can be guaranteed to 

be deadlock free as long as there are no closed cycles of channels, for which a 

message traversing this cycle cannot increase its time-stamp. This implies that 

simulation models cannot be simulated using CMB with null messages, if they 

cannot be decomposed into LP such that for every directed channel cycle there 

is at least one LP to put a non-zero time increment on traversing messages. 

Although the protocol is straightforward to implement, it can put a greatly 

increased burden on the communication network (as a result of the null messages) 

and also reduce the performance of the simulation, as each null message needs 

to be processed. Optimisations on the protocol to reduce the frequency, or num-

ber, of null messages have been proposed[60. An approach whereby additional 

information is carried with the null message (the so-called carrier-null message 
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protocol[17]) will be looked at in Section 1.5.1.2. 

One remaining problem with trying to improve the performance of conser-

vative logical processes is determining when it is safe to process an event. The 

degree to which LPs can look ahead and predict future events can play a critical 

role in the safety verification, and thus the performance, of conservative LP sim-

ulations. In Figure 1.1, if the LP with LVT of 19 knew that processing the next 

event will increment the LVT to 22 then it could send a null message <null©22> 

(a look-ahead of 3) to improve the LVT of the receivers. 

Look-ahead must come directly from the underlying simulation model and 

enhances the prediction of future events; the ability to exploit look-ahead was 

first shown by Nicol[66] for FCFS queuing network simulations. 

1.5.1.2 Carrier-Null Message Protocol 

As mentioned in the previous section, it is possible to augment the null message 

with other information to help overcome some of the inefficiencies of the null 

message protocol. Consider the system shown in Figure 1.2. The source creates 

an event every 50 virtual time units; the join, split and pass units each take 2 

virtual time units to handle the event. After the first event is released by the 

source, all LP except the source are blocked and start to propagate local look-

ahead via null messages. After 4 null messages (join to pass, pass to split, split 

to join and split to sink) each of those LP has advanced their local time by 2 

virtual time units. It will take a further 96 null messages (100 in all) before the 

initial source event can be processed and then another 100 null messages before 

the second source event can be processed, and so on. The impact of look-ahead 

is easily seen in this example; the smaller the look-ahead on the successor LPs, 

then the more null messages that will have to be sent to advance the virtual time, 

resulting in a higher communication load and thus a poorer performance. In a 

study by Leung and others[51] it was shown that cycles in the communication 

network of a conservative CMB system can remove almost all the speedup from 

the system. 

The carrier-null message protocol[171 aims to reduce the number of null mes- 
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Figure 1.2: Motivation for Carrier-Null Message Protocol 

sages sent by augmenting the message with a number of other parameters. If the 

join process in Figure 1.2 could somehow know that it is waiting on itself, it could 

safely process the source event (t=50). To do this, the LPj,i,, needs some global 

information. To satisfy this need for global information, without having a cen-

tralised controller, the carrier-null protocol employs an additional null message of 

type <cO, t, R, la.inf>, where cO is an identification as a carrier null message, t is 

the time-stamp, R contains an ordered list of the logical processes through which 

the message has been routed and la.inf is look-ahead information. Once LP30  

has received a carrier null message with itself as the source and sink of the route 

in R, it can be sure that (in this example) it will not receive an event message 

via that path unless it itself had sent an event message along that path. It can, 

therefore, after receiving the first carrier null message, process the source event 

and thus increment its own (and the other LPs in route R) LVT. 

In the more general case, where there may be more than one "source-like" LP 

entering event messages into the dependency loop, the above arguments are not 

sufficient as more information is needed than just the route taken. The earliest 

possible time of next event message that would break the cyclic dependency is 

also needed. This is carried in the field la.inf in the carrier null message. 
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Even with carrier null messages, the CMB system can still produce many 

null messages. An approach by Preiss and others[72] attempts to reduce null 

message propagation by recognising when a null message has become superseded 

(or stale). Suppose that a LP has sent a stream of null messages to another LP. 

For example, this might occur when the originating LP has more than one input 

channel. Each of these null messages will have an increased time-stamp. The 

null messages will be queued at the input buffer until being processed. Should a 

null message with time-stamp t arrive in the buffer and find another null message 

with a time-stamp s < t then there is no point having the receiving LP process 

the earlier null message as it it now redundant and can be annihilated. This was 

generalised further to say that any message from the same source which finds a 

null message with a smaller time-stamp may annihilate that null message. This 

optimisation depends on the respective rate of production and consumption of 

null messages and may, in the case where the LP is a greedy consumer, produce 

no performance improvement whatsoever. 

A later study, by Teo and Tay1881,  of the conservative simulation of a multi-

stage interconnection network uses a similar "flushing" method to that proposed 

by Preiss[721. In the example used by Teo and Tay, the amount of null message 

overhead was reduced from exponential to linear in the number of elements in the 

system. This has important repercussions on the performance of the system as 

Soule[821 notes that, in parallel event-driven simulation of logic circuits, 50% to 

80% of the execution time is spent in the deadlock detection and recovery phases. 

1.5.1.3 Deadlock detection and recovery 

An alternative to the null message approach was also proposed by Chandy and 

MisraI19j, which allowed deadlocks to occur but provided a method to detect 

them and recover. Their algorithm has two phases: the first (a parallel phase), in 

which the simulation runs until it deadlocks, and the second (an interface phase), 

that starts a computation which results in at least one LP being able to advance 

its LVT. They prove that, in every parallel phase, at least one event will be 

processed, generating at least one event message which will also be propagated 
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before the next deadlock. Their algorithm assumes a central controller, which 

violates a central tenet of distributed computing. This was later removed and 

replaced with a distributed deadlock detection algorithm[20]. 

Misra[601 proposes an alternative approach in which a special message (called a 

marker) circulates through the network of channels to detect and resolve deadlock. 

A cyclic path for traversing all the channels is precomputed and all LPs are 

initially coloured white. A LP that receives the marker turns white and forwards 

it along the path in finite time. Once a LP has forwarded the marker, should it 

either send or receive an event, then it turns red. Deadlock is detected by the 

marker if the last N LP visited were all white. If the marker also carries the next 

event times of the visited (white) LPs then it will know, once it has detected 

deadlock, the smallest next event time as well as the LP in which this is supposed 

to occur. To recover from deadlock, this LP is invoked to process its earliest 

event. 

The time-of-next-event algorithm proposed by Groselj and Tropper[381 as-

sumes more than one LP mapped to a single physical processor and computes the 

lower bound of the time-stamps of the event messages expected to arrive next at 

all empty links on the LPs located at the processor. It thus helps to unblock LPs 

within one processor but does nothing to prevent deadlocks across processors. 

An optimisation has been adopted by Soule and Gupta[83]. Their work is 

specific to logic simulation and centres on manipulating the order in which nodes 

are evaluated to reduce the potential for deadlock. In some cases, all deadlock 

has been removed. 

1.5.1.4 Summary of conservative methods 

The principle of conservative operation is that causality violations are strictly 

avoided; only "safe" events are processed. The synchronisation method is pro-

cess blocking, which can cause deadlock. This is inherent in the protocol and 

not a resource contention problem. Deadlock prevention protocols based on null 

messages are liable to place a severe communication overhead on the system. 

Deadlock detection and prevention algorithms mainly depend on a centralised 
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controller, though other methods are available. The parallelism available within 

a CMB system is purely structural and rarely fully exploited as, if causality vi-

olations are possible, even if rare, the protocol behaves overly pessimistically as 

it waits until it is not possible for a violation to occur. CMB performs well as 

long as all channels are equally utilised. Should a channel not have a new event 

message, because the state has not changed, then either it will need to send null 

messages or become involved in a deadlock detection and recovery process. A 

large dispersion of events in either space or time does not degrade performance. 

This is because a conservative LP is only concerned with the earliest message 

from those LPs that are directly connected to it. The potential zone of influence 

of a LP is small and thus it is relatively insulated from the rest of the simulation 

system. 

There is no explicit computation of a global virtual time (GVT) which, as we 

will see in Section 1.5.5, is needed to manage memory in optimistic systems. The 

global virtual time is the time before which no events can occur. 

A conservative system can cope with simulation models having "arbitrarily" 

large state spaces and is straightforward to implement using only simple control 

and data structures, though it does require that the communication channels are 

FIFO and that events are processed in the order of their arrival (which will be, un-

der the strictures of the protocol, in chronological order). The LP interconnection 

topology must be static. 

While no general performance statement is possible owing to the many dif-

ferent systems, implementations and architectures, the performance of a CMB 

system relies mainly on its deadlock management strategy. The computation and 

communication overhead per event is small on average and the protocol favours 

"fine grain" simulation models. 

1.5.2 Optimistic Mechanisms 

The "pessimistic" causality constraint of the conservative system strictly prevents 

any out of order execution of events. In contrast, optimistic LP simulation strate- 

gies allow causality errors to occur and provide a method whereby the system can 
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recover from such violations. In order to avoid the blocking and safe-to-progress 

determination which hinder the performance of conservative systems, optimistic 

processes evaluate events (and hence advance LVT) as far into the future as pos-

sible. This is done with no regard for causality errors and there is no guarantee 

that an event will not arrive in the local past. 

1.5.2.1 Time Warp 

The initial work in optimistic simulation was by Jefferson and Sowizral[45, 48] 

with the definition of the Time Warp (TW) mechanism which, like the Chandy -

Misra-Bryant protocol, uses messages for synchronisation. The Time Warp mech-

anism restores consistency with the local causality constraints[34] through the use 

of a rollback mechanism. If an event arrives with a time-stamp in the local past, 

i.e. out of chronological order (these messages are sometimes referred to as strag-

gler messages), then the TW scheme rolls back time to the most recently saved 

state in the LP history which is consistent with the time-stamp on the new mes-

sage and restarts the simulation from that point. 

Rollback requires a record of the history of the LP so that it can return to a 

point in its past and correct the causality error. This mean a record not only of 

internal state changes, but also of the contents of input and output queues. For 

reasons which we will cover later, the record of the LP's communications history 

must be done in chronological order. 

Since the arrival of event messages in increasing time-stamp order cannot 

be guaranteed, two different kinds of messages are required to implement the 

communications protocol. The first is the usual CMB style message but with 

an added '+' field ( m + =< ee@t, + >), where again ee is the event and t is a 

copy of the sender's LVT. Subsequently we will refer to this type of message as a 

Positive message. To balance positive messages, we also have negative messages 

(or anti-messages) of the form (m =< ee(5t, - >). These negative messages are 

transmitted to a LP to request the annihilation of the prematurely sent positive 

message containing ee. This would occur when the sending LP discovered that 

the value of ee was computed based on a causally erroneous state. 
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The basic architecture of an optimistic LP is similar to that for a conservative 

LP. Again messages are transmitted through a communications system but they 

are not required to arrive in the order that they were sent and this relaxes the 

hardware requirements. Also it is not necessary to separate the input streams, so 

a single input queue is sufficient (as long as the sending LP can be identified from 

the message). The communication history must be stored, as must the internal 

state. 

An optimistic LP works in four phases: input synchronisation to other LPs, 

local event processing, the propagation of external effects and the global confir-

mation of locally simulated events. The event processing, and propagation of ex-

ternal effects, are almost the same phases as those contained within a conservative 

system. The input synchronisation (rollback and annihilation) and confirmation 

are the key elements in an optimistic LP simulation. 

1.5.3 Rollback and associated Annihilation Methods 

The rollback mechanism relates the incoming message with the current state of 

the LP to determine the appropriate action. There are three possible variables 

to consider; the type of the arriving message (mt, mj, the relation of the time-

stamp to the LVT (time-stamp ~! LVT, time-stamp < LVT) and whether a dual 

message exists (a m+  for a m or a m for a m+).  The appropriate action is 

outlined in Tables 1.1 and 1.2. 

Arriving message is of type: m + 

time-stamp > LVT if dual m 	exists if dual m 	does not exist 
(in the local future) annihilate dual m chronologically insert (m,IQ) 
time-stamp < LVT if dual m 	exists if dual m 	does not exist 
(in the local past) annihilate dual m rollback then 

chronologically insert (m,IQ) 

Table 1.1: Appropriate actions on receiving an incoming positive message in a 
Time Warp based protocol 

Events which arrive in the local future are unproblematic as they have yet to be 

processed and, as such, cannot have had an effect outwith the local environment. 

So, should a positive message arrive it will either a) cancel out an existing negative 
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Arriving message is of type: m 
time-stamp > LVT if dual m 	exists if dual m 	does not exist 
(in the local future) annihilate dual m chronologically insert (m,IQ) 
time-stamp < LVT if dual m 	exists if dual m 	does not exist 
(in the local past) rollback then chronologically insert (m,IQ) 

annihilate dual m+  

Table 1.2: Appropriate actions on receiving an incoming negative message in a 
Time Warp based protocol 

message or b) should no related negative message exist, it will be inserted in the 

queue in time-stamp order. The arrival of a negative message will be treated 

similarly in that it will either a) cancel out an existing positive message or b) 

should no related positive message exist, it will be inserted in the queue in time-

stamp order. The effect of such actions is to ensure that an erroneous positive 

message is cancelled (even if it arrives after the cancelling negative message). As 

all processing so far discussed takes place in the local future there is no need to 

involve any other LPs as they could not have received any output from this LP 

in its local future that has not already been corrected. Situations in the lower 

row, where the event arrives in the LPs local past, may involve other LPs if a 

causality error has occurred. 

In the lower row, the arriving message is in the local past of the LP. That 

means that the LP has sent, to other LPs, data which may be erroneous. The 

two simple cases are a positive, message arrives and there is a corresponding 

negative message, or a negative message arrives and there is no corresponding 

positive message. In the former case, the negative message is annihilated. In the 

latter case the negative message is inserted into the input queue in chronological 

order. The remaining two cases need rollback to be implemented. 

In the case of a positive message arriving in the local past with no corre-

sponding negative message then the system must rollback to a point before the 

time-stamp of the arriving message, insert the new message into the input queue 

in chronological order and then restart the simulation. How the simulation can 

be rolled back is dealt with below. In the case of a negative message arriving, 

that has a corresponding positive message (which has already been processed), 
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the system must roll back to point before the time-stamp of the arriving message, 

annihilate the associated positive message, and then restart the simulation from 

that point. 

As can be seen, the rollback mechanism requires a periodic saving of the state 

of the LP. This allows the LP to rewind to some state before the causality error 

occurred and then to continue processing past the now corrected error. It is also 

necessary to maintain a log of all outgoing messages in order to undo events 

which have been propagated to external LPs. Observe from the table that anti-

messages can also cause rollback and, as such, can cause rollback chains in which 

one LP, in rolling back, causes other LPs to rollback. It is even possible for 

recursive rollback to occur should a LP in a cycle start to rollback. The protocol 

guarantees that any rollback chain will eventually terminate whatever its length 

or recursive depth. Such a rollback chain can consume significant memory and 

communication resources. 

1.5.3.1 Aggressive Cancellation 

The original Time Warp protocol described, in part, above used aggressive cancel-

lation. Using this form of cancellation whenever a straggler message (a message 

with a time-stamp in the local past) arrives, anti-messages are sent immediately 

to cancel all potentially incorrect messages. The aim of this was to reduce the 

number of potentially erroneous messages being processed by external LPs which 

may, in turn, force them to roll back. 

1.5.3.2 Lazy Cancellation 

A different cancellation policy was proposed by GafniI361, which he termed Lazy 

cancellation. In this alternate policy, the system does not send anti-messages 

immediately upon the receipt of a straggler message. Instead the system delays 

the propagation until the LVT has, after rollback, reached the time-stamp on the 

straggler message and the system produces a different output message from that 

originally sent at that time-stamp. In this case the earlier message which was sent 

has been shown to be incorrect and needs to be cancelled. If the resimulation 

resulted in the same message being generated as had originally been sent then no 
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cancellation is necessary. Lazy cancellation thus avoids unnecessary cancellation 

of correct messages but does have the overhead of additional memory and book-

keeping (potential anti-messages must be maintained in the output queue). It also 

delays the cancellation of incorrect messages, which may result in more rollbacks 

being needed downstream of the causality error. 

The idea of lazy cancellation can be expanded, using the look-ahead value 

(Ia) first mentioned in Section 1.5.1.1, to reduce the number of rollbacks that are 

needed to maintain causality. If a straggler message ts(m+)  <LVT is received 

then there is no need to send anti-messages for any message with a time-stamp 

less then ts(m) + Ia. Also, if ts(mj + la >LVT then rollback does not need to 

be invoked. 

Jefferson[47] has shown that Time Warp with lazy cancellation can outperform 

the simulation's critical path. This is possible because calculations based on the 

assumed state of the system, which was later confirmed to be correct, would have 

propagated further through the system than they would have done under either 

conservative or aggressive cancellation strategies. This has the effect getting the 

correct value to the input of an element before it has been confirmed. This effect 

was termed "supercritical speedup". Aggressive cancellation does not have this 

potential as rolled back computations are discarded immediately. A comparison 

of the performance of the two is, however, related to the simulation model. It 

has been shown by Reiher et al.175] that lazy cancellation can arbitrarily out-

perform aggressive cancellation and vice versa. While their study used synthetic 

extreme cases to highlight the strengths and weaknesses of each protocol, the 

empirical evidence is reported "slightly" in favour of lazy simulation for certain 

applications [36, 341. 

Fujimoto[33] has adapted distributed simulation to the shared-memory multi-

processor environment, and also utilises shared memory to optimise the message 

cancellation process. The handling of roll-back can be a major overhead in a 

simulation and, as such, work has been done on providing hardware support for 

this operation 131• 
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1.5.3.3 Breaking or Preventing Rollback Chains 

A number of other techniques, beside lazy cancellation, have been used to limit the 

number of rollbacks in a system. One approach, which was based on the carrier-

null approach discussed earlier, was proposed by Prakash and Subramanian[71]. 

They attached a limited amount of state information to messages to prevent 

recursive rollbacks. The attached state information allowed LPs to filter out 

those messages which were based on an assumed state of the system. These false 

positive messages would eventually be annihilated by chasing anti-messages which 

were currently in transit. 

Madisetti, Wairand and Messerschmitt[56] proposed a protocol called Wolf-

calls. In this protocol, events based on the assumed state of the system, are able 

to propagate to a limited set of LPs within a specified distance of the source LP. 

These spheres of influence are defined as the set of LPs which can be affected 

by an event in a certain time (respecting both communication and computation 

times). The effect is to limit the number of LPs which can be affected and 

thus limit the length of the rollback chain. Dickens and Reynolds[28] proposed a 

variation on this idea with the SRADS protocol in which, while allowing optimistic 

progression, the propagation of uncommitted events to external LPs is prohibited. 

This means that rollback is local and that rollback chains can never occur. 

1.5.4 Memory management in Optimistic Systems 

The discussion so far has assumed the availability of sufficient free memory to 

store internal and external history for pending rollbacks. Lin[54] argues that 

Time Warp always consumes more memory than sequential simulation and that 

limiting the memory imposes a performance decrease. Providing merely the 

minimum amount required causes such a decrease in performance that a mem-

ory/performance tradeoff becomes an important issue. 

There are two ways of limiting the amount of memory used in an optimistic 

system: i) reduce the amount of optimism as occurs in the systems proposed 

by Madisetti and by Dickens or, ii) save the state of the system infrequently or 

incrementally. Neither system can guarantee that memory will not be exhausted 



and so it is necessary for the protocol to recover memory no longer needed by the 

system. This fossil collection is used to reclaim the memory being used to store 

events and states which will never be needed by the system because the global 

virtual time has progressed beyond their time-stamp. The global virtual time is 

the minimum time-stamp on any unprocessed event in the system. 

1.5.4.1 Incremental State Saving 

Many models have large and complex internal states which have to be stored. 

