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Abstract Analyzing massive spatial datasets

using a Gaussian process model poses compu-

tational challenges. This is a problem prevailing

heavily in applications such as environmental

modeling, ecology, forestry and environmental

health. We present a novel approximate infer-

ence methodology that uses profile likelihood

and Krylov subspace methods to estimate the

spatial covariance parameters and makes spa-

tial predictions with uncertainty quantification
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for point-referenced spatial data. The proposed

method, Kryging, applies for both observations

on regular grid and irregularly-spaced observa-

tions, and for any Gaussian process with a sta-

tionary isotropic (and certain geometrically anisotropic)

covariance function, including the popular Matérn

covariance family. We make use of the block

Toeplitz structure with Toeplitz blocks of the

covariance matrix and use fast Fourier trans-

form methods to bypass the computational and

memory bottlenecks of approximating log-determinant

and matrix-vector products. We perform exten-

sive simulation studies to show the effectiveness

of our model by varying sample sizes, spatial

parameter values and sampling designs. A real

data application is also performed on a dataset

consisting of land surface temperature readings

taken by the MODIS satellite. Compared to ex-

isting methods, the proposed method performs

satisfactorily with much less computation time

and better scalability.

Keywords Approximate inference · Profile

likelihood · Block Toeplitz matrix · Fast

Fourier transform · Krylov subspace methods ·
Golub-Kahan bidiagonalization
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1 Introduction

Massive spatial datasets, often coming from satel-

lites or other remotely-sensed sources, have be-

come increasingly common in applications such

as environmental health, forestry, ecology etc.

Classical geostatistical analysis methods for point-

referenced spatial data are burdened with com-

putationally intensive steps such as Cholesky

factorization or eigendecomposition which have

cubic complexity in the number of observations.

Despite the advances in computing performance,

these methods remain prohibitively expensive to

apply to datasets of even moderately-large size.

Therefore, we need to develop methods that per-

form nearly as well as the classical methods but

are more computationally efficient and therefore

applicable to problems of massive volume.

There is a rich literature of approximate infer-

ence methods for point-referenced spatial data.

Early approaches approximated the joint likeli-

hood by decomposing it into a product of condi-

tional distributions (Vecchia, 1988; Stein et al.,

2004), using pseudo-likelihood (Varin et al., 2011;

Eidsvik et al., 2014) or using covariance taper-

ing (Furrer et al., 2006; Kaufman et al., 2008;

Stein, 2013). Modeling in the spectral domain

(Fuentes, 2007; Guinness and Fuentes, 2017; Guin-

ness, 2019) was also used to circumvent the heavy

computation. Another class of approaches are

based on finite-rank approximations such as fixed-

rank Kriging (Cressie and Johannesson, 2008;

Kang and Cressie, 2011; Katzfuss and Cressie,

2011), predictive process (Banerjee et al., 2008;

Finley et al., 2009), process convolution (Hig-

don, 2002) and lattice Kriging (Nychka et al.,

2015). Other approaches use a combination of

hierarchical matrix approaches and stochastic

estimators for the log-likelihood (Anitescu et al.,

2012; Ambikasaran et al., 2015; Minden et al.,

2017; Eriksson et al., 2018; Stein, 2013) or spec-

tral methods and h-likelihood (Dutta and Mon-

dal, 2016).

More recent approaches make use of the modern

computing platforms and focus on parallelizing

the computational load. Paciorek et al. (2015)

is one such example. Katzfuss (2017) and Katz-

fuss and Hammerling (2017) combine low rank

methods with distributed computing. Dividing

the data into subsets, drawing inference on these

subsets in parallel and recombining them has

been proposed by Barbian and Assunção (2017)

and Guhaniyogi and Banerjee (2018). Datta et al.

(2016a,b,c) use an approximation based on the

conditional distribution given the nearest neigh-

bors, inducing sparsity and allowing the method

to be parallelized. The stochastic partial differ-

ential equation or SPDE (Lindgren et al., 2011)

approach induces sparsity in the inverse-covariance

matrix for fast approximations. Sun et al. (2012),

Bradley et al. (2016), Heaton et al. (2019) and

Liu et al. (2020) provide comprehensive reviews

of these methods and demonstrate their effec-

tiveness in spatial modeling.

