26 research outputs found

    Kryging: Geostatistical analysis of large-scale datasets using Krylov subspace methods

    Get PDF
    Analyzing massive spatial datasets using Gaussian process model poses computational challenges. This is a problem prevailing heavily in applications such as environmental modeling, ecology, forestry and environmental heath. We present a novel approximate inference methodology that uses profile likelihood and Krylov subspace methods to estimate the spatial covariance parameters and makes spatial predictions with uncertainty quantification. The proposed method, Kryging, applies for both observations on regular grid and irregularly-spaced observations, and for any Gaussian process with a stationary covariance function, including the popular \Matern covariance family. We make use of the block Toeplitz structure with Toeplitz blocks of the covariance matrix and use fast Fourier transform methods to alleviate the computational and memory bottlenecks. We perform extensive simulation studies to show the effectiveness of our model by varying sample sizes, spatial parameter values and sampling designs. A real data application is also performed on a dataset consisting of land surface temperature readings taken by the MODIS satellite. Compared to existing methods, the proposed method performs satisfactorily with much less computation time and better scalability

    Certified and fast computations with shallow covariance kernels

    Full text link
    Many techniques for data science and uncertainty quantification demand efficient tools to handle Gaussian random fields, which are defined in terms of their mean functions and covariance operators. Recently, parameterized Gaussian random fields have gained increased attention, due to their higher degree of flexibility. However, especially if the random field is parameterized through its covariance operator, classical random field discretization techniques fail or become inefficient. In this work we introduce and analyze a new and certified algorithm for the low-rank approximation of a parameterized family of covariance operators which represents an extension of the adaptive cross approximation method for symmetric positive definite matrices. The algorithm relies on an affine linear expansion of the covariance operator with respect to the parameters, which needs to be computed in a preprocessing step using, e.g., the empirical interpolation method. We discuss and test our new approach for isotropic covariance kernels, such as Mat\'ern kernels. The numerical results demonstrate the advantages of our approach in terms of computational time and confirm that the proposed algorithm provides the basis of a fast sampling procedure for parameter dependent Gaussian random fields
    corecore