With each processed event, some of the variables which comprise the state will 

change while others will remain unchanged. An improvement can be made by 

only saving the variables which have changed. This "incremental state saving" 

was first proposed by Bauer et al.[8]. The incremental state saving can also 

increase efficiency as less data needs to be written to the log. This optimisation 

does, however increase the complexity of a rollback, as the desired state has to be 

reconstructed from increments following back a path further into the past than 

is required by the rollback itself. Lin[52, 551 studies the optimal checkpointing 

interval (how often to save the state), explicitly considering the state saving and 

restoration costs. He produced an algorithm which, while increasing the rollback 

overhead, can reduce overall execution time. 

1.5.5 Global Virtual Time (GVT) Computation 

In the descriptions of optimistic systems so far we have assumed that a global 

virtual time (GVT) is available at any instant on any LP. This is needed for fossil 

collection and the simulation stopping criterion. 

The GVT is either the minimum LVT of any LP or the minimum time-stamp 

on any unprocessed message, whichever is smaller. The GVT has certain useful 

properties: 

. At any real time T the GVT(Y) represents the maximum lower bound to 

which any rollback could ever backdate any LVT. 

• CVT(Y) is non decreasing over real time Y and therefore can guarantee 

that the simulation will eventually progress by committing intermediate 



simulation results. 

• Any processed messages or states at time T which have a time-stamp ts < 

GVT(T) are obsolete and can play no further part in the simulation. 

The efficient calculation of GVT is therefore another important issue to make 

the Time Warp system useful. Frequent invocations of the GVT calculation can 

result in a severe performance bottleneck owning to the communications load it 

places upon the system. However, in terms of simulation time, infrequent invoca-

tion causes a build up of uncommitted events and threatens memory exhaustion 

due to fossil collection being delayed. The optimal interval for performing a global 

virtual time (GVT) calculation has been extensively studied[73, 69, 18, 521. 

The computation of GVT(T) is time-consuming and complex. This is be-

cause, as you can see from the definition, to obtain it requires the processing of 

a "snapshot" of the system, including all messages in transit at that point. As 

such, in practice an approximation GVT(Y) is calculated instead. 

1.5.5.1 GVT Computations using a Central Manger 

NaIvely, 6V—T(T) can be computed by a central manager broadcasting a request 

to all LPs for their current LVT and performing a mm-reduction on the collected 

results. This solution does not provide an entirely satisfactory answer as i) mes-

sages in transit could potentially roll back a reported LVT and, ii) all reported 

LVT values were sent at different real times. 

These problems can be addressed by acknowledging the message carrying the 

LVT and by considering the GVT estimate to be true at some point in a real 

time interval. Samadi proposed an algorithm[781 in which the central manager 

triggered a GVT calculation by sending a C VT-start message. Once all LPs 

have reported, the central manager calculates, and broadcasts, a new GVT and 

ends the GVT calculation phase. The "message-in-transit" problem is solved by 

acknowledging every message and reporting the minimum time-stamp of all unac-

knowledged messages as well as the local LVT. The algorithm was later improved 

upon by Lin and LazowskaF531. In their protocol, every message has a sequence 

number and, upon the receipt of a control message, the smallest number in the 
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sequence not yet received is sent to the originating LP as an acknowledgement 

of all messages with a smaller sequence number. By knowing what messages are 

still in transit it is possible to compute a lower bound on their time-stamps. 

Bellenotl91 places a balanced binary tree over the network of LPs for the 

calculation of GVT. This more efficient algorithm uses (for N LPs) less then 4N 

messages and O(log(N)) time per GVT epoch. His system requires, in common 

with that of Samadi and Lin, a fault-free, FIFO, communications structure. 

The passive response GVT algorithm of D'Souza et al.[29] can cope with 

faulty channels while, at the same time, relaxing the need for a FIFO communi-

cation structure and also addressing the issue of centralised control. The heart 

of the protocol is the idea that each LP can determine when to report new GVT 

information to the central manager. A key improvement in this algorithm is that 

LPs simulating along the critical path will report more frequently than others. 

Logical processes which are processing far in advance of the GVT are much less 

likely to have an effect on GVT. This means that the communication resources 

are targeted at those LPs most likely to advance GVT. 

1.5.6 Time Buckets 

The Breathing Time Bucket (BTB) protocol[84] attempts to address the insta-

bility in Time Warp performance caused by anti-messages. The BTB protocol 

is an optimistic windowing mechanism with a pessimistic message propagation 

policy. As such, anti-messages are never needed and rollback is contained within 

the local LP (as in SRADS1281). BTB processes events in time buckets of dif-

ferent sizes. The size of the bucket is determined by the event horizon. Each 

bucket contains the maximum number of causally independent events which can 

be executed concurrently. The local event horizon is the minimum time-stamp 

on any new event scheduled as a consequence of the execution of an event in the 

current bucket in some LP. The global event horizon (GEH) is the minimum over 

all local event horizons and defines the lower time edge of the next event bucket. 

Events are executed optimistically but events are only propagated if the GEH is 

greater than or equal to their timestamp. Two methods have been proposed to 
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determine when the last event in the current bucket has been processed and the 

distribution/collection of event messages generated within that bucket can start. 

multiple asynchronous broadcasts to exchange the local event horizons in 

order to determine locally the GEH 

a system wide non-blocking sync operation can be issued by every LP as 

soon as it exceeds the local EH. This does not hinder the LP and it can 

continue to optimistically process events. Once the last LP has issued the 

non-blocking synch, all the LPs are interrupted and requested to send their 

event messages. 

Neither of these methods has an efficient software implementation and so they 

may need hardware support to be viable. Also, BTB can only work efficiently if 

sufficient events are processed on average in each bucket. 

Steinman proposed a protocol called Breathing Time Warp[85] which combines 

the features of Time Warp and BTB in an attempt to eliminate the shortcomings 

of the two protocols. The underlying assumption is that the probability of having 

to cancel a message increases with the distance between the GVT and the time-

stamp of the message, i.e., messages near GVT are more likely to be correct but 

messages well in the future are less certain. The proposed protocol operates in two 

modes, a Time Warp mode and a BTB mode. Each cycle starts in the Time Warp 

mode sending up to M output messages aggressively in the hope that they will 

not need to be cancelled. If the LP needs to produce more messages optimistically 

then the LP switches to BTB mode in which these optimistic messages are not 

propagated. Should the event horizon be crossed in BTB mode then a GVT 

computation is triggered followed by fossil collection. If the GVT is improved 

then M is is adjusted accordingly. 

1.5.7 Hybrid Mechanisms 

Traditionally the mode of simulation has been common to all LPs in the system. 

Recently, there has been increased interest in permitting processes in the simu- 

lation to run with either conservative or optimistic synchronisation mechanisms 
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and to permit them to change their synchronisation mechanism dynamically in 

response to internal events[5, 6, 7 4 1• 

ReynoldsI76 1 was the first to propose a mixed mode simulation system. The 

first implementation was by McAffer[571. The system is characterised by two 

variables: 

• Degree of aggression - this non-negative value determines how far in advance 

of a safe state the LP can evaluate. A safe state is one for which all the 

inputs are known and which is not threatened by rollback. This determines 

how locally optimistic the LP can be. 

• Degree of risk - this value determines how far in advance of a safe state 

the LP can propagate the results of its execution. It has a non-negative 

value, and is less than or equal to the degree of aggression. If the degree of 

aggression is greater than the degree of risk then the precomputed results 

are stored locally. 

If the degree of aggression of a LP is zero (and thus the degree of risk must 

also be zero), then the LP is executing as a conservative LP. If the degree of 

aggression is greater than zero and the degree of risk is zero then the LP is locally 

optimistic but globally conservative as it will not propagate potentially erroneous 

values. This, in effect, defines the SRADS protocol of Reynolds[281 mentioned 

earlier. 

Cases where the value of risk is non-zero are "true" optimistic LPs in that 

they will propagate possibly incorrect events and the recovery from any incorrect 

event will be distributed across a number of LPs. 

When LPs are firing in different modes the interface between them becomes 

important, to ensure the correct operation of all LPs in a system. There are four 

cases to consider: 

1. Primary inputs, which are the source of events being inserted into the 

simulation system, can be connected to nodes firing in any mode as only 

correct information will be placed on these inputs. 
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Conservative -* Optimistic can be connected as the conservative LP will 

only produce events which are safe. For this case a LP with a zero degree 

of risk can be considered conservative as no unsafe events will be sent. 

Optimistic -* Conservative cannot be connected directly. The opti-

mistic LP, with a non-zero risk, may produce events which are unsafe. As 

any node with a degree of aggression of zero cannot recover from incorrect 

information, it is necessary to ensure that only safe events are received. 

This can be achieved by placing a buffer LP, with a degree of aggression of 

infinity and a degree of risk of zero, between the two LPs. 

Primary outputs must receive events from a safe source (a LP with a 

risk of zero). This ensures that only safe data is passed as a result of the 

simulation. Again, this can be achieved by preceding the output LP with a 

buffer LP as described above. 

1.5.7.1 Coarse-grain hybrid systems 

Avril and Tropper[7] proposed a hybrid system called Clustered Time Warp 

(CTW). It is an algorithm for the parallel simulation of discrete event models 

on a general purpose distributed memory architecture. CTW has its roots in the 

problem of distributed logic simulation. It is a hybrid algorithm which makes 

use of Time Warp between clusters of LPs and a sequential algorithm within the 

clusters. This results in a two level simulation system with Time Warp being 

used to synchronise LPs which are, in fact, conservative simulation systems. 

They developed a family of three checkpointing algorithms for use with CTW, 

each of which occupies a different point in the spectrum of possible trade-offs 

between memory usage and execution time. Their results showed that one of 

the algorithms saved an average of 40% of the maximal memory consumed by 

Time Warp while the other two decreased the maximal usage by 15 and 22%, 

respectively. The latter two algorithms exhibited a speed comparable to Time 

Warp, while the first algorithm was 60% slower. 
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1.5.8 Summary of optimistic methods 

In optimistic simulation, causality violations do occur but are eventually detected 

and corrected. The synchronisation (and correction of erroneous events) is by 

a rollback of simulation time. Remote annihilation methods are liable to severe 

communication overhead. Rollbacks can cascade and, though they will eventually 

terminate, can reduce performance and increase memory usage. 

The structural parallelism in the model can be fully exploited. The Time 

Warp system performs well if average LVT progression is "balanced" across all 

LPs though space-time dispersion of events can degrade performance. 

Optimistic systems rely on explicit GVT calculation which can be hard to 

compute. Centralised GVT calculation systems are liable to communication bot-

tlenecks if no special hardware support is given. Distributed GVT systems impose 

a high communication overhead and appear to be less effective. 

Logical processes need to store state in order to recover from causality viola-

tions. This state consists of the internal state of the LP as well as its input and 

output event queues. The computation and memory cost of saving and restoring 

state can be large though incremental state saving can reduce this. Optimistic 

systems perform best when the state space, and the amount of memory needed to 

express the state, is small. Fossil collection requires frequent and efficient GVT 

calculation and complex memory management schemes are necessary to prevent 

memory exhaustion. 

Messages can be delivered out of chronological order but must be executed in 

time-stamp order. Messages arrive in a single input queue and there is no need 

for a static communication topology. 

The performance of the system relies mainly on controlling the optimism of 

LPs and on the strategy to manage memory consumption. The computational 

and communication overhead per event is high on average and thus the protocol 

favours "large grain" simulation models. 
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1.6 A desirable simulation system 

A brief summary of the key features in both conservative and optimistic systems 

is given in Table 1.3. This table also includes the characteristics of a desirable 

system, namely a dynamic communications topology, local (distributed) control, 

efficient memory usage and freedom from artificially imposed deadlock. As such 

it should have some of the characteristics of both the optimistic and conservative 

systems. 

Communications 
Topology 

Local or Global 
Control 

Memory 
Efficient 

Deadlock 
Free 

Conservative Static Local Yes No 
Optimistic Dynamic Global or Local No Yes 
Desired Dynamic I 	Local j 	Yes Yes 

Table 1.3: A brief summary of the features of conservative and optimistic simu-
lation systems and the desired attributes of an ideal system 

The justification of the desired features is as follows: 

Dynamic communications: Certain domains of interest are, by their nature, 

static. For example, the logic simulation of a circuit relies upon a fixed net-

work of communication channels to route messages from one logical process 

to another. Other domains are dynamic; the classic "colliding pucks"[46] 

being an example of this. The traditional approach in such cases is to re-

duce the communications graph to one which is static and to work from 

there. In the case of the colliding pucks, the space in which the pucks move 

is divided into fixed regions (with fixed boundaries) and the simulation is 

based on that static grid of spaces. The abstraction away from the objects 

involved in the simulation and the imposition of a more abstract object (the 

grid of cells) could be avoided with dynamic communications. 

Local control: In any distributed system the use of a central control will, ulti-

mately, become a bottleneck in the system. This is true even if the global 

control is distributed because, as the system grows in size, it will take in-

creasing amounts of time to perform the global operation. 
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Memory efficient: Memory is relatively cheap and modern machines come with 

many times the memory available ten years ago. However, ultimately the 

amount of memory is still a limited resource which needs to be husbanded 

and allocated sparingly. If a system is not efficient in its memory use, 

there is also the possibility that accessing the data in memory will take 

up an increasing amount of time, either because the data is held in virtual 

memory which needs to be paged in from disk or because the data structure 

holding the desired information takes times to traverse to locate the actual 

piece of data desired. 

Processor efficient: Processor power is increasing but so is the expectation of 

what that resource can do for the user. It is important therefore, that the 

simulation system is efficient in the use of what processor power is available. 

Deadlock free: By this we mean that the simulation system should not intro-

duce deadlock where none exists in the real system. Should the protocol 

under which the simulation is being performed be susceptible to deadlock 

then steps must be taken to either prevent or to detect and resolve deadlock 

within the protocol. Any such activity will introduce an overhead into the 

system which detracts from the system performing useful simulation work. 

1.7 Problem to be addressed in this thesis 

In this thesis we shall develop a simulation system which has the following fea-

tures: 

• Dynamic communications 

• Local control 

• Resource efficient 

• Deadlock free 

• Conservative 

37 



. Distributed 

. Able to exploit both temporal and structural parallelism 

We shall show models of the upper bound of resource consumption (both 

processor time and bandwidth) as well as experimental results for the simulation 

of a number of synthetic and real-world systems. 

In this chapter we have surveyed the state of the art in distributed simulation 

and covered the characteristics of the two main systems (conservative - Chandy-

Misra-Bryant and optimistic - Time Warp). We note that neither of these systems 

has all of the attributes of the desired simulation system. 

In the next chapter we outline a system which has the desirable features listed 

above and set the context in which the system was developed. 
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Chapter 2 

Background 

In Chapter 1 we looked at the advances made in parallel and distributed simula-

tion from the early conservative CMB systems through the optimistic, or Time-

Warp, systems to the various attempts to unify the simulation synchronisation 

process. We ended the chapter by outlining, and motivating, the features desired 

in a distributed simulation system. 

In this chapter we step back from simulation and look at the more generic 

problems of the production and synchronisation of data in distributed systems, 

and how it relates to the desirable features listed in Table 1.3. 

2.1 An Approach to the Obtaining the Desirable 
Features 

In conservative CMB-style simulation each LP in the system must determine its 

state for every moment in the simulation. The optimistic Time Warp approach 

requires that every LP determine its state for every moment during the simulation 

but also permits the LP to process messages out-of-order and thus potentially 

erroneously. Should a causality error occur, the LP is then forced to re-evaluate 

some of its history. Thus, a LP can do more computation than is necessary. This 

style of processing has been defended by saying "whenever rollback occurs, other 

rollback-free implementations would require blocking for an amount of real time 

equal to that spent on wasted computation"1451.  In other words, no "useful" time 

was wasted. While this held true when the user was allocated a specific number 

of processors for their sole use, increasingly, parallel machines are being created 
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which permit the sharing of processors by more than one user. The obvious 

example of such a system is a network of workstations. In these shared multi-

processor systems, computation time taken by one user is denied to another. 

Furthermore, it is not always necessary for every LP to know the state of all 

its inputs for the output result to be determined. Consider, for example, the 

multiplication of two numbers. Should one number be known to be zero then the 

other number need not be determined as the result is also zero. Any processor 

time not used by one user is available to another. The trade-off at issue is the 

speed of completing one job versus the total throughput of the system. 

The problem therefore is how to design a simulation system which permits 

the result to be obtained by computing only the necessary values. 

2.2 Distributing data 

The core feature underlying all of distributed computation and, specifically, dis-

tributed simulation is the ability to coordinate the production, delivery, and con-

sumption of data'. We will use these aspects to derive a protocol with some of 

the desired features listed in Table 1.3. By "data" we mean discrete packets of 

information which are complete within themselves. 

The problem of distributing data can be split into two separate parts: where to 

send the data (distribution) and when to create and send the data (production). 

The case where the location and the time are not independent can be addressed by 

sending the data to a redirection process at a fixed location which then forwards 

the data to the appropriate location. This thus reduces the problem to the first 

case. Maintaining the redirection, or directory, service is outwith the scope of 

this thesis and does not form part of the argument. 

'There are some systems in which the data remains in a fixed location and the processing 
code moves to it rather then the other way around. An example of such a system could be an 
image analysis application in which, due to the amounts of data to be processed, it is easier 
for the desired transform to be sent from processing element to processing element than for the 
image data to be sent. 



2.2.1 Data distribution 

All data which is to be distributed must have some condition attached to indicate 

when the data has either reached its desired destination, or is to stop looking. 

What this implies is that the destination of the data packet must be known before 

it is sent and is thus under the control of the sending process. 

In the case of conservative algorithms, the sending process knows the desti-

nation as the topology of the processing elements is fixed. Data packets, once 

produced, can only be sent to a subset of the processing elements. 

In the case of the optimistic algorithms, the sending process knows the desti-

nation as it knows the location of all the processing elements in the system. Data 

packets, once produced, can be sent to any of the processing elements. 

While the optimistic algorithms provide for a dynamic topology, the conserva-

tive systems do not. One solution to the problem of providing a dynamic topology 

to the conservative algorithms would be to have a completely connected set of 

processes and to have each process broadcast its data packet to the rest of the 

system. While such a system might work, it is impractical as the number of con-

nections needed would grow exponentially in the number of processing elements 

in the system. What is needed is some way of the sending element knowing which 

of the possible elements in the system need to receive the data. 

2.2.2 Data production 

The question also arises of when to produce a new data packet for distribution. 

The conservative system will only create a data packet when it has sufficient 

information to determine the contents of that data packet. An optimistic system, 

on the other hand, will only create a new packet if a change to one of the input 

values results in a change to the output value. For the sake of simplicity, we will 

ignore the messages created to effect a rollback should a causality violation occur. 

Both of these systems generate data for distribution irrespective of whether 

or not the data is required by the rest of the system. What is needed is some way 

for an element in the system to indicate from which other elements it needs fresh 

data. 
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The adoption of a publisher/subscriber model of communication is one po-

tential solution to this problem. In a publisher/subscriber model, clients address 

messages to a topic. Publishers and subscribers are generally anonymous and 

may dynamically publish or subscribe to the content hierarchy. The system takes 

care of distributing the messages arriving from a topic's multiple publishers to its 

multiple subscribers. Such a system is shown in Figure 2.1. 

Publisher/subscriber messaging has the following characteristics: 

. Each message may have multiple consumers. 

• Typically, topics retain messages only as long as it takes to distribute them 

Essa  
Figure 2.1: Publisher - subscriber communications with a single publisher 

Generally there is a timing dependency between publishers and subscribers, 

because a client that subscribes to a topic can consume only messages published 

after the client has created a subscription, and the subscriber must continue to 

be active in order for it to consume messages. 