Most of these methods use either finite-rank ap-

proximations or introduce sparsity in the co-

variance or the inverse-covariance structure. Fi-

nite rank based models typically have complex-

ity O(nr2 + r3) with r being the rank of the

model such that r � n. However, in order for

the approximation to be effective for large n,

a large rank r is needed which increases the

computational costs. This cost can be allevi-

ated by inducing sparsity into the covariance

structure using compactly supported covariance

function; however, this may not be an appro-

priate modeling choice when long-range depen-

dence is present in the data.

We present a novel statistical method of log-

linear complexity to provide approximate infer-

ence for massive geostatistical datasets using

profile maximum likelihood estimation and Krylov

subspace methods based on the genHyBR method

proposed by Chung et al. (2018). The proposed

method, Kryging, provides prediction for the

observed process at unobserved locations by ap-
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proximating the underlying spatial process on a

regular, equispaced grid. Although we approx-

imate the latent process on a grid, we do not

restrict the observations to be on grid and there-

fore the method can be applied to irregularly-

spaced large spatial datasets. We generate esti-

mates of the underlying process through Krylov

subspace methods. Krylov subspaces (See Saad,

2003, for reference) are efficient iterative meth-

ods for solving large-scale linear systems and

least squares problems. A key advantage of the

Krylov subspace approach is that it is matrix-

free, in that it does not require forming the ma-

trices explicitly, but only requires the action of

the matrix on appropriate vectors. We provide

prediction uncertainty estimates in the form of

pointwise 95% confidence intervals via a para-

metric bootstrap approach and estimates for the

mean and spatial covariance parameters. Kry-

ging applies to any stationary isotropic covari-

ance structure, e.g., the Matérn covariance fam-

ily, as well as covariance functions that incorpo-

rate geometric anisotropy by allowing dissimi-

lar stretching along the two axes. It exploits the

Toeplitz (in one dimension) or block Toeplitz

with Toeplitz blocks (BTTB) structure (in higher

dimensions) of the resulting covariance matrices

and employs a fast Fourier transformation based

method for achieving computational gains for

matrix-vector multiplications (See Gray, 2006)

and approximating log-determinants (Kent and

Mardia, 1996). As a result, Kryging has O(n)

storage costs and only O(n log n) computational

complexity where n is the size of the underlying

grid for estimating the spatial parameters and

performing spatial prediction.

The tools used for building the Kryging model

have been used in literature before in different

contexts and different problems. However, by ef-

ficiently combining them in a specific manner,

Kryging has several advantages compared to re-

lated methods in the literature. Chung et al.

(2018) also use the same core method but we

extend it to include mean and spatial covari-

ance parameter estimation, uncertainty quan-

tification and approximation of log-determinants.

Aune et al. (2014) and Dutta and Mondal (2016)

also use tools such as Krylov subspaces and the

fast Fourier transformation, but their usage dif-

fers vastly from ours. First, we construct a dif-

ferent Krylov subspace, one that incorporates

the noise covariance, a mapping matrix, and the

covariance matrix; in contrast, the approach in

the other papers is to build a Krylov subspace

method with the covariance matrix alone. Sec-

ond, we use the Golub-Kahan bidiagonalization

rather than Lanczos or Conjugate Gradient for

linear systems. Third, we use the basis vectors

from the Krylov subspace to estimate the ob-

jective function and the gradients (one excep-

tion is the determinant and its derivative for

which we use a different approximation). In con-

trast, other approaches use various tools such as

Monte Carlo trace estimators, to estimate the

various quantities.

Kryging has a low-rank matrix involved in the

approximation process. However, compared to

other low-rank methods discussed above, em-

pirical evidence hints that using a small order of

the Krylov subspace works well for huge datasets

and produces accurate results. Block-circulant

embeddings has been proposed as a stand-alone

method to approximate determinants (Rue and

Held, 2005) which nicely gels with the Krylov

subspace based approximation to the problem

of maximizing the quadratic part of a Gaussian
log-likelihood to produce a fast and scalabe ap-

proximate inference method for massive geosta-

tistical datasets.

We establish the particular form of latent Gaus-

sian model that we use for our method in Sec-

tion 2. Section 3 gives the details of the method.

We provide detailed description and algorithms

of components of the method in various subsec-

tions of Section 3. A thorough simulation study

is performed in Section 4 and an application to

MODIS satellite data is performed in Section
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5. The data analysis is based on Heaton et al.