The Java Message Service[621, amongst others, relaxes this timing dependency 

to some extent by allowing clients to create durable subscriptions. Durable sub-

scriptions can receive messages sent while the subscribers are not active. Durable 
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subscriptions provide the flexibility and reliability of queues but still allow clients 

to send messages to many recipients. While most messaging systems, not unsur-

prisingly, use real time as the temporal measure when assessing whether or not 

a subscriber can receive a particular message, there would be no great difficulty 

in using the simulation (or virtual) time in the same way. This would permit a 

client to subscribe to the topic for a virtual time interval. 

2.2.3 A potential solution 

From the previous section we saw that a system where the individual elements 

could indicate from which elements they required data, and also when they re-

quired that data, would meet some of the requirements of our "ideal" system; 

providing a dynamic topology as well as local control. We have, in effect, added 

the ability to provide a dynamic topology to a conservative system. 

Now that a dynamic topology is available, a potential solution presents itself 

from the wording of the problem. We require a system which would only compute 

those values which were necessary to determine the result. The first step would 

therefore be to decide what values are necessary and then to determine those 

values. This leads to a reversal of the standard data-driven method whereby the 

data is produced and promulgated with the assumption that it will be necessary. 

Such systems, known as demand-driven systems, have other properties which will 

be expanded on in Chapter 3. 

2.3 Related work 

There is little related work addressing simulation per se. Demand driven evalu-

ation, and its close relation lazy evaluation, have been studied at various levels 

from instruction level, through compiler level, to user exposure in languages. In 

this section we will look at each of these levels. 

2.3.1 Request Driven v's Demand Driven 

The terms "request driven" and "demand driven" are sometimes used by different 

authors to mean the same thing. This is unfortunate as they are also used, by 
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other authors, to indicate different methods of computation. 

In order to avoid adding to this confusion, we will clarify what we mean by 

request and demand driven evaluation. 

Request driven: In a request driven system, the client requests that the data 

be provided when it is available. In effect, it notifies interest in the result when it 

becomes known. This is the default mode of operation of the publisher/subscriber 

model. 

Demand driven: In a demand driven system, the client demands that the 

data be provided as soon as possible. If the data is available, then this is the 

same as request driven. Should the data not be available, a demand driven 

system requires the publisher to take action to produce the data (probably by 

issuing demands of its own). 

The rest of the thesis will focus on demand-driven evaluation and related 

ideas. 

2.3.2 Micro level 

The dataflow model was originally proposed in the mid-60's. Initially the con-

cept of dataflow was expressed as a graph, which later became parallel program 

schemesl77, 1, 251. It was later at MIT[26] that designs of actual computers based 

on the dataflow model were attempted. Dataflow programs can be described in 

terms of directed graphs expressing the flow of data between nodes of the graph, 

with a node representing an instruction or a group of instructions [241. Data 

are active and flow asynchronously through the program. The original dataflow 

model exploits very fine-grain or instruction level parallelism. 

The performance of pure, fine-grained, dataflow systems was not able to 

compete with von Neumann processors[671 when executing sequential programs. 

Arvind[4] identified the real benefits of dataflow systems as cheap synchronisation 

and tolerance of memory latency. Hybrid processors that combine features from 

both von Neumann and dataflow architectures have been developed[68]. 

The reduction machine891 is an architecture closely related to the dataflow 

model. Reduction is based on the demand driven principle and supports func- 



tional languages. Beginning at the outermost expression of a functional program, 

sub-expressions within an enclosing expression are recursively reduced upon de-

mand for their results, into simpler forms, until the expression cannot be further 

reduced (known as normal form). The reduction process involves rewriting re-

ducible expressions by others with the same meaning until a constant expression 

representing the result of the program execution is reached. This contrasts with 

the data-driven model (upon which datafiow is based) which starts execution 

on the innermost expressions that have their values and propagate the results 

into the expressions requiring them. One can view the demand-driven and data-

driven program graph for the same expression as being identical, except that the 

direction of the links is reversed. The execution graph of a demand-driven eval-

uation is dynamically changing during execution, whereas the program graph of 

the datafiow evaluation is static. 

2.3.3 Compiler level 

The use of demand-driven (lazy) evaluation can be at a higher level than the 

processor. A number of languages have been designed to take advantage of lazy 

evaluation without providing specific constructs to the user. In general, such 

languages were categorised as non-strict. 

In a non-strict language, the arguments to a function are not evaluated until 

their values are actually required. For example, evaluating an expression of the 

form f(exp) may still terminate properly, even if evaluation of exp would not, if 

the value of the parameter is not used in the body of f. Miranda and HaskellE101 

are examples of this approach. 

In a strict language, the arguments to a function are always evaluated before 

it is invoked. As a result, if the evaluation of an expression exp does not terminate 

properly (for example, because it generates a run-time error or enters an infinite 

loop), then neither will an expression of the form f(exp). ML and Scheme are 

both examples of this. 

There is much debate in the functional programming community about the 

relative merits of strict and non-strict languages. It is possible, however, to 
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support a mixture of these two approaches; for example, some versions of the 

functional language Hope do this. 

2.3.4 Language level 

Halstead[40, 391 proposed a language construct called a future. The construct 

allows programmers to explicitly expose parallelism, with minimal effort, in ap-

plicative languages such as MultiLisp. The form (future X) immediately returns 

a future, and creates a task to evaluate X. Rather than waiting for the result of 

such a computation, the program receives a "placeholder" for that result and is 

able to continue executing. The placeholder behaves just like any.other variable 

until an attempt is made to use its value; at that point, if the computation is not 

finished then the thread of execution trying to obtain the value will be blocked 

until the value is ready. 

The principal design rationale behind futures, stated by Mohr et al.[61], is 

that "the programmer takes on the burden of identifying what can be computed 

safely in parallel, leaving the decision of exactly how the division [of work] will 

take place to the runtime system". The Mohr paper goes on to discuss lazy task 

creation which would be evaluated when needed, which brings us back round to 

demand driven systems. 

The future construct is no longer restricted to the applicative programming 

domain. Wagner[921 has created portable futures in C++. 

It is interesting to note that the simulation of logic circuits was used as a test 

example to show the power of this construct on a multi-processor machine[111. 

2.3.5 Demand driven Simulation 

Most of the papers dealing with demand driven simulation have been quite firmly 

rooted in the domain of logic simulation. A number of them state that demand-

driven evaluation can be easily expanded to a larger class of systems but fail to 

address the issues involved, such as function re-evaluation and random number 

generation. The results of most functions are deterministic. Random number 

servers are, hopefully, non-deterministic. Any attempt to re-evaluate a random 



Circuit 
"unoptimised" 
evaluation 	elapsed 
time ratio 

"optimised" 
evaluation 	elapsed 
time ratio 

74181 ALU 0.434 0.238 
C432 0.605 0.284 
C499 0.647 0.525 
C880 0.607 0.463 
C1355 0.747 0.616 
C1908 0.864 0.637 
C2670 0.954 0.534 
C3540 1.296 0.398 
C5315 1.247 0.444 
C7552 1.337 0.740 

Table 2.1: Ratios of Demand driven simulation to event driven simulation 

number function must produce the same number as the initial request. 

The earliest paper that can be found relating demand-driven evaluation and 

simulation is by Smith et al.[81]. The paper presents a sequential algorithm for 

the simulation of digital logic circuits and compares it with a standard event 

driven algorithm. The test circuits used are those which were created for the 

International Symposium on Circuits and Systems, 1985[12] which have since be-

come the closest thing to a standard benchmark circuit that the logic simulation 

community has. Two different evaluation models are presented. The first is a 

standard event driven evaluation model. The second has a number of optimisa-

tions applied; most notably early cutoff (evaluation stops as soon as the result 

is known). The optimised system consistently out-performs the standard event-

driven approach. A table of the results is shown in Table 2.1. 

It should be noted that this paper, and other results by the same author, 

describe a system which uses requests, not as the main driving force behind the 

simulation, but as a way to ensure that the simulation proceeds; should an input 

not have a current message, a request is sent asking for the data tobe forwarded. 

A second report by Smith[801 expands on his earlier work and includes, for the 

first time, a notion of time windows which encompass a number of discrete-event 

time units. Using the same test circuits as were used in the earlier paper described 

above, a number of experiments were conducted to determine the effect of various 
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modification to the algorithm. As a base case for comparisons, the system is 

compared with a standard event driven algorithm where both simulators use the 

same evaluation routine. The demand driven system is then modified to include 

early cutoff in its evaluation. A further experiment is made using a number of 

heuristics to reorder the input pin evaluation order. 

A further modification of the algorithm is given which provides methods for 

modelling both transport and inertial delays in logic circuits. This information is 

presented in a more general form by Charlton[22] which we will cover later. 

Subramanian and Zargham[87] move demand-driven simulation explicitly into 

a parallel arena for the first time. Three different algorithms are used for com-

parison purposes. The first of these is a discrete event system similar to the 

CMB algorithm[19. The second is a pure demand-driven system (DD) and the 

third is an algorithm with two phases: the earlier phase determines which input 

values will be needed using a demand-driven approach and the later phase then 

evaluates in a standard CMB manner. The results show that the pure demand 

driven system performs better than either the CMB system or the two-phase sys-

tem. The circuits used are not described or attributed with only the number of 

elements used and the type of the circuit (sequential or combinatorial) stated. 

There has been some work performed by Chariton et al. on demand-driven 

simulation of logic circuits[211. Most of their work derives from studies of lazy 

evaluation. The earliest paper investigates the effect of differing event scheduling 

strategies for both demand and event driven systems. It shows that significantly 

fewer events need to be processed with a demand driven system. The results are 

based on a uniprocessor simulator with a single queue. 

Charlton[221 demonstrates a method for modelling general delays in demand-

driven simulation. Basically, assuming a node has a maximum (minimum) delay 

Of tmax (t m in ) then a request for data for an interval (a,b) is fulfilled by a request 

for data in the interval (a - tmax ,b - tmin) as this interval will always be sufficient 

to determine the input values for whatever the actual delay turns out to be. This 

work is presented in relation to a system which is being driven by time-stamped 

requests and not intervals. 



Both of the above papers have addressed issues from the perspective of unipro-

cessor simulation. Another paper from the same group[30] covers parallel evalu-

ation strategies for demand-driven simulation. Optimal evaluation orderings are 

obtained for a number of basic two input logic functions assuming that two pro-

cessors are available to evaluate the function. Heuristics are then developed which 

make implementation more practical. Results obtained show that the heuristics 

perform no worse than 1.6 times slower than the optimal strategies. 

Only one of the papers surveyed deals with the evaluation of abstract simula-

tion models[631. The models are built in Miranda and then different simulation 

evaluation strategies are applied to the models. It concludes that the demand 

driven system is inefficient in both space and time and that a discrete event (data 

driven) system can deal with all inefficiencies. It also states that the demand 

driven system is less expressive as it cannot model inertial delays. This has been 

shown to be incorrect in the work of Charlton[22]. It closes by stating that as 

demand driven systems are inefficient they are easy to parallelise. A number of 

the criticisms targeted at demand driven simulation are addressed in Chapter 3. 

2.4 Speedup and Efficiency 

When assessing the quality of the performance of a parallel system, two measures 

have often been used. The first, speedup, indicates how much faster the result 

is obtained as the number of processes increase (Equation 2.1). The numerator, 

T1 , is sometimes the time taken by the best possible sequential solution, but is 

generally taken to be the time for the parallel code running on a single processor. 

The denominator, T, is the time taken when using n processors. 

S(n)= T. 	 (2.1) 

The second measure, efficiency, is defined as the average utilisation of the ri 

allocated processors. Ignoring I/O, the efficiency of a single processor system is 

equal to one. The relationship between speedup and efficiency is given by 

E(n) = S(n) 	 (2.2) 



Eager et al. [321 argue that these measures can be used to determine an "opti-

mal" number of processors to be used in the execution of a given problem. They 

plot a measure of "benefit" (execution time) against a measure of "cost" (number 

of processors) and note that a knee occurs in the graph. The knee is the point 

where the benefit per unit cost is maximised and which, intuitively, represents 

an optimal system operating point. They argue that being able to estimate the 

number of processors that yields the knee is important as that would indicate the 

appropriate allocation of processors for that job. 

While these measures have relevance in the multi-programmed, multiproces-

sor with a static processor allocation, their use in a network-of-workstations en-

vironment is less clear as they only take into account real cost (the resources 

consumed). 

2.4.1 Opportunity cost 

Opportunity cost is a basic term from the disciplines of economics and ac-

counting. In these circles the acceptable definition of the term is, "the advantage 

forgone as the result of the acceptance of an alternative". 

In assessing the efficiency of a system the opportunity cost has often been 

ignored. This stems from the understanding that a system needs certain resources 

before it can start and holds them until it is finished. In machines with a static 

allocation of processors, this is the natural state of affairs. Such a situation does 

not hold true in multiprocess systems where an individual process will only reserve 

a resource for the duration needed. It might claim and release that resource many 

times during the its lifetime. An example would be time-slicing CPU access on a 

multiuser system. 

Opportunity cost is a relative measure in that it compares what is with what 

could have been. As such care must be taken in its use to avoid trying to compare 

the incomparable. 
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2.5 Binary Decision Diagrams 

Before we leave this chapter, it is useful to take a look at how boolean functions 

can be represented using binary decision diagrams (BDD)[14], and in particular, 

Ordered Binary Decision Diagrams (OBDD)[15]. It should be noted that the use 

of BDD is not needed for a demand-driven system to function, but they can be 

used to make clear some of the benefits of a demand-driven system. 

Binary decision diagrams have been recognised as abstract representations 

of Boolean functions for many years[3]. A binary decision diagram represents a 

Boolean function as a rooted, directed acyclic graph. 

A binary decision tree is formed by expanding the binary expression around 

a single variable and then repeating for each sub-expression until there is no 

expression left to evaluate. 

Consider the expression 

f(A,B,C) =ABCVAC 

This expression could be expanded as follows 2 : 

f(A, B, C) = A(f(1, B, C)) V A(f(O, B, C)) 

This could be repeated for the variables B and C. 

A graph of the resulting tree is shown in Figure 2.2. 

Each non-terminal vertex is labelled with a variable var(v) and has arcs di-

rected to two children: lo(v) corresponding to the case where the variable is 

assigned the value 0 and hi(v) corresponding to the case where the variable is 

assigned the value 1. 

2.5.1 Reducing the tree 

This naïve representation provides 2n paths from the root to the leaves, one for 

each of the 2fl  different combinations of input values. A number of reductions can 

be applied to reduce the number of available paths. 

2 This identity is known as the Shannon expansion of f with respect to A, although it was 

originally recognized by Boole 
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Figure 2.2: Decision tree for f(A, B, C) = ABC V AC 

There are three transformation rules which can be applied to the graph with-

out altering the function being represented: 

Remove duplicate terminals. Eliminate all but one vertex with a given label 

and redirect all arcs into the eliminated vertices to the remaining one. 

Remove duplicate non-terminals. If the non-terminal vertices u and v have 

var(u) = var(v), lo(u) = lo(v), and hi(u) = hi(v), then eliminate one of the 

two vertices and redirect all incoming arcs to the other vertex. 

Remove redundant tests. If non-terminal vertex u has lo(u) = hi(u), then 

eliminate vertex u and redirect all incoming arcs to lo(u). 

Considering again the graph (Figure 2.2) we can see that the leftmost C node 

has a redundant test and can thus be removed and replaced with the constant 

0. Similarly, the two rightmost C nodes are identical and we can thus remove 

them using the remove duplicate non-terminals rule. Lastly, we can see 

that the rightmost B node can now be removed using the remove redundant 

non-terminal rule. This leaves the tree as shown in Figure 2.3. By applying 

the remove duplicate terminals rule we get the decision diagram as shown in 

Figure 2.4. 
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Figure 2.3: Fully reduced decision tree for f(A, B, C) = ABC V AC 

B 

Hit 
Figure 2.4: Decision diagram for f(A, B, C) = ABC V AC 
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2.5.2 Combining diagrams 

Each binary decision diagram represents a boolean function and can be created 

by combining simpler boolean functions in the manner described below. 

First, an explanation of some notation. Consider a function f which takes a 

vector ±' then the notation 

f Ix i - o 

means the function with the value of x i  set to the constant 0. This is sometimes 

referred to as restriction. 

Now, the combination of two functions f and g by the operation <op> can 

be defined as 

f < op > g = .( fIx4-o <op>  gI-o) + x.(f+1 <op> 9x-1) 

This technique will provide an algorithm for computing f <op> g with a time 

complexity which is exponential in n (the number of inputs). There are various 

methods and improvements to the algorithm which reduce this complexity[ 14, 15]. 

2.6 Attributes of Decision Diagrams 

Decision diagrams have a number of attributes which make them useful in demand 

driven evaluation. 

2.6.1 Automatic short circuiting 

Functions can be split into three classes. 

Strict: These functions always require all of their inputs before they can eval-

uate an output, e.g. addition. 

Partially strict: These functions may require all of their inputs before they can 

evaluate an output, e.g. multiplication (when one input is zero). 

Non-strict: These functions never require all of their inputs before evaluat-

ing an output, e.g. if. . . then. . . else. . . Either the then branch needs to be 

evaluated or the else branch, but never both branches. 
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Short circuit evaluation is equally applicable to both data and demand driven 

systems. It allows the result of the function to become available as soon as 

possible. Consider the binary decision diagram for a three input AND gate (Fig-

ure 2.5). If any of the inputs evaluates to 0 then the result is known. In a data 

driven system this would mean that the result can be available before all the 

inputs have evaluated. In the demand driven system it can mean a reduction in 

both communication and computation as we will see later. 

0/ 1: 	1 , 

Figure 2.5: A decision diagram for a three input AND gate. 

The early interest in demand driven systems for logic circuits might be ex-

plained by the fact that of the 16 two-input boolean functions only 2 are strict 

and the rest are partially-strict. 

An interesting aside which arises from the use of binary decision diagrams 

is the fact that the resultant diagram implements 'short circuit' evaluation. As 

such, the data which is required to evaluate the function depends on the values 

of that data which has already been requested. 

Further, it is possible to generate the remaining function by restricting the 

current function by any of its variables in any order. For example, consider the 

function used earlier (f (A, B, C) = ABC V AC). 

f Ic+-i = A 
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2.6.2 Maximal request set 

Automatic short-circuiting of BDD means that one can find the maximal set of 

variables which must be determined to evaluate the function. This can be found 

by first determining the nodes which require to be evaluated down each path 

in the diagram. The maximal set is the intersection of all these path sets and 

will always contain the root node at least. Once a value has been returned from 

the initial set of requests, it is possible to recompute the maximal set and issue 

requests for the value of any node which was not in the original set but which is 

now included. 

2.6.3 Reduction in false negatives 

In the section above we have concentrated on binary decision diagrams. There is, 

however, nothing in the formulation of the equations or systems which prevents 

ternary functions being defined and manipulated. So, in the case of logic gates, a 

three-valued system is often used with one value being X or unknown'. In such 

systems each node has three output arcs instead of the conventional two. Full 

details of these systems can be found in [491. 

A 	C 	B 

z 

Figure 2.6: Gate level implementation of a 2-1 multiplexor 

'Note that this value is not an intermediate value somewhere between low and high. Rather 
it is an indication that the variable has the value of either low or high but we cannot determine 
which. 
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Consider a simple 2-1 multiplexor created using this simple logic system. The 

output Z can be given by the following equation (being derived directly from the 

physical implementation shown in Figure 2.6). 

Z=ACvBC 

If the value of C (the control variable) is set to unknown, then the above 

equation will indicate that the output is also unknown. This is, at first glance, 

a reasonable result since we cannot determine which of the two inputs should be 

allowed to continue to the output. However, on reflection it is less reasonable; if 

both inputs have the same value then irrespective of which is allowed to continue 

the output would have the same value as either of the inputs. Should this simple 

multiplexor be simulated as a gate level implementation then it could inject false-

unknowns into the network. 

Figure 2.7: Decision diagram for 2-1 multiplexor using a three valued logic 
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However, should the multiplexor be implemented as a single unit with a func-

tion derived from the decision diagrams for the three gate implementation, these 

false-unknowns will not occur. The diagram is shown in Figure 2.7. 

2.7 Chapter Summary 

In this chapter we stepped back from simulation and looked at the more generic 

problems of the production and synchronisation of data in distributed systems. 

We saw that, by making the receiver responsible for requesting the data rather 

than have it wait passively, we could obtain a dynamic topology for inter-element 

connections. 

We clarified the difference between request driven and demand driven system 

and looked at related work at the micro, compiler and language levels. Work 

in simulation, using either demand driven or request driven systems, was also 

discussed. 

We looked at the definitions of speedup and efficiency that are widely used 

throughout the distributed systems field as quality measures and proposed a new 

measure, opportunity cost, which gives an indication of how much of the systems 

resources are withheld from other potential users. 

We closed the chapter by looking at binary decision diagrams. This method 

of expressing a function can make explicit any non-strictness in that function and 

as such, is well placed to be utilised in a demand driven system. 

In the next chapter we take the results from our investigation and propose a 

demand driven simulation system. 

The insights obtained will then be used to address the requirements of our 

desired simulation system. 
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Chapter 3 

Demand-Driven Simulation 

This chapter discusses some of the costs and benefits associated with demand-

driven simulation. The costs are resource consumption, be they bandwidth, pro-

cessor or time. It provides arguments in mitigation of a number of the costs 

involved as well as strategies to reduce the overall cost of simulating a system. 

3.1 Costs and Benefits of Demand-Driven Simu-
lation 

Parallel discrete event simulation has been data driven since its inception. This 

can be considered a logical progression from the sequential simulation systems 

where there existed a queue of events which needed to be processed. The key word 

in the previous sentence was "needed". One problem with data driven systems 

is that events will be generated which will have no effect on the receiving node 

and therefore, for efficiency reasons, need not have been generated in the first 

place. Unfortunately the logical process which generated the event could not 

have foreseen this and hence the event has to be generated "just in case". 

The underlying idea is that the system under simulation is a "black box" 

which is exercised by a series of data values and the changes in outputs are 

observed. Demand-driven systems reverse this concept; the output is interrogated 

and demands for data propagate up the system and back in simulation time until 

a demand is made of the input data pool. Since in a demand driven system logical 

processes only generate an event when the receiving node requests it, potentially 

only the minimum amount of work needs to be performed. 
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The biggest potential problem with standard demand driven systems is that 

for each event needed two messages must be sent; one to request the event and 

the event itself. In parallel systems, where communications are generally much 

slower than computations, this could appear to be a significant problem. The 

effect might be mitigated by the decreased computation required as only necessary 

work is performed. We term this "the doctrine of necessary computation". 

3.1.1 The Costs 

A number of costs are associated with demand driven simulation which are not 

associated with data driven simulation. In this section these costs are analysed 

and evidence presented of ways in which these costs might be mitigated. 

3.1.1.1 Communication costs 

There is an obvious problem with such a demand driven system: extra commu- 

nication. The most glaring inefficiency, and the one which is most often stated as 

a reason for not using this method, is the extra communication which is required 

to "spark" the computation. In the worst case each data value will require twice 

the number of communications than it would under a data driven system. A 

point to make about this observation is that it is the number of communications 

which would, at worst, double and not the communication load itself. If we use 

the simple equation a+/31, where a is the start-up cost for communication, 0 the 

cost per unit transmitted and I is the message length then the actual overhead is: 

2a+0(Id+I) 

a + 131d 

where 1d  is the length of the data message and 1, is the length of the request 

message. 

If we assume that the size of the request message is smaller than the size of 

the data message then the overhead must be strictly less than a factor of 2. If we 

assume that a request message is significantly smaller than a data message, the 

equation can be written as 

2- 
	I31d 	 (3.1) 
a + I31d 
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This approximation to the overhead factor can be analysed by cases. 

a >> Old The start-up cost is significantly larger than the transport cost. This 

situation could occur if a large number of small messages were to be sent. 

The overhead tends towards a factor of 2. 

a = Old The start-up costs and the transport costs are equal. The overhead is a 

factor of 1. 

a << Old The start-up cost is significantly smaller than the transport costs. This 

situation could occur if large messages were to be sent. The overhead tends 

towards a factor of 1. In other words, as the size of the data message 

increases, the request induced communication cost as a fraction of the total 

communication cost falls. 

There are further techniques which can be employed to reduce the communi-

cation traffic. The simplest technique is to bundle a number of requests into a 

single message. The practicality of this method will depend upon the time ad-

vance mechanism in the simulation. Such a system has been used in data driven 

time warp simulation by Butler and Wallentine[16]. They show that bundling 

events into a single message can reduce the communications load but that the 

benefit varied with cancellation strategy. If we assume that the simulation is 

interval based, as for ELSA [5, 6], then a number of requests for consecutive in-

tervals can be compressed into a single message no larger than a single request. 

ELSA is explained in greater detail in Chapter 4. 

3.1.1.2 Computation costs 

The next cost to be considered is an increase in work required at a logical pro-

cess. Every message which arrives at a logical process must be handled. This 

is produced by the requirement to handle incoming request messages as well as 

data messages. Again, the doctrine of necessary computation can help to reduce 

this overhead as fewer logical processes need to be evaluated. The result could 

be that the computation load is concentrated on fewer logical processes than in 

the equivalent data driven system. 
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3.1.1.3 Memory costs 

Memory requirements may rise because of the requirement of some types of node 

to store their previously computed data. In the case of a random number gen-

erator it might be desirable for every node which requests its state at time t to 

be given the same answer. The use of MEMO functions has been studied in the 

realm of functional programming[58, 43]. The idea behind them is very simple: a 

memo-function is like an ordinary function, but it remembers all the arguments 

it is applied to, together with the results computed from them. If it is ever 

re-applied to an argument the memo-function does not recompute the result, it 

just re-uses the result computed earlier. "Memoisation" is an optimisation which 

replaces a potentially expensive computation by a simple table look-up. 

One of the difficulties in implementing general memo functions arises from 

the need to determine whether two calls to the same function are equivalent. In 

a general solution, comparing data-structures for equality is expensive. It is not 

uncommon for a conservative definition of equality to be used for the test. Two 

objects could be tested for identity as follows: 

If they are stored at the same address, then they are identical. Return true. 

If they are atomic values (such as numbers, booleans, characters) then they 

are identical if they are equal. 

Otherwise they are not identical. Return false. 

Fortunately in demand driven simulation the inputs to any logical process are 

tagged with their time. Therefore the task of determining whether two inputs 

are identical reduces to comparing their associated times. As demand driven 

simulation has no concept of "fossil collection" which is common in timewarp 

systems to manage memory, it would be possible for these memo stores to grow 

throughout the simulation run. This might be desirable as it would provide a 

record of the state of the logical process throughout the simulation. This may be 

of great use in a postmortem of the simulation run. 

However, in cases where we are only interested in the final value and not 

in the intermediate results we can consider these memo stores to be, in effect, 
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caches. As such certain cache replacement algorithms could be employed to limit 

the memory requirement. The commonly applied LRU algorithm where the least 

recently used block is replaced might be used effectively, but this requires further 

investigation. 

3.1.2 The Benefits 

The use of demand driven simulation is not without qualitative benefits. An 

important benefit is that the logical processes in the system under consideration 

are able to dynamically reconfigure their local network in order to contact any 

other logical process. Below we describe five benefits of using demand-driven 

evaluation. 

"Necessary" Computation: each node in the system makes only those requests 

which it deems necessary. This means that if the value of an input is not 

required then it is not evaluated. What input values are required can depend 

on the values of the other inputs. For example, (A or B), if A is evaluated 

and returns 0 then B must be evaluated. If B returns 1 then the answer 

could have been found by only evaluating B. So "necessary" computation 

does not mean minimal computation. 

Dynamic Interconnect: the requesting logical process (LP) is free to commu-

nicate with any other LP in the system. As such the connections are gen-

erated at run time and are able to respond to data dependent conditions. 

This could be considered as a global all-to-all topology but with the addi-

tion that each LP is only dependent on a certain sub-set of processes and 

are not constrained to the "lock step" that such a configuration would tend 

to produce in data driven systems. 

Sub-system Activation: to investigate a part of a system it is now only nec-

essary to send a request to that sub-system. The doctrine of necessary 

computation results in only those parts of the system which need to be 

activated being computed. 
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Realistic Data: one of the major problems in simulating a component of a sys-

tem is generating realistic input data. The difficulty is that realistic data 

comes from activating the whole system at a specific level of abstraction and 

this can be too computationally intensive to achieve. In a request driven 

system only those elements which are required are activated and thus po-

tentially fewer nodes need to be computed to provide realistic data. 

Static graph emulation: a graph which is known to be static throughout the 

simulation run can be modelled. The number of extra messages is propor-

tional to the number of edges in the static system. Each edge is initialised 

to carry a message requesting data from the start of time to the end of sim-

ulation time. The request driven system will now behave as a data-driven 

system. 

The most striking, and potentially the most beneficial, aspect of demand 

driven systems is that, as data is only produced on demand, only those units 

whose results are needed by the computation are actually evaluated. The result 

of this is that the communication and computation costs will be reduced. This 

will have a knock-on effect on multiuser systems as they will have more resource 

available to them for their tasks. The more unnecessary work that can be avoided 

the higher the opportunity cost saving compared to data driven evaluation of the 

same system. 

3.2 Strictness and Threshold Functions 

If all the functions being evaluated by logical processes were strict - each always 

needing all their parameters - then the scope for opportunity cost savings would 

be reduced (or eliminated altogether). In order to control the strictness more 

easily and to evaluate the system for generic functions, it was decided to use 

threshold functions. 
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3.2.1 Threshold Functions 

Threshold functions appear in a number of different fields[641 and can exist in a 

number of different forms[591. The output of a threshold function is some function 

of the sum of its weighted input values. Consider a function with n inputs. The 

intermediate value is given by: 

k 

Y = E wi x X 

where Xi  is the value of input i, and w i  is its weight. The final value is given by 

some function F(Y). Different applications of threshold functions use different 

decision functions F. We will be using unit weighted, hard threshold functions. 

F(Y\_JO ifY<k " ' - 
	1 otherwise 

The threshold value is k. We denote a threshold function of n inputs and a 

threshold of k by T1 . 

3.2.2 Strictness 

We define the strictness of a function as the amount of data which the function 

requires, on average, to compute the result. The value of strictness lies in the 

interval [0. . . 11. A strictness of 0 would indicate that the function requires no ex-

ternal information to compute a-result. This is equivalent to a constant function. 

A strictness of 1 would indicate that the function requires all of its inputs to be 

evaluated, every time, before it can correctly generate an output. 

The strictness of a function, f, with n inputs, is defined below. 

M(f) = C(f) 

The function C(f)  is the average number of inputs which are evaluated to 

compute the function f. If the value of C(f)  depends on the order in which the 

inputs are evaluated then the strictness measure calculated is with respect to a 

particular variable ordering. An overall strictness can be calculated by a weighted 

average of this value over all possible orderings of the input variables. 
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3.2.3 Determining C for Threshold Functions 

We shall assume that each input is equally likely to evaluate to 1 as it is to 

evaluate to 0. Further, we shall note that the order in which inputs are evaluated 

does not effect the count calculated. 

There are four cases to consider. 

T °  - No further inputs need to be computed and therefore the result must 

be known. C(Tk° ) = 0. 

T' - As the function can be computed when k inputs have evaluated to 1 

and the value of k is zero, then the function need not evaluate any more 

inputs. C(T0 ) = 0. 

T, n < k - As there are no longer sufficient inputs remaining to be eval-

uated to possibly satisfy k then the function must evaluate to 0 without 

further work. C(T,) = 0, n < k. 

T, n > k - There are n inputs remaining to be evaluated and once an 

arbitrary input has been computed then the remaining patterns will be 

split into two sections. The cost of evaluating those sections must also be 

included. C(Tfl,n > k 1 + 
c(T:11)±c(T') 

0 	 if n=0 or k0 or n < k 
C(Tfl 

{ 1 
+ C(T)±C(T') 

otherwise 

Should an input favour either a zero or a one then the function for C(T) 

needs to be expressed in a more general form. 

C(Tfl = 1 + P(I. = 1)C(Ti11 ) + P(I, = 0)C(T 1 ) 

where P(Ij  = 1) is the probability that input i evaluates to 1. 

Implicit in the above formula is an ordering on the evaluation of the inputs. 

When the probability of a one or a zero is the same for all inputs then the order 

is unimportant as the end result will be the same. When the probabilities differ 

then the result depends upon the order in which the inputs are evaluated. This is 
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shown by evaluating a T22  function. Let F(a, b) = C(T(a, b)) and P(a = 1) = 0.9 

and P(b = 1) = 0.5. 

F(a, b) = 1 + 0.1F(0, b) + 0.9F(1, b) 

F(0, b) = 0 

F(1, b) = 1 

=F(a,b) = 1.9 

F(b, a) = 1 + O.5F(0, a) + O.5F(1, a) 

F(0, a) = 0 

F(1, a) = 1 

=F(b,a) = 1.5 

3.3 Input Selection 

As we saw above the strictnessof a threshold function can depend on the order in 

which the inputs are evaluated. Demand-driven simulation can benefit from this 

characteristic through short-circuiting. For example, if any input to an AND-

gate is found to be logic 0 then the output from that gate is also logic 0. This is 

known without needing any other information. Other logic functions have similar 

properties. If the logic function is expressed as a binary decision diagram, this 

"short-circuiting" is automatic. Advantage can be taken of these properties by 

applying a lazy evaluation rule. Application of this rule throughout the system 

will reduce the amount of computation required to determine its output. 

The number of activations required to evaluate a function will therefore depend 

on the order in which the inputs are evaluated. This section is concerned with 

obtaining an ordering of the inputs to a component so as to minimise the expected 

evaluation time. Two factors may influence the evaluation policy: 

1. The likelihood of each signal having a desired value; assuming that this is 

known a priori, or can be calculated (p). 



n k M(T,) 
10 5 82.930 
10 4 73.906 
10 3 58.438 
10 2 39.746 
10 1 19.980 

9 5 83.767 
9 4 78.299 
9 3 63.715 
9 2 43.924 
9 1 22.179 
8 4 81.738 
8 3 69.434 
8 2 48.926 
8 1 24.902 
7 4 83.036 
7 3 75.223 
7 2 54.911 
7 1 28.348 
6 3 80.208 
6 2 61.979 
6 1 32.813 
5 3 82.500 
5 2 70.000 
5 1 38.750 
4 2 78.125 
4 1 46.875 
3 2 83.333 
3 1 58.333 
2 1 75.000 
1 1 	1 100.000 

Table 3.1: Percentage Strictness for some threshold functions. 
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2. The expected evaluation time for each signal input (w). 

The ordering problem has been analysed for the case of AND gates[79]. The 

analysis for OR gates follows easily from this work. The characteristic of an AND 

gate which we seek to exploit applies, more generally, to any gate with n inputs 

which requires k or more of its inputs to be logic 1 before its output becomes 

logic 1, 1 < k < n. Such gates are known as threshold gates. The corresponding 

boolean function of ii inputs, Xn  =< 1 11 x2 ,.. * ) In >, is denoted by Tkn  

Thus TIn is the n-input OR function and Tnn is the n-input AND function. A 

circuit whose components are all threshold gates (or their negations) is called a 

threshold circuit. 

Dunne and Leng[31] expanded on the work of Sassa and Nakata[79] to provide 

a general evaluation strategy for threshold circuits. Their work is outlined below. 

In order to verify that Tkn evaluates to a logic 1, at least k inputs must be 

calculated. The minimum cost of evaluation is obtained by choosing the first k 

elements from the order: 

	

WjW 	 Wk 
- < <...< - 
Pi 	Pi 	Pk 

Equally, in order to verify that the function evaluates to a logic 0, at least 

(n - k) + 1 inputs must be calculated. The minimum cost of evaluation is obtained 

by choosing the first (n - k) + 1 elements from the order: 

W . 	Wi 	 Wk 
< 	<...< 

1_Pi 	lPj 	'Pk 

Note that there is always at least one input which is a member of both sets. 

This follows as k elements are in the first selection and (n - k) + 1 elements are in 

the second and thus n + 1 elements are represented in total. As there are only n 

discrete elements available, at least 1 element must be represented twice. There 

may, of course, be more than one element represented twice. We shall call the set 

of such elements the Common set. 

Once an element from the Common set has been evaluated we are left with 

one of two threshold functions depending on the value of the calculated input: 

either, T,' if the value is 0 or, T1 if the value is 1. The next input to be 
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evaluated can be chosen in a similar manner until the final output of the function 

has been determined. In their paper, Dunne and Leng[31] do not give a rule on 

which element in the Common set to select. Should there only be a single element, 

then the choice is obvious. However, should there be 2 or more, then it is unclear 

which will provide the minimum expected cost for evaluating the function. The 

algorithm permits us to choose any element in the Common set. We see this in 

the common set of lists 3.2 and 3.3. 

If we assume that the probabilities and costs are fixed then an evaluation 

policy can be determined in advance for each gate in the circuit. 

3.3.1 Example 

Consider the threshold function TI with the inputs X having the weights and 

probabilities shown below. 

X, x2  x3  x4  x5  
W 100 200 400 200 150 

p 0.8 0.2 0.5 0.9 0.3 

When sorted the 1-list and 0-list appear as shown below. The elements in 

{... } are those eligible to be chosen to be evaluated. 

1 - list 	1x 1 , x 4 , x 5 }, x 3 , x 2 	 (3.2) 

0 - list 	{x 5 , x 21  x 1 }, x 3 , x 4 	 (3.3) 

Either x 1  or x5  could be chosen. In this example we shall choose x 1 . If x 1  

evaluated to 0 the lists would become 

1 - list 	{x 4 , X5, x 3 }, x 2 
	 (3.4) 

0 - list 	1x 5 , x 2 }, x 3 , x 4 
	 (3.5) 

If x 1  evaluated to 1 the lists would become 

1 - list 	{x 4 , x 5 1, x 3 , x 2 	 (3.6) 

0 - list 	{x 5 , x 2 , x 3 }, x 4 	 (3.7) 
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If this is repeated, then the resultant tree is shown in Figure 3.1. 

Figure 3.1: A minimum expected cost evaluation graph by the method of Dunne 
and Leng 

3.3.2 Remarks 

The method described purports to provide an optimal evaluation policy for simu-

lating gates in threshold circuits under certain assumptions. However, the method 

is not guaranteed to provide a unique solution and can generate evaluation strate-

gies that, while of low cost, are still sub-optimal. Multiple solutions are available 

as a result of non-singleton Common sets. 

Another major assumption in the method is that the probabilities associated 

with each input are independent. This is only true in tree shaped circuits. Further 

it is assumed that the cost of evaluating any input is independent of when it is 

evaluated. While this is true in "classic" demand driven systems, any system 

which uses memo[431 functions breaks this constraint. 

Looking again at Figure 3.1 we note that the immediate children of the root 

node are the same. This means that irrespective of the value of input 1 (the root 

node), the next input in order to be evaluated is input 5. By waiting for the 

value of input 1 before demanding the value of input 5 is, in effect, serialising a 

possible parallel operation. We shall look at the opportunities for parallelising 

the evaluation of a threshold function in Section 3.4. 
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3.3.3 The enumeration of all possible labelings of threshold 
trees 

The number of valid decision trees for a threshold circuit of size n with threshold 

k is given by the function below. 

fun count 0 - = 1 

I count - 0 = 1 

I count n k = if (n<k) 

then 1 

else (n*(count (n-i) k)*(count (n-i) (k-i))); 

For a TI  circuit the number of valid trees is 414720. After evaluation the 

expected computation time of each of these trees with the parameters in Table - 3.2 

(the values are from Dunne's paper[311) we find the frequencies listed in Table 3.3. 