(2019). The rationale behind this was to be able

to compare the performance of our method to

other available methods directly. We finish with

a discussion and concluding remarks in Section

6.

2 Latent Gaussian Model

Let y(s) be the observed process and x(s) is

the underlying process of interest at location

s ∈ Rd, d ≥ 1; throughout this paper, we il-

lustrate the methods using the d = 2 but our

approach is applicable to problems with two or

three spatial dimensions with a possible addi-

tional time dimension. A realization from the

observation process, y = [y(s1), . . . , y(sp)]
T, at

p locations s1, . . . , sp is related to a realization

from the latent process, x = [x(s∗1), . . . , x(s∗n)]T,

at n possibly different locations s∗1, . . . , s
∗
n by the

relationship

y = Xβ + Ax + ε, (1)

where ε ∼ N (0,R) with R being a cheaply in-

vertible matrix of individual variances for each

location, X being the matrix of corresponding

covariates observed at the same locations as the

observations themselves and A being a matrix

that specifies the linear combinations that con-

nect the mean removed y and x. For this pa-

per, we make the standard assumption that the

nugget variance is constant across space and set

R = τ2Ip.

The mapping matrix A permits the flexibility of

y and x not being co-located, as well as change

of support. For example, A = I, the identity

matrix, represents the case where y is a noisy

observation of x itself after accounting for the

mean process. In case the response locations are

a subset of the n locations s∗1, . . . , s
∗
n, then A is

the n × n identity matrix with n − p rows re-

moved. The matrix A can be non-diagonal as

well, for the case when value of y at each lo-

cation is considered as an average of the un-

observed x at nearby locations, as it can be

when y(s) is observed at locations at irregularly

spaced locations and x(s) is considered on a grid

around those locations.

When the observations are not on a regular grid,

we still set the latent process locations s∗1, . . . , s
∗
n

to be on a rectangular grid and account for the

irregularity of the observation locations in the

mapping matrix, A. We specify the entries of A

so that each observation is a convex combina-

tion of the latent process in the neighborhood of

the observation. Specifically, the latent process

is weighted by the Wendland kernel function

(Wendland, 1995) w(dij) = (1−dij)4+ (1 + 4dij),

where dij = max {|si1−s∗j1|/∆1, |si2−s∗j2|/∆2}
and (x)+ = max{x, 0}, ∆1 and ∆2 are the grid

spacings in the two directions and si = (si1, si2)

and s∗j = (s∗j1, s
∗
j2) are the i-th observation loca-

tion and j-th grid-point location, respectively.

This particular formulation allows to approxi-

mate the value at a point outside of the grid as a

weighted combination of its nearest four neigh-

bors while for a point on the grid itself, the ap-

proximation is exact. To ensure the weights are

convex, they are normalized to sum to one for

each observation. That is, we assume the mean

response is

E{y(si)} = X(si)
Tβ +

∑n
j=1 w(dij)x(s∗j )∑n

k=1 w(dik)
.

This is equivalent to setting the (i, j) element

of A to w(dij)/{
∑n
k=1 w(dik)}. The truncation

function (x)+ ensures that A is a sparse matrix

with at most four nonzero entries per row, i.e.,

the matrix A has O(p) nonzero entries.

Choosing the mapping matrix to be sparse en-

sures there is not significantly higher computa-

tional cost due to these changes when applying

to an irregularly spaced data. This approach to

handling irregularly-spaced observations intro-

duces an additional tuning parameter, n, which
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controls the density of the latent space observa-

tions. When the observation locations are on a

regular grid, we simply set it to be equal to p so

that the latent process locations match the ob-

servations. However, when the observations are

not on a grid then there is no natural choice

for n. Accuracy should increase with n at the

expense of computational burden. This issue is

explored further in the simulation study of Sec-

tion 4.