1 2 3 4 1 	5 
w 10 100 15 80 63 
p 0.04 0.1 0.5 0.8 0.3 

250 1000 30 100 210 

10.41 111.11 30 400 90 

Table 3.2: Parameters for a (5,3) Threshold circuit from Dunne's paper. 

Interval I Frequency 
150-159 1036 
160-169 6881 
170-179 21618 
180-189 21617 
190-199 54475 
200-209 48276 
210-219 48204 
220-229 66971 
230-239 56358 
240-249 57171 
250-259 30147 
260-269 1966 

Table 3.3: The frequency count of expected evaluation costs 
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All the trees generated by the algorithm, in our experiments, lie in the 150-

159 cost band. The minimum graph (found by exhaustive search) is shown in 

Figure 3.2. It has a cost of 157.032. It is worth noting that this is not the same 

graph as published in the Dunne and Leng paper[31] though both have the same 

expected evaluation cost. 

1 

2 	l( T 

(:~) Z--T  
Figure 3.2: Minimum expected cost evaluation graph 

3.4 Modes of operation 

When a logical process has received a demand for its value and a calculation is 

required to satisfy that demand, there are a number of input and output modes 

in which the LP can operate. 

3.4.1 Input modes 

These modes define the way that a logical process can demand input values. 

Single Mode: Each required input value is demanded separately and sequen-

tially. The next demand is not sent until the previous demand has been 
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satisfied. 

Broadcast Mode: This mode sends demands for all the input values that may 

be needed to calculate the result. 

Parallel Mode: This mode sends demands for all the input values that must be 

needed to generate a result. 

Group Mode: This mode sends demands for the minimum number of input 

values which could generate a result. 

These different input modes are best illustrated with an example. Consider 

the threshold function TI  as defined in Section 3.3.1, one of whose optimum call 

graphs is given in Figure 3.1. 

Single mode would demand the value of input 1 and then, when the value 

arrived, it would follow the appropriate branch and then demand the next value. 

In this mode we descend the tree level by level until a fixed value is achieved. 

Broadcast mode would demand all the input values-at-once. As the graph has 5 

non-leaf levels, all 5 input values would be demanded. As they were returned their 

value would replace the node in the graph and incrementally the tree would be 

reduced to a fixed value. This may occur before all the results have been returned, 

e.g. 1true, 5=true, 4z--true. Subsequent input values can be discarded. The 

disadvantage of this mode is that, for non-strict functions, it requires computation 

to be performed that is superfluous to the final answer. 

Parallel mode attempts to find all those inputs whose value must be known 

and then to demand their values in parallel. From the graph (Figure 3.1) we 

see that input 1 must be evaluated. We also see that, irrespective of the value of 

input 1, the next input that needs to be evaluated is input 5. Parallel mode would 

demand the values of inputs 1 and 5 in parallel. As each value was returned, the 

call graph would be reduced and, should it be clear that another input must 

now be evaluated it will be demanded in parallel with any existing, unsatisfied, 

demands. In our example, should node 5 evaluate to false no new demands can 

be made (the next input to be evaluated still depends on the value of input 1). 

Should input 1 evaluate to true then we can demand the value of input 3 and 
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input 2. We cannot demand the value for input 4 as whether this is needed or 

not is dependent on the values of inputs 2 and 3. 

The value of a T threshold circuit can be determined by k true values or 

(n - k + 1) false values. Let in be the lesser of k and (ii - k + 1). This is the 

minimum number of inputs which must be evaluated for the value of the function 

to be determined. In our example, m is 3. To determine which inputs to demand 

we firstly weight each mode in the call graph with the likelihood that it will be 

reached. For each input we sum the weights on all the nodes for the input. In 

group mode we request, in parallel, the m inputs with the largest likelihood of 

being called. In our example, those are inputs 1, 5 and 2. 

The different input modes would be used to evaluate functions in the most 

efficient way. If, for example, the function was strict, then all the inputs require 

data and so broadcast is the most efficient. If, on the other hand, the function 

was non-, or partially-, strict, then a smaller number of data elements might be 

required. Single, parallel or group mode could then be more efficient. 

3.4.2 Output modes 

Just as there are different input modes, so there are different output modes. There 

is a complex interaction between the output mode of one logical process and the 

input mode of the logical process making the demand. 

Demand-response: This mode only allows data to be sent out as a direct result 

of a demand for that data. This ensures that the data only reaches those 

logical processes that explicitly demanded the data. 

Pre-emptive: This mode broadcasts the result to all the logical processes which 

might need the result. 

Pre-emptive mode does not preclude the demand-response mode. The LPs 

which might need the result is based on some predictive model which attempts to 

predict future behaviour from observed past behaviour. A simple model would be 

to send the data to all LPs that have requested the previous data element. This 

model would be self-restricting, in that, should it accurately predict all those LPs 
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which needed the data before the LPs themselves knew that they needed the data, 

then no LPs would request the data and they would therefore not automatically 

receive the next data element. 

Again, the use of different output modes would suit different conditions in the 

system. If, for example, a node might or might not send data to another node 

depending on conditions out-with its control, then that node should operate in 

request-respond mode. The action of sending a message to a node which does not 

need the data would waste memory. If it can be determined that a node will, at 

some point in the future, need the newly calculated result then the node should 

operate in pre-emptive mode. Doing this would avoid the overhead of a request 

and a reply. There is a potential for mixing the modes in any node. The node 

could, of course, ignore any pre-emptive data and then request it when needed. 

3.5 Chapter Summary 

This chapter looked at the benefits that are inherent in a demand driven system. 

It also addressed the more obvious shortcomings of the method and looked at 

ways to mitigate their effect. Threshold functions were introduced as a tool to 

address the question of strictness of a function. The work of Dunne and Leng[31 

was introduced as an approach to minimising the work required to evaluate a 

function. This approach was then expanded to consider the evaluation of the 

function on a parallel machine through the use of input and output modes. 

Having described the framework, the next chapter will describe the opera-

tion of two systems, one data driven and one demand driven, and will provide 

performance models for comparison. 
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Chapter 4 

Performance Models 

The previous chapter presented qualitative arguments on the merits of a demand-

driven system. In this section we present three analytical models. These models 

capture the gross communication and computation behaviours of the ELSA [5], 

CMB[19] and general demand-driven systems. 

This chapter first describes, in detail, the behaviour of the three systems under 

test. Then, after providing background definitions, models are derived which 

express the upper-bound of the gross computation and communication behaviour 

of those systems. The results of the models are then compared. The chapter 

closes with a discussion of some suggestions for improving the models. 

4.1 The Conservative ELSA System 

A system in ELSA is modelled as a weighted directed graph, where the nodes 

correspond to logical processes, the arcs to interconnections and the weights to 

the time delay on each arc. A few definitions follow: 

• Any two nodes i and j in an acyclic directed graph G(V, E) are connected, 

if the arc (i,j) E E. 

• If 3 (Z', J) E E, then (Z', J') is an input arc to node j and an output arc from 

node i. 

• P, C V is the subset of primary nodes, which have no arcs (i, n) in E. 

• T C V is the subset of terminal nodes, which have no arcs (n, i) in E. 
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. The set I = V - P - T of internal nodes. 

Primary nodes place packets of information (or tuples) on arcs and terminal 

nodes remove them from arcs. An internal node places tuples on its output arcs, 

if and only if, it has removed a tuple from each of its input arcs. In its simplest 

form, a tuple has three fields: V - state field, st and ed - the start and end times 

for which the state field is valid. This has some similarities with the concept of 

look-ahead in that the interval could be considered as an event at time st with a 

look-ahead of ed-st. The difference is that while look-ahead states the minimum 

time for which the state is valid, the end time (ed) states the time at which the 

state becomes invalid. Associated with each input arc is a memory element which 

stores the tuple while it is valid. 

The system starts with an initialisation phase (Figure 4.1(a)). During this 

phase the input memory elements of all the logical processes have their start and 

end times both set to zero (the start of simulation time). The state need not be 

set as it will be overwritten by an incoming tuple before being read. Also, each 

logical process places a tuple on its output arc with the following information: 

state (V) is set to whatever value is desired, the start time (st) is set to zero and 

the end time set to 6, where 8 is the simulation time taken for a change in an 

input value to affect the value of the output value (modelling the processing time 

in the simulated system). This tuple indicates the initial state on the arcs. It is 

safe to place this tuple on the arcs as the algorithm prevents any input to the 

node from affecting the output state until the node's delay 6 has elapsed. This is 

justified as no event at the inputs can cause an event at the output requiring a 

start time less than J. 

Once this initialisation phase is complete, the nodes are ready to start. A node 

can only fire (generate an output event) when all its inputs have tuples whose 

start time is different from their end time. As all the arcs have been initialised 

with such tuples, as soon as they arrive at their destination, that node can fire. 

(Figure 4.1(b) and 4.1(c)) 

The firing of a node has two parts; the creation and sending of the output 

event (Figure 4.1(d), and the modification of the inputs to reflect the simulation 
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Figure 4.1: A node in the ELSA system with 6 = 2. <V,st,ed> represents a tuple 
of state V over the interval [st,ed). 
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time advance (Figure 4.1(e)). The values for the output tuple are determined as 

follows: 

• The state (V) is evaluated according to the functional description of the 

node. 

• The start time (st) is the sum of the start time of the inputs (all inputs will 

have the same start time, this is shown later) and the delay S of the node. 

• The end time is the sum of the minimum of the end times and the delay 

5. The minimum of the end times is used as that is the maximum time for 

which complete information about the input state is known. 

Once the output tuple has been generated, the input memory elements can 

be updated. All the start times in the memory elements are set to the minimum 

of the end times, ensuring that at least one input requires to be updated before 

the node fires again. (This is how we can be sure that all the start times are the 

same when generating the output tuple.) 

An internal node which removes tuples with consecutive time intervals from 

its inputs will maintain the sequence on its output. If the time sequence at the 

input starts at 0 and is consecutive (i.e. ed3  = st +i), then consecutive intervals 

will be maintained on every arc in the graph until the end-time of the last interval. 

The conservative ELSA algorithm is asynchronous and inherently deadlock free. 

In cyclic networks, there is a potential for an explosion in the number of tuples. 

Consider the case of a node where its output is fed back to one of its inputs. In 

this case the start time for the new input tuple will differ from the start times for 

the other tuples by only the delay through the node. This will continue even if 

the state of the tuple does not change. Solutions to this, and other fragmentation 

problems are presented later. 

The handling of feedback is a well known problem for all conservative discrete 

event driven simulation(51]. 
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4.2 The CMB System 

The CMB (Chandy-Misra-Bryant) system uses events which occur at an instant 

rather than intervals. These events indicate a change in state rather than the 

existence of a state as in ELSA. Associated with each event is a timestamp. When 

every input has an event pending, the logical process consumes the messages with 

the lowest timestamp. After consuming these messages, the LP advances its local 

clock and may send out one or more timestamped event messages. 

As an example, consider a two input AND gate with a local time of 10 that 

has an event waiting on input 1 with a timestamp of 20 and no events pending 

on input 2 (Figure 4.2(a)). Thus we know the value of input 1 between times 10 

and 20 (this, in effect, gives an implicit definition of the ELSA interval). While 

the AND gate is in this state, it must wait for an event message on input 2. 

Now suppose that the gate gets an event on input 2 with a timestamp of 15 

(Figure 4.2(b)). The gate can now become active as it knows both inputs' states 

between 10 and 15. It consumes the event on input 2, advances its local time to 

15 (Figure 4.2(c)) and possibly sends an output message with a timestamp of 15 

plus the delay of the gate (Figure 4.2(d)). 

In the basic CMB system, no messages are sent on an output line unless the 

value of that output changes. This optimisation, which is performed to make the 

simulation more efficient, is similar to that used in sequential event-driven simu-

lators. However, in distributed simulation, this optimisation introduces deadlocks 

- points in time at which no LP can advance its local time because at least one 

input of every LP needs a message. For example, if the LP just described did 

not receive a message on input 2, it remains suspended. This deadlock is purely 

the result of the synchronisation mechanism and is unrelated to deadlocks in the 

physical system. This deadlock can be resolved in two ways: either by preventing 

it occurring in the first place, or by detecting and resolving the deadlock. The 

first solution is achieved by sending NULL messages whenever the local clock is 

updated but no output value is sent. This null message has the effect of prop-

agating the local clock time to other LPs in the system. It is, in effect, saying 

that no message will arrive on this channel earlier than its timestamp. In the 
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Figure 4.2: A node in the Chandy-Misra-Bryant (CMB) system with 8 = 2. 
<E,st> represents a tuple of event E at the timestamp st. 



second method the deadlock is resolved by scanning all the unprocessed events 

in the system, finding the minimum timestamp associated with these events, and 

updating the valid time of all inputs with no events to this time. 

4.3 Demand-Driven Simulation 

In contrast to the two systems described above, in which the computation is 

sparked by the existence of sufficient data on the inputs, the computation in a 

demand-driven system is sparked by the arrival of a request message at one of its 

outputs. The handling of the message could proceed in a number of ways. The 

simplest, most naïve, method will be outlined first followed by a system with a 

number of improvements. 

When a request is received (Figure 4.3(a)), by the simplest system, a request 

is issued for the value of the first input (Figure 4.3(b)). When that value arrives 

(Figure 4.3(c)), if it is insufficient to determine the output value, a request is 

made for the value of the second input (Figure 4.3(d)). This continues until 

sufficient information is available at the inputs for the output to be calculated 

(Figure 4.3(e)). The newly calculated output value is sent to satisfy the request 

(Figure 4.3(f)). 

There are two items of note which arise from the above description. The first 

is that more than one tuple might be generated to satisfy a single request. The 

second is that the tuples which satisfy a request need not arrive in any particular 

order. A demand-driven node handles these issues through the use of a calendar. 

A calendar starts with a single interval covering all simulation time, where the 

state of all the inputs is unknown. As each request is received, the node calendar 

is fragmented into intervals which are affected by the message and those which are 

not. The affected interval records the state change which has taken place. This 

might be a change from the node's value not being required to being required or it 

might be to record which input values have been requested and which have been 

received. Ultimately, the node's output state will be determined and this value 

will be placed in the calendar to satisfy subsequent requests without re-evaluating 

the node. 



There are a number of problems with the system as presented. Firstly, each 

request received sparks the computation of the output value which would in turn 

spark multiple requests for input values. Secondly, though this does not affect the 

model, some functions require that a minimum number of input values be obtained 

before a result can be calculated. Requesting the members of this minimum 

group on an individual basis would slow the system and serialise the computation 

unnecessarily. 

If every request was to result in a new evaluation being performed the num-

ber of requests would dramatically increase. Such an explosion in the number of 

request messages is one of the oft-cited reasons for not using demand driven eval-

uation. This can, easily be overcome by the use of a memo facility which records 

the fact that a request has been issued by a particular input for a specific interval. 

The use of memo functions was mentioned earlier in the thesis,in Section3.1.1.3, 

with regard to reducing memory requirements. Now when a request is received, 

if a previous request has already started the evaluation for that interval, the re-

quest is stored and satisfied at the same time as the initial request. This system 

can easily be extended to store the calculated output state as well. Now, when 

a request is received, if it has been calculated before, it can be answered with-

out generating any further requests. Such a system is reminiscent of the memo 

functions[43] used in functional programming languages. The advantage which 

their use in simulation has is that individual entries can be easily accessed as they 

are all indexed by the simulation time. 

These stores or caches could grow quite large. It would be possible to prune 

the stores without causing any unit to recalculate any values. The simplest way 

would be to determine the latest time for which all the LPs had calculated values 

and delete any earlier entries. This is similar to the GVT calculation which 

precedes a fossil (garbage) collection in the Time Warp system. 

4.4 Interval Manipulation 

The systems with which we are working are based on intervals of time rather 

then the more common notion of instants. In the following sections we shall 
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define intervals and relations and operations upon intervals. Using the interval 

system thus defined we will show how the ELSA and demand-driven systems would 

perform and thus how the analytical models of their behaviour were created. 

4.4.1 Definition and relations 

An interval [a, b) covers all values, x, such that a < x < b. This definition rules 

out instants such as [a, a) and intervals [4, 2) where a > b. For interval t, we shall 

define the start time as t and the end time as t 

From the definition above it is obvious that 

[a,b)U[b,c) 	[a, c) 	 (4.1) 

Two intervals are said to overlap if, and only if, they have some interval in 

common. 

Overla (a b) = J [max(a,b),min(a,b)) iffmax(a,bj <min(a,b) 
undefined 	 otherwise 

(4.2) 

Ingalls[44] uses a similar definition but uses closed intervals. The use of closed 

intervals permits the existence of instants, i.e. [3,3], which are ruled out in our 

definition of an interval as we explicitly require a state to exist for a non-zero 

amount of time. 

A stream is a set of intervals where no two intervals overlap. A complete 

stream over [a, b) is a stream whose intervals are consecutive and which can, 

through repeated applications of the identity expressed in Equation 4.1, be shown 

to be equivalent to the interval [a, b). 

4.4.2 ELSA nodes 

A strict ELSA node can only determine the output time interval when all the 

input intervals are known. The output interval is the interval which is common 

to all the input intervals. If we consider a two input node (inputs A and B) then 

the output intervals can be determined as follows: 
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Compare each interval in stream A with every interval in stream B to de-

termine if the two intervals overlap (using the definition in Equation 4.2). 

If there is an overlap, then add it to the output stream. 

Assuming that A and B are complete streams then D will be a complete 

stream. In order to determine the output stream of an ELSA node, it is necessary 

to apply one more function. This function, 5, will move the stream forward in 

time to mimic the effect of the delay through the node. The S function takes a 

time (t), which is the delay, and an interval (a). The S functions adds the value 

of t to both the start and end times of the interval. For example, if the interval 

is [5,10) and the value oft is 3, then the result of the function will be the interval 

18,13). 

So far we have shown how to calculate the section of the output stream which 

is dependent on the input streams. The time between the start of the simulation 

and the first result appearing at the output of the node still needs to be accounted 

for. To do this we simple add another interval to the output stream. This is the 

interval [0,t), where t is the delay through the node. This is safe to do as the 

interval starting at time 0, the start of simulation time, will be advanced by the 

S function, mentioned above, by t, and thus cannot affect the output over the 

interval [04). 

It is therefore simple, if numerically taxing, to determine the number of in-

tervals which will be sent down any given arc for an acyclic graph. Cyclic graphs 

add more complexity as their input streams must be merged with their output 

streams until a fixed point is reached but the basic operations are the same. 

The above is a description of events which take place in an ELSA simulation. 

It only lacks data and function evaluation for it to be a complete description. 

While the above system will provide, not only the number of messages but the 

exact intervals, it also shows that the number of messages in an ELSA system is 

independent of the data being carried. This is not, as we shall see, true of either 

CMB or the proposed demand-driven systems. 
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4.5 Analytical Models 

We assume that the system being modelled is represented by a directed graph, 

G = (V, E), where V is the set of nodes and E is the set of arcs (i, i). On any one 

input arc all the events occur at discrete times and no two events on the same 

arc occur at the same time. The events which arise on any arc can therefore be 

represented as the set of times at which the event is raised. It is possible from 

the set of event instants to recreate the intervals used by ELSA. The output of 

any node is some function of its inputs at that time. 

We are not directly concerned about when an event occurs, merely if an event 

occurs. The event set is therefore represented by the probability of an event 

occurring at time t. 

We shall first outline the rules of probability before showing how to determine 

the amount of traffic in the system and then, finally, apply a work cost to calculate 

the work done by the system. 

4.5.1 The Rules of Probability 

Rule 1: If the probability of an event A is p(A), then the probability that A does 

not happen is: 

p(not A) = 1 - p(A) 

Rule 2: Two events are mutually exclusive if they cannot both occur together. 

The probability that one or the other occurs is the sum of the separate probabil-

ities: 

p(A or B) = p(A) + p(B) 

Rule 3: Two events are independent if the outcome of the first has no effect 

on the outcome of the second. The probability that two independent events will 

occur is the product of the separate probabilities: 

p(A and B) = p(A) x p(B) 

Rule 4: This is an approximation that is often used in risk calculations. While 

it is not used in the simple models which will be used as examples, it would make 
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a sensible simplification for larger systems. Suppose that A and B are events, 

independent but not necessarily mutually exclusive, whose probabilities p(A) = a 

and p(B) = b are very small. What is the probability that at least one of them 

happens? It should be the sum of the following probabilities: 

p(A and not B) = a(1 - b) 

p(not A and B) = (1 - a)b 

p(A and B) = ab 

Thus: 

p(AorB)=a(1—b)+(1—a)b+ab=a+b—ab 

If a and b are small then ab is very small. So we can neglect the term (—ab), 

and so: 

p(A or B) = a + b = p(A) + p(B) 

In other words, events of small probability can be considered as being mutually 

exclusive, even if strictly speaking they are not independent of each other. 

4.6 ELSA Model 

In ELSA an output is generated whenever an event occurs at any of its inputs. If 

an event occurs at two or more inputs at the same instant then only one output 

is generated. 

The input streams to an ELSA node are assumed to be independent. That is 

to say that the existence of an event on one input does not affect whether there 

will be an event on another input. This assumption only holds for tree circuits 

as every other structure will have at least one node with more than one output 

stream. The effect of this assumption on the validity of the model will be seen in 

a later example (Section 4.10.1). 

In terms of the rules of probability given above, the transition function, T, 

for a two input gate is given below (a and b are the probabilities of an event on 

input A and B respectively). 



T (a, b) = a + b - ab 	 (4.3) 

The transition function for three inputs is T(a, T(b, c)) 	T(T(a, b), c). 

The probability of an event, p, multiplied by the run time of the system, n, 

gives a measure of the number of events which flow down the arc. 

4.7 CMB model 

The model for a CMB system using NULL messages is the same as that presented 

above for the ELSA system. This is because every message which arrives, whether 

it is a NULL message or a data message, causes the generation of a new message. 

This message is either an event message because the output value has changed or 

it is a NULL message sent to indicate an increased local time. 

In the version of the CMB system which uses a deadlock detection and res-

olution mechanism, an output event is only generated when an output changes 

state. The model of the ELSA system is extended to allow for the probability that 

the output value may change. We denote this probability by E. 

The transition function remains the same but the input parameters are now 

the product of the probability of an event, p, and the probability that that event 

is different from the previous event, E. This gives the probability of an event 

whose state is different from the- last event. 

The derivation of the value of E on an output is dependent upon the function 

which the node computes. Below we present the derivation assuming that an 

exclusive-OR function is being computed. 

The nature of the exclusive-OR function is that if both inputs change state 

at the same time then the output will remain unchanged. 

We therefore want the probability of either of the inputs changing state, but 

not both. This can be shown by the Venn diagram in Figure 4.4. 

The shaded area of Figure 4.4 can be expressed as follows: 

PI E, +P2 E2 -2xP1 E1 P2E2 

!1I 



Figure 4.4: Venn diagram of A or B but not both 

The probability of an event tends to the ratio of favourable events to trials, 

as the number of trial increases. The equation for the probability of an output 

event having a different state from the previous output is: 

PEi 	1122 

- P1 E1  + P2E2 - P1 E1 P2 E2  

As a new event is only dispatched along the output arcs if if is has a different 

value from the previous event dispatched along the arcs, we can use the value of 

E, defined above, to determine the number of real messages (as opposed to NULL 

messages) send along output arcs. 

4.8 Demand-Driven Model 

The demand-driven model is substantially more complex than either the ELSA or 

CMB models. This is due to the fact that the number of messages sent across 

any arc can be dependent upon the number of messages sent across some different 

arc. For example, the number of data messages being received on one arc can be 

affected by the number and state of the data message being received on another 

input. 

The model is illustrated by a four port unit (Figure 4.5). Each port is bi-

directional and is capable of both sending and receiving messages. This is required 

as each port must be able to send data messages and receive request messages or 

vice versa. 
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Figure 4.5: A sample node. 

4.8.1 communication costs 

We make use of information already calculated for the ELSA model when we calcu-

late the communications load for the demand driven approach. The ELSA model 

provides the communication load when the data on each link is required 100% of 

the time. With demand-driven simulation this is not the case. We shall use the 

ELSA calculations when we start to determine the demand-driven data commu-

nications load. 

Each arc can be given a weighting (W) which will indicate the percentage of 

the time for which it is actually required. If a node has two or more output arcs 

which means, in turn, that the node has two or more sources of requests, then 

the effective amount of time for which the node is required to be active is some 

function of the percentages of the request streams. By the same argument used 

in Section 4.5.1, the function is T, the transition function. 

The node will be active when one, or more, of the independent input arcs is 

active. Therefore, the effective fraction of the run for which the node is active is 

given by 

W = T(X),X = jWjj : (i,j) E E} 
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We now need to determine the weighting on each link in turn W. 

If the node is active for W, percent of the time then it must have, at least, one 

link active for that time. Therefore the first input will have requests covering W2  

percent. For convenience we shall order the n inputs to a node and label them 

from 0 to n - 1. We shall denote the source of the arc as src(j). 

T/Vi, src(0) = Wi 

The percentage of request activity on the second and subsequent arcs is depen-

dent upon the function being evaluated at the node. There is a certain probability 

that more data will be required, for node i, once the first request is satisfied, let 

us call this M(, i ). The amount of request activity on the second input arc is 

M(j) times the activity percentage of the first arc. The value M(, 2 ) is the prob-

ability that more data is required after both the first and second arcs have been 

evaluated. This continues until all n of the input arcs have been evaluated. The 

value of M(,) must be zero as there are no further sources of data left to be 

interrogated. M(,o) is 0 for all primary inputs (as they must, by definition, know 

their output without computation) and 1 otherwise. 

i- i 

T47isrc(j) = T47 H IVI(i,k) 

k=O 

This enables us to estimate what percentage of the time each arc will be active. 

Now that we know how many messages will be transmitted on all the arcs if 

they were active for all the simulation run, and the percentage of their activity, 

we can determine the number of data message passed over each arc. 

DCjj  = Cjj x Wi,j  

There only remains the number of request messages sent over each link to be 

determined. 

If there is only one output arc then the number of requests sent over the first 

input arc is the same as the number of requests received from that output arc. 

Should there be more than one output arc then the number of request messages 

is some function of the incoming request streams. 
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The function is, once again, the transition function T. The parameters of the 

function are based on the probability of a request message being received. 

Ri,src(0) - T(X), X = {R 3 , : ( i, i) E E} 

The model is completed with the generation of the probability of requests 

on the remaining input arcs. Each arc, apart from the first one, gets a number 

of requests based on the number of incoming messages on the previous arc. As 

mentioned earlier, each arc has associated with it a probability, M. The number 

of requests sent up the next input in turn is 

,src(j) = M(,_1) (csrc(j_l)i) 

The value Csrc(j_I),i  is divided by n to get the probability of a data message 

arriving. 

4.8.2 Computation costs 

The handling of a request message should require significantly less real time than 

the handling of a data message. We denote by g the relative granularity of the 

work being performed at a node. A granularity of 10 means that the node takes 

10 times as long to process a data message as it does to process a request message. 

Just as we noted in Section 3.1.1.1, data and request messages do not have the 

same communication or computation requirements. 

To obtain a measure of work performed in a data-driven system we sum the 

work done at all of the nodes. The work performed at a node can be determined by 

the number of output messages which need to be generated and granularity. Note 

that this provides a relative measure and not an absolute statement of simulation 

time. 

To obtain a measure of work performed in a demand-driven system we deter-

mine the useful work performed in the same manner as the data-driven system. 

We then need to add the number of request messages which need processing. 

Again, this gives a relative measure, but it can be used in comparisons. 



4.9 Worked Example 

In this section we apply the above model to a simple graph (Figure 4.6) to show 

how it is used in practice. 

Figure 4.6: A simple acyclic directed graph 

4.9.1 Summary of notation used 

p The probability of an event. 

n The run time of the system. 

Cjj  The data-driven communication load over arc (i, i). 

E The probability that the event state is different from the previous event state. 

Wjj  The percentage of the total simulation time for which arc(i,j) is required to 

carry data messages. 

Wi  The percentage of the total simulation time for which node i is active. 
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M(,k) The probability that more data will be required once request k of node i 

is satisfied. 

DC,3  The number of data messages passed over demand-driven arc (i, i). 

Rj, i  The probability of a request message on arc (j, i). 

T(a, b) The transition function which, given the probability of independent, but 

not mutually exclusive, events occuring on inputs a and b, can give the 

probability of an event occuring on input a, or on input b or on both a and 

g The relative granularity of productive work to request message handling. 

4.9.2 ELSA data-driven model 

For the data driven model we shall assume that the two parameters p and ii are 

known. This leads to equations for the number of dta messages on the outputs 

of nodes 1 . . . 4 as follows: 

C1 , 2  = Ci , 3  = C1 , 4  = np 

The data communication load from these nodes is the same as the data loads 

into the nodes, hence: 

C2 , 5  = C2 , 6  = C3 , 6  = C4 , 6  = C4 ,7 = np 

A similar situation holds true for the communication outputs from nodes 5 

and 7. 

C5 ,8  = C7 ,8 = rip 

The output of node 6 is a function of the inputs. 

C26  C3 6 C4 ,6  \ 

((n 	ni C6 , 8  = T T ___L , 	, 	I n 

= (p3 3p2 +3p)fl 

This just leaves the data communications load for node 8. 
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C8  = 
T(T(

C"8
,—),'8" n Ti 	fli 

= (P 
5 -5  P4  + 1Op3  - 1Op2  + 5p) 

Now that we have the communication loads for the ELSA data-driven model, 

we can turn our attention to the demand-driven case. Let us assume that we 

wish to know the output from node 8 for all simulation time. Therefore node 8 

will need to request data for 100% of the time from node 5. 

W 5 , 8  = 1 

As node 5 only has one input it must be active to fulfil all the requests. 

Therefore 

= W 1 , 2  = 1 

The percentage of time for which node 6 will be requested to be active depends 

on the function of node 8. 

T46,8 = 1 /5,8 

The percentage of time for which node 7 is active is again dependent on the 

function of node 8. 

1/V7 ,8  = 

Similar arguments can be applied to nodes 6 and 7. 

1/V2 ,6  = 1'176,8 = 1'15,8 

1/V3 , 6  = 1/V2 , 6 	= M5,8 M2,6 

1/V4 , 6  

1474,7 = 1/V7 , 8  = M5,8 M6,8 
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For nodes which have more than one output it is necessary to calculate the 

percentage of time for which they are active. 

W 1 , 2  = T(W 2 ,5 , T'V2 , 6 ) = 1 

= T(VV, 6 , 1474,7) 

1'V,3  = T'V6,3 = M5,8 M2,6 

The number of messages sent back down each arc is the total number of 

messages which would have been sent times the percentage of time for which the 

arc was active. 

DC1 , = C,3 W, 3  

Therefore: 

DC6 ,8  = C6 , 8  W 6 , 8  

4.10 Verification of the Models 

All three models were verified using the same circuit. It was a balanced binary 

tree with depth 11 (2047 nodes). Each internal node performed the same function 

which was exclusive-OR. The ELSA and CMB models were verified on a Breathing 

Time Buckets (BTB)[841 simulator written at DRA, Malvern. The demand-driven 

model was verified using the demand driven system described in the next chapter. 

When the predicted output for the ELSA model was plotted against the actual 

output from the DRA simulator, it matched to within about + 8%. Longer 

simulation runs reduced this figure further. The error is shown in Figure 4.7. 

Similar results were obtained for the other two models. 

An important result from the model for an ELSA system is that given a suffi-

ciently deep system then the output will increasingly tend to an event every time 

step. This is due entirely to interval fragmentation. 
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Figure 4.7: Percentage error when comparing ELSA model to actual results from 
DRA simulator. 

4.10.1 The effect of non-independent streams 

As mentioned earlier, the models assume that the streams are independent. A 

small case study using the gate level description of a 74LS283 adder[65] illustrates 

the limitations of the ELSA model. This limitation propagates through the other 

models as they are based, in part, on the ELSA model. 

The parameters to the model were chosen arbitrarily: 

. n, the run time, set to 1768. 

• Values from the range , ,. . . 	assigned to the nine input probabilities.120  

No two inputs had the same probability. 

The measured and calculated results are compared in Figure 4.8. Note that, 

while the model is a close representation in the early nodes (1.. . 9) the quality of 

the model's predictions starts to decline in the next level (10. . . 28) until, by level 

3, the model is assigning over 5 times as many messages to an arc as actually 

pass across it. This over-estimate is the result of smaller over-estimates made in 

the levels above and the lack of independence in the data streams. 
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Figure 4.8: Comparison of calculated and observed communications for 74LS283 
adder. 

Consider the data stream {5,10,15,20}. Its size is clearly 4. If this stream 

is sent to both inputs of a two input gate then the output data stream, which 

is basically the union of the input data streams, will also have a size of 4. If 

however, one of the inputs had a delay of one unit then the output stream would 

be {5,6,10,11,15,16,20,21} which has size 8. It is therefore plain that the diverse 

paths taken from the data stream source to the destination gate can have a 

dramatic effect on the size of the output data stream. 

Consider node 29 of the adder (a node on the 3rd level of the network). Its 

output stream is some function of its five input streams. The streams from nodes 

10. . . 14 are themselves functions of streams. 

n29= f(n io)  n il , n 12 ,n13 ,n 14 ) 

n10 = 	f(n 2 ) 

nil = 	f(n i ,n4 ) 

n12 = 	f(ni,n3,n6) 

n13  = 	f(n i ,n3 ,n5 ,n8 ) 

n14  = 	f(n 1 ,n3 ,n51 ri7 ,n9 ) 

As the above equations clearly show, the output from node n 1  is used four 

times in determining the output stream from node 29. The delays of the interven- 
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ing nodes are chosen randomly from the range 11. . . 51. With four nodes choosing 

from five discrete delays the probability that two or more of the nodes will choose 

the same value is quite high (0.808)' 

When the range of possible delays in increased, the observed number of mes-

sages at node 29 (and at other nodes) increases as predicted. The increase, 

however, does not provide sufficient messages to meet the model's prediction. 

These figures highlight the model's sensitivity to non-independent streams and 

to small errors high in the circuit snowballing and swamping the count at deeper 

levels. 

4.10.2 Suggested improvements to the model 

The greatest weakness of the model is that fact that it only considers local infor-

mation in determining the data or request activity of a node. As we saw in the 

previous section, non-independent streams can cause the model to significantly 

over-estimate the number of messages on any arc and thus the total amount of 

work performed. This could be addressed in a number of different ways. 

As we have seen in Section 4.4.2 it is possible, given the input intervals, to 

determine exactly the levels of traffic across arcs in the ELSA system. As all the 

models take as a base the data-driven level of traffic, then this might be used to 

produce a tighter upper-bound on the message traffic, and thus on the amount 

of work to be performed. 

An alternative improvement would be to take into consideration the common 

sources of the message traffic and also the various paths from source to the node 

under consideration. If we have one stream taking two paths which had equal 

delays then we could remove from consideration one of the streams, as it gives rise 

to events which, as they occur at the same as those in the other stream, would 

not cause an increase in the number transmitted. Currently the model assumes 

independent streams and thus identical streams would be counted twice. 

'The probability that two or more nodes will choose the same value is 1 minus the probability 
of all the nodes choosing different values. As there are 54  possible orderings of which 5 x 4 x 3 x 2 = 
120 are unique, the number of orderings in which two or more nodes have the same delay is 
0.808 
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mt maketree (mt st, mt ed) 
{ 

mt split; 
mt left,right; 

if (st==ed) return (st); 

split = ((randO °h(ed-(st+1)))+1) Ii; 
split += st; 
left = maketree(st,split-1); 
right = maketree(split+1,ed); 
SetFunction(left ,right ,split); 
return (split) 

} 

Figure 4.9: Algorithm to generate random binary trees 

4.11 Tree Network Generation 

The tree networks used to test the system are generated automatically. A simple 

algorithm randomly generates a binary tree with n nodes. The algorithm is shown 

in Figure 4.9. 

Let I(a,b)  be the interval of consecutive integers from a to b inclusive, i.e. 

1(0,2) = [0,1,2]. Then 11(a,b) I = (b - a) + 1. 

The algorithm takes an interval I(a,b),  such that II(a,b)l  is odd. The interval 

is split into three sub-intervals, '(ax—I), I(x,x), '(x+l,b) The value of x is chosen 

randomly from the set {x : a < x < b A I(a,x-1)j is odd}. The root of the tree 

is thus I(X,X),  its two sub-trees are formed by recursively calling the algorithm on 

the intervals I(a,xI) and '(x+1,b)  The recursion terminates when it is called on an 

interval of size 1. The tree returned by such a call is a single leaf. This is shown 

in Figure 4.10. 

4.11.1 Analysis of the Distribution of the Trees Generated 

We note that the generation algorithm does not produce every potential tree 

with equal probability. To illustrate this we will first determine how to count the 

number of potential trees the algorithm will generate. 

Let H,, be the set of n-node binary tree networks, and let T = IHII . Further, 
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let HL,R be the set of binary tree networks with L nodes in the left sub-tree and 

R nodes in the right. Let TL,R = HL,Rl. As the sub-trees on the left and right of 

the root node are independent the total number of possible trees is the product 

of the number of sub-trees on the left and right. 

TL,R = TLTR 

Further, as the left and right sub-trees could be swapped, it is clear that 

TL,R TR,L. 

In general, we have the following recurrence relation for T. It is defined in 

terms of the number of sub-trees generated by splitting the n nodes into sub-trees 

of x and n - x - 1 nodes, where x ranges across the odd integers from 1 to m - 2 

inclusive. 
fl-i 

T = 

The base case is T1  = 1. This is a single node with no children or parents. As 

the number of nodes in a binary tree is always odd the next case is T3  = 1. This 

represents a root with a leaf on both its sub-trees. The next case is T5 . 

T5  = T1 , 3  +T3 , 1  = T1 T3  +T3T1  = 2 

Values of T for small n are given in Table 4.1. It can be seen that T grows 

rapidly; for networks of only 29 nodes, there are over 2 million different potential 

trees that can be generated. 

Now that we are able to count the number of trees with a given structure, we 

will show that the distribution of generated trees is non-uniform. Consider the 

generation of an 11 node tree. The number of tree with 11 nodes is given by: 

T11  = T1 ,9  + T3 , 7  + T5 , 5  + T7 , 3  + T9 , 1  

The above algorithm would generate a tree corresponding to one of the terms 

above with equal probability of 1 . It should be noted, however, that T1 ,9  = T9 , 1  = 

14 and T3 , 7  = T7 , 3  = 5 while T5 , 5  = 4. There are thus many more networks of type 

H1 , 9  or H9 , 1  than of the other possible types. In effect, the algorithm is biased 

towards producing balanced trees. 
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n T. 
1 1 
3 1 
5 2 
7 5 
9 14 

11 42 
13 132 
15 429 
17 1430 
19 4862 

29 2674440 

Table 4.1: Values of T for small n 

Figure 4.10: A decomposition of Ii ,-, 
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4.12 Results 

Figure 4.11 shows the total communication load in data-driven and demand-

driven systems for a 15-node balanced binary tree. The nodes were numbered 

sequentially, breadth-first, from the root. The fixed parameters for the model 

are: p = 0.01, M2 , N!3 , M4 , NI6  and M7  = 0.5, g = 10 and n = 1000. The values of 

M( i , o ) and M( 5 ,o ) were varied in the range 0. . . 1. The values of M( i , 1 ) and M(5,1) 

were fixed at 0 as there remains no further data source to interrogate. 

Data-driven - 
Demand-driven 

Total 

150 

100 

50 

0 

0 

1 

Figure 4.11: A comparison of data and demand-driven communication load for a 
15 node balanced binary tree. 

A Monte-Carlo analysis was performed on both the communication and work 

load equations. For the communication alone approximately 65% of the state 

space resulted in better performance for the demand-driven system. For work 

load alone approximately 95% of the state space resulted in better performance. 

As we can see, the amount of communication in the system is strongly related to 

the strictness of the functions at the nodes. 

In order to assess the predicted relative merits of the demand-driven system 

in comparison to the data-driven a number of further analyses were performed. 
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4.12.1 Graphs 

In contrast to the experiment above, the results presented in the rest of this 

chapter present the upper and lower bounds found after an exhaustive search of 

all possible fifteen node trees. Again, fixed values, except where explicity noted, 

were used: p = 0.01, M1 ,.,7  = 0.5, g = 10 and n = 1000. 

Figures 4.12 and 4.13 show the effect of increasing the granularity of the 

task at each node. As the granularity at the nodes increases the amount of 

communication remains unchanged. This is to be expected as the time taken at 

a node has no effect, in the model, on the number of messages transmitted. The 

total amount of work performed increases linearly with the increase in g (each 

node is taking longer to process data messages). It is worth noting that the total 

amount of processing resource consumed is consistently less for demand-driven. 

This is due to the effects of short-circuiting function evaluation. 

Figures 4.14 and 4.15 show the effect of increasing the frequency of events 

at the inputs to the system. When P = 1 the data-driven systems are firing 

on every time step. As the frequency increases the amount of work increases 

more quickly for the data-driven system than for the demand-driven one. The 

amount of communication increases but appears to reach a point about P = 0.85 

where both systems increase their communication at the same rate. The predicted 

effect on the amount of computation is that the demand-driven system will need 

to perform less work to achieve the same result as the data-driven system. The 

predicted effect on the amount of communication is that the data-driven system 

will need fewer messages than the demand-driven system. These two graphs 

indicate the slightly paradoxical nature of demand-driven systems in that they 

appear to consume more communications bandwidth to do less work than data-

driven systems. 

Figures 4.16 and 4.17 show the importance of non-strictness in determining 

which of the two systems is more efficient. Strictness has no effect on the amount 

of work to be performed by a data-driven system. We see that the point at which 

the maximum work from the demand-driven system equals the minimum work 

from the data driven system is just over a strictness of 0.85. What this means 
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is that even when node require both inputs 85% of the time, the demand-driven 

system is still predicted to require to consume less processor time. The effect 

of non-strictness is most notable on the communication load. As the strictness 

increases (more of the data is required to generate a result) there is a crossover 

point at about 0.65. Beyond 0.8, the demand-driven system is predicted to need 

more communiction bandwidth than the data-driven case. This break-even point 

could be increased by the use of pre-emptive data sending as this would potentially 

eliminate request messages. 
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Figure 4.12: Effect of granularity on work done 

4.13 Chapter Summary 

In this chapter we described three simulation systems: ELSA [5], a data-driven in-

terval based system, CM13[19], a data-driven event based system and our proposed 

demand-driven interval based system. Analytical models for the upper bound of 

the number of messages needed and the processing resource consumed were de-

rived and some suggestions on how to make the upper bound more accurate were 

The effect of the model's inability to handle non-independent streams effec- 
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Figure 4.13: Effect of granularity on communication performed 
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Figure 4.14: Effect of increasing the frequency of events on work done 
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Figure 4.15: Effect of increasing the frequency of events on communication 

45000 

40000 

35000 

a, 30000 
C 
0 
0 

0 

25000 

20000 

15000 

	

10000 1 	

LL 

	

0.5 	0.55 	0.6 	0.65 	0.7 	0.75 	0.8 	0.85 	0.9 	0.95 
Strictness 

Figure 4.16: Effect of strictness on work done 
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Figure 4.17: Effect of strictness on communication performed 

tively was discussed. Random binary trees were generated and, as they exhibit 

independent data streams, were used to predict the expected performance of data-

driven and demand-driven systems. The results of the models were presented in a 

number of graphs which show the effect of varying granularity, frequency of events 

and strictness on both the comunications bandwidth required and the processing 

resources consumed. 
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Chapter 5 

Experimental Results 

The model described previously is only able to give estimates of the total amount 

of computation or communication 1  performed by any node. It cannot provide 

information relating to the distribution of work through time nor can it give any 

indication of how increasing the resources can affect the performance. 

In this chapter a number of different circuits are used to examine the dy-

namic nature of the simulation and, in particular, to focus on the parallelism and 

performance which is available as the computing resource increases. 

5.1 The Test-bed 

All the experimental results have been obtained from running the simulations 

within the controlled environment of a multiprocessor simulator. The reason 

for doing this was to have as much control of the "machine" as possible which 

enabled the results to be obtained without interference from other users or being 

dependent on factors such as caching or network load. The ultimate aim was to 

provide reproducible results. In order for these results to have any validity it is, 

of course, necessary to show that the simulator is a fair representation of a real 

system. This is shown later. 

As the tests are performed within the test-bed it is necessary to define our 

concepts of simulation time and how it maps onto "real" time. Consider a circuit 

being simulated on the multiprocessor test bed. Simulation time relates to time as 

it is understood by the system being simulated - in this case, the circuit. System 

1 J11 future, the term work shall be used to mean either computation or communication. 
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time relates to the time of the test bed - this is the time used as real time. 

The description of the test-bed has two parts: the micro model (how the 

processor functions) and the macro model (how the micro models are connected). 

5.1.1 The Micro Model 

The micro model describes a processor-memory pair. The memory is strictly local 

to the processor and there is no concept of global or shared memory. Nor is there 

any concept of a shared, or global, clock. 

The micro model is designed as a reactive system. A reactive system is one 

where the units remain in some quiescent state until activated by a message or 

signal. Some computation is then performed followed by zero or more messages 

being sent to other units. 

The messages which arrive at a processor are typed. The type determines 

whether the body of the message contains data to be processed or a demand for 

data'. The amount of time spent handling the message is dependent on its type 

and the number of intervals to which it is applied. The complete evaluation of a 

function for any time interval will require a number of messages to be processed. 

When the node is idle (not processing any message) it waits until a message 

arrives and then starts to handle that mesage. Should another message arrive 

while the node is handling the first message, the arriving message waits in a 

queue until the processor is idle once more. Messages are handled in the order in 

which they arrive. 

The handling of a message consists of updating the local state of the affected 

process (the processor can host a number of processes) and sending the resultant 

output messages, if any. 

5.1.1.1 Message Handling 

Each process maintains a separate state space which defines the state of that 

process throughout the simulation time. A process can be at different states in 

simulation time at any instant of system time. 

'The number of such types could be increased to provide for a range of control messages. A 
use for such messages is presented later. 
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When a message is received the interval covered by the incoming message is 

extracted from the state space. Should the incoming interval start or end in the 

middle of an interval in the state space then that interval is split into two (the 

part not affected by the incoming message and the part which is affected). Once 

the affected portion of the state space is extracted the incoming message is then 

applied to each interval in turn. What action is performed depends on the state 

of extracted interval and the type of message received. 

Demand Message: 

When a demand message is applied to an interval, one of three actions can 

occur: 

If the state of the output for that interval is known then the demand can be 

satisfied immediately. The output value is bundled into a message which is 

sent to the process which initiated the demand. 

If the state of the output for that interval is not known, but data to calculate 

that state has been demanded, then the incoming demand is added to the 

list of currently outstanding demands. It will be satisfied as soon as the 

interval has a value. 

If the state of the output for that interval is not known, and no earlier 

demands have been made, then the incoming demand is put in a list of 

outstanding demands and one or more demand is issued to the nodes whose 

data is required to calculate the value of that interval. 

Data Message: 

When a data message is applied to an interval, one of two actions can occur: 

If there is sufficient data available for the value of the interval to be deter-

mined, then all the outstanding demands (and there must be at least one) 

are satisfied and the output value is stored. 

Should there not yet be sufficient data available, then the incoming data 

value is applied to the function for that interval and a demand for further 
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data is sent to the appropriate node. The interval state is thus the partially 

evaluated result of the function. This enables short-circuit evaluation. 

5.1.2 The Macro Model 

The macro model describes how the final parallel resource is constructed and 

gives the characteristics of the communication links. 

The communication graph assumes that any processor can send data to any 

other processor without interrupting the processing on a third, intermediate, pro-

cessor. There are three times associated with communications. The first is the 

transport time; this is the time taken for a message to move through the network 

from the source to the destination. The second and third times relate to the 

processor work required to move the message to and from the processor into the 

communications net. If a message is being sent to another process on the same 

processor, this cost still applies. 

Messages are queued at the destination in the order in which they arrive. 

Should two or more messages arrive at the same time, then they are queued in 

an arbitrary order. 

In all of the experiments below, the nodes were scattered randomly across 

the processors. This was done to try and eliminate either method gaining an 

advantage from a more favourable distribution. For any individual experiment, 

both the data and the demand driven methods were tested using the same random 

distribution. 

5.1.3 Test-bed Input/Output 

Input and output is handled by special nodes which behave in a similar manner 

to all the other nodes being simulated. The input nodes can be considered as 

functions whose state is known for all simulation time, while the output nodes 

are functions with one input which merely store the incoming data. 
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5.1.4 Model Output 

As the simulation system is itself being run in a controlled environment it is 

possible to take whatever measures are desired without affecting the system being 

studied: this is one reason for using such an enviroment. 

The output trace concentrates on the behaviour of the processors'. The pro-

cessor is constrained to be in one of four states and to start the simulation in 

the idle state. Whenever a processor changes state that information is written to 

the trace file and that state is known to persist until another state change event 

occurs. Extra information is written to the trace file depending upon what state 

the processor is entering. The exception to the above is the Mark event. This 

event is used to record any information which is deemed relevant but does not 

alter the state of the processor. 

The states are given below: 

idle: the processor is waiting for a message to arrive. 

send: the processor is currently copying one or more messages onto the commu-

nications network. 

recv: the processor is copying one message from the communications network. 

task: the processor is occupied with internal processing and updating local sys-

tem state. 

5.2 Increasing confidence in the veracity of the 
simulator 

As mentioned earlier, when using a simulator, it is necessary to obtain evidence 

that the simulator is, in fact, a reasonable representation of a real machine. The 

method which was used to obtain such supporting evidence is in three parts: 

1. Obtain values from a real machine for the parameters of the simulator. 

3 The trace format is very similar to that used in PICL. 
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Obtain results for running the same circuit on both the real and the simu-

lated machines. 

Compare the two results 

5.2.1 The gentle art of Ping-Pong 

The time taken to send a message from one process to another can be measured 

by "bouncing" a message from one process off another process. By recording the 

time taken by the message to travel to the other process and back again, and 

assuming that the journey times are symmetrical, it is possible to determine the 

time taken for the message to travel half the distance. It is reasonable to suppose 

that the longer the message, then the more time it will take to transmit trough 

the network and, as such, the measures are taken for a range of message lengths. 

Two different graphs are presented below. The first (Figure 5.1) is for a multi-user 

machine (the specification of the machine is in Table 5.1). 

Machine ]_________ Attributes 

Make Sun 
Calvay Model SS10 

Memory 240M 
Purpose Staff compute and Xterm server 

Make Sun 
Balta Model SS1+ 

Memory 11M 
Purpose Small desktop workstation 

Table 5.1: Specification of test machines 

Both graphs exhibit a similar linear trend. The graph for Calvay (Figure 5.1) 

also shows one of the problems inherent in trying to take performance measures 

on a multi-user machine, namely that the process is sharing the machine with 

many others, all of which are making demands on the processor. As such the 

times taken on Calvay can vary quite significantly, though, by taking sufficient 

results, a trend starts to appear. The graph for Balta (Figure 5.2) shows the 

linear trend much more clearly. 
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Figure 5.1: The time taken for a two way message on Calvay 
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Figure 5.3: The time taken for a two way message on a pair of SS5 machines 

The graph for a pair of SS5 machines is shown in Figure 5.3. This is the graph 

of the round trip times for a message being passed between the two machines. 

The graph shows some interesting features: firstly, that there is strong evidence of 

three separate bands of results and, secondly, that all three bands have a similar 

slope. This is shown in Table 5.3, which provides a and 0 values for the three 

clusters. The value of a is the intercept with the time axis while 0 is the slope of 

the data. Communication time is often modelled using the equation a + 01,  where 

a is the start-up cost, 0 is the per byte transport cost and 1 is the length of the 

message. The importance of these values is covered in Section 3.1.1.1. The three 

different a times reflect different start-up times for the communication. This may 

be due to the multi-user nature of the machines. 

5.2.2 Time taken to handle Data and Demand messages 

The time taken to handle either a data or a demand message was measured. A 

32 node balanced binary tree was used to gather the results. Each node on the 
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Band a /3 
Upper 4001 0.0023 
Middle 2031 0.0021 
Lower 18.644 0.0022 

Table 5.2: Values of a and 0 in milliseconds for two SS5 machines 

Machine a 	10 
Balta 	24.597 0.0117 
Calvay 	7.6504 0.0018 

Table 5.3: Values for a and /3 for two machines 

tree was a two input logic gate. For each run of the system the total number of 

demand and data messages was counted and the total time required to handle 

each type of message was measured. The results shown in Figure 5.4 are of the 

average time taken to handle each type of message. 

The average time to handle a demand message is 3.057 ms and to handle a data 

message is 2.167 ms. The reason that the time taken to handle a demand message 

is greater than that to handle a data message, in this case, is a combination of 

two aspects of the system. The first is that digital logic is a very fine grained 

computation and provides little overhead to the handling mechanism. The second 

is less obvious. When any message arrives it needs to update the calander of the 

node to say that a state has changed. For a demand message, this will frequently 

require a new entry to be placed in the calander. As the calendar has already been 

fragmented by a demand message, there is less chance of a data message having 

to fragment it further. The concept of a calendar was introduced in Section 4.3. 

5.2.3 A comparison of the real and simulated systems 

Both the real distributed simulator and the test-bed (simulated simulator) were 

set to simulate the same circuit. The test-bed was given the parameters measured 

from the real implementation and which are described above. The same circuit 

(255 node tree) was used and the average results of 10 runs are shown below 

(Figure 5.5). Each set of runs varied the number of processors from 1 to 10. 

It is obvious from the graph that the real system is consistently slower than 
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Figure 5.4: Samples of the time taken to handle a data or demand message 

the test-bed (about 80% slower on average), but also that the test-bed does follow 

the same performance trend as exhibited by the real system, as the number of 

processors increases. The difference between real and test-bed simulators could 

have been caused by changes in the load on the network between the test-bed 

parameters being gathered and the comparison test being run. 

5.3 The Measures 

When undertaking performance measurement there is the question of exactly 

what should be recorded and how the collected data should be analysed. 

The most common measure of performance is how long the system takes to 

produce the necessary results. This measure is particularly suited to high power 

parallel machines where the user is typically given complete and sole access to a 

number of processors. Until the user gets the result, all the assigned processors 

are unavailable to others, even if they are not performing useful work. 

Another, increasingly popular, measure, is to calculate how much processor 
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Figure 5.5: Runtimes of both the real and test-bed simulators 

time is spent working on that particular problem. This measure is more suited 

to the Network Of Workstations (NOW) type of computing resource. In this 

senario the user has non-exclusive rights to a group of machines and shares the 

computing power with a number of other users. The other users may also be 

using the resource to run a parallel program. 

Some measures are relevant to both types of computing resource: message 

count, for example, is important, as it helps to determine the load on the commu-

nication system. A point-to-point message count can indicate poor load balancing 

and potential hot-spots, which might slow the calculation. 

5.4 The Circuits 

A number of different circuits were used to test and compare the performance of 

data and demand driven evaluation. 
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5.4.1 Binary Tree 

The binary tree circuit is shown in Figure 5.6. Each internal node of the tree is a 

two input threshold circuit. Each of the leaves of the tree is an input node. Each 

node in the tree has a unique path between it and the source. This implies that, 

if a node has enough information from a subset of its sub-tree to be able to fire, 

no demand will be made of nodes in any other sub-tree connected to that gate. 

The graph shown in Figure 5.7 is for a 9-processor machine, but the trend is 

similar for all machines with fewer than 9 processors. The graph shows a two-

dimensional result space. The lines on the graph indicate the contours in this 

performance landscape. The aim of the graphs is to give an indication of how 

the perfomance varies across various combinations of computation and commmu-

nication times. The lines indicate points of equal performance. The closer the 

lines are together, the more quickly the performance changes. Lines parallel to 

the axis are unaffected by the change in value along that axis. 

For data-driven evaluation it appears that the time taken to send messages 

between processors has no noticeable effect on the time taken to complete the 

evaluation. This would imply that the processes on the critical path are not 

idle awaiting the arrival of data. Demand-driven evaluation, on the other hand 

(Figure 5.8), does show the effect of increasing the time taken to send messages 

between processors. There is a distinct increase in completion time as the send 

time is increased, although it is only noticeable for low data handling times. Once 

the time taken to handle an incoming data message reaches 80 units, the effect of 

altering send times diminishes. This is due to there being sufficent work available 

so that individual processors are not starved of data. 

Figure 5.9 shows the time taken to complete a simulation for both the data-

and demand- driven methods. Also shown is the percentage difference between 

the two values. For the tree circuit, the demand-driven method consistently out-

performs the data driven method by between 17 and 37 percent (averaging 26%). 

The partcu1ar results shown are for values of Tdata and Tsend of 640, but the 

results are similar to those obtained with other values. 

Work time is a measure of how much work is performed by the processors and 
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as such is unaffected by variation in the time taken to send data from processor 

to processor. It is a useful measure in that it gives an indication of how evenly 

the computation load was spread across the machine and thus how efficiently the 

simulation uses computing resources. 

Figures 5.10 and 5.11 show the traditional measures of speedup and efficiency. 

Both methods exhibit similar characteristics. Speedup and efficiency are related 

to the amount of elapsed time taken to complete the task. When we look at 

the graphs in Figures 5.12 and 5.13 we can see that, while the elapsed time for 

demand-driven (Rrun in the graphs) can be substantially more than that of data-

driven (Drun), the amount of resource consumed by demand-driven simualtion 

(Rwork) is consistently smaller than data-driven (Dwork). 

5.4.2 Adder 

The adder circuit used is shown in Figure 5.14 and is the gate level description 

of the 74LS283 adder circuitt65l. The adder performs the addition of two 4-bit 

binary numbers. The sum outputs are provided for each bit and the resultant 
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Figure 5.10: Speedup evident in a 256-node tree for both data- and demand-driven 
simulation. 

carry is obtained from the fourth bit. The adder features full internal look-ahead 

across all four bits, which provides the system designer with partial look-ahead 

performance at the economy of a ripple-count implementation. 

Figures 5.15 and 5.16 show the completion times for the adder on a 9-processor 

machine as the values of Tsend and Tdata are varied. Both graphs show a similar 

behaviour with the demand-driven system being slightly slower for all values. 

There is, in the demand-driven system, a very slight curve at the end of the 

division between the first and second ranges. This implies that, for large values 

of Tsend, the time taken to compute the result, Tdata, becomes significant. The 

Tdata value would only have an effect on the run time if nodes were having to wait 

for data to be produced, as, otherwise, the computation time would be covered 

by the communication time. The slight downturn is in marked contrast to the 

result from the tree (Figure 5.8) where the curve is significant and starts to have 

an effect at much lower values of Tsend. 

The four graphs (Figure 5.17-5.18) display the run times and amount of 
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Figure 5.11: Efficiency evident in a 256-node tree for both data- and demand-
driven simulation. 

work performed for particular values of Tsend and Tdata for a range of machine 

sizes. The most important result is that the data-driven system consistently out-

performs the demand-driven system. The second result is the sensitivity to the 

value of Tdata which is exhibited by the demand-driven system. Comparing the 

graphs in Figure 5.17(a) and Figure 5.18(a), the runtime values for the data driven 

system are little changed. The demand-driven system is, however, dramatically 

affected for Tdata=1280; not only are the completion times much higher, but the 

system fails to make any performance improvement after 3 processors. The re-

saon behind these results is the fact that the successful evaluation of many of the 

nodes is dependent on the evaluation of two nodes (nodes 3 and 5 in Figure 5.14). 

These nodes have a large fan-out and thus the processing becomes serialised on 

these nodes. 
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Figure 5.14: Topological layout of the 74LS283 adder 
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Figure 5.17: Adder: Graphs of Completion time and Work performed for differing 
values of Tsend and Tdata 

Figure 5.18: Adder: Graphs of Completion time and Work performed for differing 
values of Tsend and Tdata 
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5.4.3 The ISCAS85 Circuits 

The ISCAS '85 benchmark circuits[12] are ten combinatorial networks which have 

been used by many researchers as a basis for comparing results in the area of test 

generation. Although the circuits were not intended as such, they have also often 

been used as simulation benchmarks. 

Only circuit C880 was simulated. It is an ALU and control circuit with 383 

gates, 60 input lines and 26 output lines. 

The results presented in Figures 5.21 and 5.22 represent a situation in which 

the data-driven system consistently out-performs the demand-driven system. In 

all four graphs, the total amount of work performed by the demand-driven sys-

tem is about twice that of the data-driven system. While it is encouraging that 

both systems exhibit similar reductions in run time as the number of proces-

sors increases, they appear to level off and it is doubtful if the run time of the 

demand-driven system would ever fall below that of the data-driven system. 

The reasons for such a dramatic performance difference are shown in Fig-

ure 5.23. The first graph (Figure 5.23(a)) shows that there is relatively little time 

for which the demand-driven system is inactive and thus little advantage to be 

gained from the short-circuit evaluation strategy. This, in itself, would not explain 

the poor demand-driven performance. The second graph (Figure 5.23(b)) gives a 

clearer view of the system. The nodes have been ordered so that the maximum 

number of data messages sent in the demand-driven mode is always increasing 

(this was done to make the graph clearer). There are two areas of immediate in-

terest: the first is on the left of the graph where the demand-driven system sends 

no messages. This is caused by the non-evaluation of an entire sub-section of the 

graph. Therefore, any evaluation performed by the data-driven system is uneces-

sary and not required to determine the end result. The other area of interest, and 

the one which ensures that the demand-driven system performs poorly, is to the 

right of the graph. This area shows a very large number of messages being sent 

down some arcs. Bearing in mind the graph in Figure 5.23(a), which showed that 

no demand-driven node was required to produce output for the entire simulation 

run, it is obvious that the average data message size in the demand-driven system 

133 



was much smaller than that in the data-driven case. This may well be because 

of greater interval fragmentation caused by the interaction of both demand and 

data messages on the state space of the node over time. 
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Figure 5.19: C880: Data-driven runtime as a function of Tsend and Tdata for a 
9-processor machine 

5.4.4 Linear Shift Register 

This benchmark was proposed by Greer[371 as a quick and simple circuit which 

could be constructed easily and scaled to stress the simulating system. The 

benchmark is constructed by connecting a number of "base units" in series and 

then putting a feedback loop which, when gated with the input, feeds the first 

unit. The simplest base unit is a D-type flip-flop. 

Shown in Figure 5.24 are N series-connected edge triggered D-type flip-flop 

units. As shown, these flip-flop units are connected as a shift register with a 

feedback from unit M. When the value of M is correctly chosen relative to N, 

and when the output of the last unit is connected to the input of the first, a 

linear feedback shift register (LFSR) is formed. By repeatedly clocking such a 
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Figure 5.20: C880: Demand-driven runtime as a function of Tsend and Tdata for 
a 9-processor machine 

configuration, following the application of a reset signal, 2N - 1 different N-bit 

words will appear at the outputs of the N units. Additional clock inputs will 

cause the sequence to repeat. 

Selected values of N are listed in Table 5.4 along with the location of the 

feedback unit M. For values of M corresponding to other lengths, see Peterson 

and Weldon[70]. 

Figure 5.25 also illustrates that separate LFSR units can be connected in 

series. Each LFSR has a clock and a data input and a single output. When 

connected in series, all clock inputs share the same signal while the output from 

one unit is connected to the data input of the next unit in turn. When this 

is done, each unit will operate as a separate LFSR. Thus the basic units can be 

connected in series without limit and, by doing so in hierarchical steps, can create 

large ciruits with little effort. 

The circuit thus created is a pathological example of the effect of feedback 

on discrete-event simulation. In both the data- and demand-driven cases the 
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Figure 5.24: LFSR Base Unit 

Total Units I Feedback Unit 
(N) (M) 

2 1 
3 2 
4 3 
5 3 

10 7 
15 14 
20 17 
25 22 

Table 5.4: Tap points to obtain 2 1"  - 1 vectors 

Figure 5.25: Hierarchical Composition of Benchmark 
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performance is poor. The effect that this has is to divide, and re-divide, the time 

intervals until the system reaches a state of unit time intervals. In the case of 

the demand-driven system, as well as the interval fragmentation to be considered, 

there is also the fact that the base logic elements maintain internal state. Their 

current state is some function of their previous state and the input applied. This 

means that, without some reset signal being applied, to determine their current 

state, we need to evaluate all previous states back to the start of the simulation 

time. Once such demands for data have been sent, we are in a data-driven mode 

without any of the short-circuiting, or sub-circuit evaluation, that demand-driven 

system rely upon for performance. 

5.4.5 Causes of Fragmentation 

In ELSA, whenever a tuple arrives an output is generated for the fully defined 

interval. The end time of the output tuple is the minimum of the end times 

of the input tuples. The net result is that, potentially, the output stream will 

be more fragmented than the input streams. The amount of fragmentation will 

depend upon how misaligned the input streams are and the average size of the 

input intervals. 

If the intervals are misaligned by only a small amount then the output stream 

will consist of tuples representing the misalignment and tuples representing the 

larger, common, data areas. Should the average interval of one of the input 

streams be small then the output stream will consists of intervals which are no 

larger than those of the small interval input stream. 

5.4.6 Example of fragmentation 

Table 5.5 shows the number of intervals of a given size which occurred in the 

demand-driven simulation of a 16-element LSR while Table 5.6 shows the number 

which needed to occur to carry the data. The figures were obtained from an 

analysis of the data messages sent during the course of the simulation. If two 

contiguous tuples carried the same state value, then they were combined into a 

single tuple. This process was repeated until every tuple carried a different state 
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Size of interval Count 
1 699606 
2 45859 
3 30809 

	

4 	11862 

	

5 	2971 

	

6 	1786 

	

7 	431 

	

8 	93 

	

9 	146 

	

10 	760 

Size of interval 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Count 
7433 
5911 
2856 

514 
542 
795 

16 
8 
7 

455 

Table 5.5: Actual Interval Counts Table 5.6: Minimum Interval Counts 

to the immediately preceding and succeeding tuple. 

The disparity between the figures shows that significantly more messages are 

actually sent than would be needed if there was no tuple fragmentation. 

The weighted mean values for interval size are 13.65 time units and 86.59 

time units respectively. The weighted mean is the mean of the product of interval 

size and count. Given that the input waveform has an average interval of 100 

time units and the average gate delay is 3 time units the actual results show a 

significant degradation of the interval. 

Further analysis revealed that the median interval size for the actual results 

is 1. That is to say that half the messages in the system represent intervals of 

one time unit. The minimum results have a median of 85. This emphasises the 

larger interval of the minimum results. 

5.5 Conclusions 

The general conclusion from the results gathered is that it is possible for the 

demand-driven system to out-perform the data-driven system. There is a per-

formance gain in that it is possible for the demand-driven system to finish the 

task sooner than the data-driven system. There is also the gain in resource 

utilisation in that less of the machine's processor time needs to be used in the 

demand-driven system. While this result is less important in the area of dedi-

cated single-user parallel machines, in the increasingly common scenario where a 

parallel resource is shared (such as a network of workstations) a lower resource 
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requirement may permit more than one simulation run to be performed at the 

same time (replication-parallelism). 

What is, perhaps, more interesting is why the demand-driven system some-

times fails to out-perform the data-driven system. It would appear that the per-

formance of the demand-driven system is very dependent on the structure of the 

system being evaluated. Even when the demand-driven system performs poorly, 

many, if not all, nodes are not evaluated for all time. In some cases, the nodes 

were only evaluated for 50% or less of the simulation time. Also, it is possble 

to observe that some nodes in a demand-driven system seem to be issuing a far 

greater number of messages than they do when evaluating under a data-driven 

strategy. 

Coupling the two observations, we can see that some nodes in a demand-

driven system are issuing a large number of tuples for very small intervals. As 

each tuple must be handled, which causes further fragmentation of the tuple 

stream, the resultant increase in run time is the inevitable result. An improved 

ordering of nodes for evaluation may help to improve this situation (the current 

method is only applicable to tree structures and assumes that the order in which 

nodes are evaluated does not affect the evaluation time of any other node.) Also, 

various tuple recombination strategies may help to quench the explosion in the 

numbers of small tuples. 

5.6 Chapter summary 

In this chapter, a test-bed system was described which was used as a platform for 

the simulation of both data- and demand-driven simulation systems. A number 

of logic circuits were simulated on this test-bed and their performance character-

istics measured. As data-driven, conservative systems cannot support dynamic 

topologies, the systems simulated had to be static. Their dynamic nature was 

examined and we focussed on the effect on parallelism and performance as the 

available computing resource increased. 

The pathological example of a linear feedback shift-register was presented 

which, as a result of the nested feedback loops, caused both the data- and demand- 
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driven system to perform badly as a result of the large number of small tuples 

that both systems sent. The interval size for the data messages was fragmented 

until both system were, in effect, working with unit time intervals. The demand-

driven system was required to request the state of all the elements for all time 

which then left it operating in a data-driven mode. 
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Chapter 6 

Summary and Conclusions 

In this chapter we will summarise our work, discuss our conclusions and give some 

directions for further work in the area of demand-driven systems. 

6.1 Summary of thesis 

In Chapter 1, we surveyed the state of the art in distributed simulation and 

covered the characteristics of the two main systems (conservative - Chandy-Misra-

Bryant and optimistic - Time Warp). We noted that neither of these systems has 

all of the attributes of the desired simulation system. 

Chapter 2 looked at the background to the issues and we stepped back from 

simulation and studied the more generic problems of the production and synchro-

nisation of data in a distributed system. We saw that, by making the receiver 

responsible for requesting the data rather than have it wait passively, we could 

obtain a dynamic topology for inter-element connections. 

We also clarified the difference between request-driven and demand-driven 

systems and looked at related work at the micro, compiler and language levels. 

Related work in simulation, using either demand-driven or request-driven systems, 

was also discussed. 

Definitions of speedup and efficiency, that are widely used throughout the 

distributed systems field as quality measures, were discussed and we proposed a 

new measure, opportunity cost, to give an indication of how much of the systems 

resources are withheld from other potential users. 

The chapter closed by looking at binary decision diagrams. This method of 
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expressing a function can make explicit any non-strictness in that function and 

as such, is well placed to be utilised in a demand-driven system. 

The benefits that are inherent in a demand-driven system were outlined in 

Chapter 3. It also addressed the more obvious shortcomings of the method and 

looked at ways to mitigate their effect. Threshold functions were introduced as a 

tool to address the question of the strictness of a function. The work of Dunne 

and Leng311 was introduced as an approach to minimising the work required to 

evaluate a function. This approach was then expanded to consider the evaluation 

of the function on a parallel machine through the use of input and output modes. 

Chapter 4 described three simulation systems: ELSA 151, a data-driven interval 

based system, CMB[19], a data-driven event based system and our proposed 

demand-driven interval based system. Analytical models for the upper bound 

of the number of messages needed and the processing resource consumed were 

derived and some suggestions on how to make the upper bound more accurate 

were made. 

The chapter continued with a discussion on the effect of the model's inabil-

ity to handle non-independent streams effectively. Random binary trees were 

generated and, as they exhibit independent data streams, were used to predict 

the expected performance of ELSA and demand-driven system. The results of 

the models were presented in a number of graphs which show the effect of vary-

ing granularity, frequency of events and strictness on both the communications 

bandwidth required and the processing resources consumed. 

Experimental results were presented in Chapter 5. A test-bed system was 

described which was used as a platform for the simulation of both data- and 

demand-driven simulation systems. A number of logic circuits were simulated 

on this test-bed and their performance characteristics measured. As data-driven, 

conservative systems cannot support dynamic topologies, the systems simulated 

had to be static. Their dynamic nature was examined and we focussed on the 

effect on parallelism and performance as the available computing resource in-

creased. 

The pathological example of a linear feedback shift-register was presented 
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which, as a result of the nested feedback loops, caused both the data- and demand-

driven systems to perform badly. The interval size for the data messages was 

fragmented until both systems were, in effect, working with unit time intervals. 

The demand-driven system was required to request the state of all the elements 

for all time which then left it operating in a data-driven mode. 

6.2 Further work 

Throughout the investigation into demand-driven discrete event simulation, a 

number of questions remained unanswered. 

6.2.1 The function/cache dichotomy 

The model of demand-driven evaluation which we have used throughout the thesis 

is one where the node is foremost and the cache of previously computed results is 

an adjunct to it. That is to say that the node receives and processes the request, 

either by consulting the cache or by sparking a new computation. This "function 

centric" view of the system, while simple to implement, is limiting. An alternative 

approach would be to reverse the view, to treat the system as "smart memory", by 

putting the cache first as the main recipient of requests and make it responsible 

for sparking new computation. 

The potential advantage of this approach is that, while the memory (cache) 

would reside in fixed locations, the nodes responsible for calculating the function 

could be spread throughout the system. This opens up the possibility of relatively 

fine grain load balancing as each new functional evaluation could be started on 

the "best" available resource. 

6.2.2 Hierarchical evaluation 

A simulation model is created from an abstraction of the features of the physical 

system under investigation. The features chosen for the simulation model may 

well be some way removed from the physical implementation of those features, 

e.g. a wire in a digital circuit will have a number of physical attributes (potential, 

current, capacitance etc.). These will, in some models, be simplified to a single 
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logical value of true or false. While it is common for the level of abstraction to 

be uniform across the entire system, and it is less common to have different, but 

fixed, levels of abstraction within one simulation, standard data-driven methods 

do not permit the system to alter the level of abstraction dynamically in response 

to internal conditions. This might be triggered by a condition arising which 

cannot be modelled successfully at the level of abstraction chosen. A lower level 

of abstraction would then need to be used. However, to simulate the entire system 

at the lower level in case such a situation occurred may be impractical due to time 

or processor constraints. 

Demand-driven simulation may be able to address the issue of dynamically 

altering the level of abstraction in response to local conditions. Should a condition 

arise that needs to be resolved at a lower level, then the node could request that 

information at the appropriate level. Further work would be needed to assess the 

need for such an adaptive system as well as the overhead involved. 

6.2.3 Managing load in a peer-to-peer network 

Moving away from simulation, an interesting piece of further work would to in-

vestigate the extent to which the techniques of demand-driven evaluation can be 

applied to the emerging peer-to-peer networks. 

Assuming a network of web application providers, a user could submit some 

task to the network. The local node in the network may well be able to perform 

the work itself or it may choose to send a sub-task to another node. 

6.3 Conclusion 

Whether the benefits of demand-driven simulation can be exploited depends on 

the specific situation to which it is applied. 

The biggest performance gain in demand-driven simulation comes from non-

strict nodes. These nodes give rise to the possibility of not requiring to evaluate 

large sections of the underlying system graph and thus reduce the amount of work 

which needs to be performed. This reduction in required evaluation leads, quite 

directly, through to reduced communication and processor loads. These reduced 
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loads can often more than compensate for the higher loads imposed by a demand-

driven system compared with a data driven system. There is, however, an open 

question about how strict simulation functions actually are, in practice. 

Demand-driven systems also perform well in situations where nodes have a 

low active, output connectivity. Active connectivity relates to links which are 

actually used rather than being logical connections. This reduces the chances 

of two nodes requesting similar (but slightly different) time intervals and thus 

causing increased fragmentation. The more nodes there are requiring the output 

from another node, the greater the chance of fragmentation. The pathological case 

of the low output connectivity would be the tree. It is not surprising, therefore, 

that the tree structure using non-strict nodes shown in Section5.4.1 performed 

well. 

The most striking problem which arises in demand-driven simulation is the 

potential for an explosion in the number of tuples used to transmit the data 

between nodes. This problem is the mirror of one which affects the data driven 

system. The demand-driven system has both to contend with its calendar being 

fragmented both by request messages and by data messages. If more than one 

node requests data over two specific (and overlapping) intervals then both requests 

will be fractured resulting, in all probability, in an increase in the number of tuples 

sent to each requester. This increase can easily swamp any gain achieved by using 

non-strict nodes. 

Determining whether two tuples can be recombined is a relatively trivial task 

(as long as the states carried can be compared for equality). The only difficulty 

is to ensure that no deadlock conditions are added to the system by the recom-

bination. The safest place to perform the combination would be in the cache as 

it does not reply on any other data for its functioning and as such, the worst 

overhead would be a delay. Tuples can be recombined at other locations as well 

if suitable buffers are created. 

A related issue which requires special handling to operate efficiently is feed-

back. As in data driven systems, feedback can cause an explosion in the amount 

of work required to be performed. In the demand-driven case we have the situ- 



ation that a node is dependent on its own earlier results to process the current 

request. This can continue until the node reaches some base case, which may be 

the initialisation state at the start of simulation time. The node would roll further 

and further back in time issuing requests and then roll forward again acting as if 

it was a data driven node. Each request would, in the simplest case, fragment the 

interval further. The extreme case would have a node stepping forward in time 

by the delay through the loop even if the data state did not change. This can be 

handled more efficiently in both data and demand-driven systems. 

While demand-driven systems can handle variable (but bounded) delays, it 

becomes increasingly less efficient at doing so as the bounds on the interval in-

crease. In the extreme example of a node holding a state until some other node 

sends a signal (quite common in handshaking protocols) then the node holding 

the signal does not know when the other node is going to send its signal and 

has, therefore, to hunt back in time until it finds one. Each request causes an 

overhead as well as increasing the fragmentation. In general, such protocols will 

hunt back to the start of simulation time and then advance in the normal data 

driven manner. 

While the potential for improved performance depends on the situation to 

which demand-driven evaluation is applied, there are other gains to be made from 

using a demand-driven system. The most notable one is partial activation. The 

need for this feature may be sufficient to make any potential overhead worthwhile 

carrying. 

Partial activation allows the simulationist to place a probe in the system and 

cause only those nodes whose results are needed to generate a result at the probe 

to activate. This has the potential to render large parts of the system inactive 

and thus save on processing power. A similar effect could be achieved in a data 

driven system by a pre-processing step which could determine all those nodes 

whose results might be needed. The demand-driven system obviates this step as 

determining the necessary nodes is a function of the basic simulation step. 

A side effect of partial evaluation is that the necessary input signals to sub-

circuits are automatically generated (assuming that suitable signals are available 
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to the primary inputs). This removes the need (which would exist within a data 

driven system) of creating accurate sub-circuit input signals. 

Demand-driven discrete event simulation, using time intervals, is able to pro-

vide a platform with dynamic communication between the nodes, local control 

of processing, efficiently uses processor power, and is conservative. If the struc-

ture being simulated is free from deadlock, then the simulation will be also. The 

client-server approach means that the evaluation is easy to distribute over avail-

able processors. The use of a calendar and time intervals means that the system 

is able to automatically identify, and exploit, both structural and temporal par-

allelism in the underlynig system. 
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