We use a latent Gaussian process to model the

true state x(s), with zero mean and isotropic

Matérn covariance kernel (Matérn, 1960) with

standard deviation σ, spatial range parameter

ρ and smoothness parameter ν. Therefore, at

finite collection of locations, x is a multivariate

Gaussian distribution with mean 0 and n × n
correlation matrix Σ, i.e.,

x ∼ N
(
0, σ2Σ

)
, (2)

with 0 being the vector of all zeros and

Σij =
21−ν

Γ (ν)

(√
2ν
dij
ρ

)ν
Kν

(√
2ν
dij
ρ

)
being the spatial correlation between locations i

and j induced by the stationary isotropic Matérn

covariance kernel for i, j = 1, . . . , n. Here dij =

‖si−sj‖2 and ‖ ·‖2 denotes the Euclidean norm

in R2 and Kν(·) is the modified Bessel function

of the second kind with parameter ν. The choice

of Matérn covariance kernel is common but any

other stationary covariance function (or geomet-

rically anisotropic covariance function that in-

duces different stretching along the two axes)

may be used along with the approach for both

regularly gridded and irregularly spaced datasets

with same computational complexity that we

outline in the next section.

3 Inferential Approach

In this section, we describe an inferential ap-

proach for the latent Gaussian model that com-

bines Kriging and Krylov subspace methods, which

we have been calling “Kryging”. The likelihood

function for the latent state x and the mean and

spatial variance parameters θ =
(
βT, σ2, τ2, ρ, ν

)T
can be written as

L(x,θ;y) = fy,θ(y|x)fx,θ(x|θ), (3)

where fy,θ(·|x) is the density of the data given

x and fx,θ(·) is the density of x; both densities

depend on the parameter θ. Since we assumed

a Gaussian model for y|x and x, we have

log fy,θ(y|x) ' −p
2

log τ2 − 1

2τ2
ψTψ,

where ' means equal up to a constant that is

unimportant for the purposes of optimization

and ψ = y −Xβ −Ax and

log fx,θ(x) ' −n
2

log σ2 − 1

2
log det (Σ(θ))

− 1

2σ2
xTΣ(θ)−1x.

(4)

Thus the log-likelihood function, l(x,θ) = log

L(x,θ;y) has the form

l(x,θ) ' −p
2

log τ2 − 1

2τ2
ψTψ

− n

2
log σ2 − 1

2
log det Σ(θ)

− 1

2σ2
xTΣ(θ)−1x.

(5)

Evaluation of the log-likelihood function involves

inverting and computing the log-determinant of

the covariance matrix Σ(θ), both of which re-

quire O(n3) many operations which is not feasi-

ble for large n. Since the optimization needs to

run on both x and θ, it would be a ultra high-

dimensional optimization which would generally

be infeasible to implement. Therefore, running

an optimization procedure over both θ and x

on this objective function straightaway is futile

and we must look into approximation methods

to avoid these computational bottlenecks.

We propose a computationally-efficient inference

approach using approximate inference for fast
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estimation for both parameters θ and the un-

derlying true state variables x along with its

uncertainty. We profile x as a function of the

parameters θ and maximize the corresponding

profile likelihood over θ (Cox and Snell, 1989).

This reduces the dimensionality of the optimiza-

tion problem greatly but it requires an estimate

of x for a given value of θ.

The genHyBR method (Chung et al., 2018) cir-

cumvents the matrix inversion problem as it brings

down the total complexity of computing the quadratic

term to that of a matrix vector multiplication.

Typically this would takeO(n2) operations. How-

ever, computational techniques such as Fast Fourier

Transforms (FFTs) or H-matrices (a review of

techniques can be found in Ambikasaran et al.

(2015)) can reduce the computational cost of

storage and the mathematical operators toO(n logr n),

where r is a non-negative exponent which de-

pends on the operation and the method used. In

particular, we use the symmetric BTTB struc-

ture of Σ(θ). The symmetric BTTB structure

allows us to store Σ(θ) in O(n), since only one

row/column of Σ(θ) needs to be stored, and

compute the matrix vector products involving

Σ(θ) in O(n log n) time. If the underlying pro-

cess realizations are not on a regular grid, then

theH-matrix approach can be used instead with

the same computational cost. However, with the

mapping matrix strategy laid out in Section 2,

we do not require this approach. The symmet-

ric BTTB structure also allows us to compute

the log-determinant of Σ(θ) in O(n log n) time.

This gives us a good estimate for x for a given

value of θ.

3.1 Profile Likelihood

Maximizing the log-likelihood function in Eq.

(5) as a function of both x and θ is not fea-

sible and therefore we use a profile likelihood

based optimization strategy by profiling x as a

function of θ. Profiling out x from Eq. (5) as a

function of θ, in exact arithmetic, results in

x̂(θ) =

(
1

σ2
Σ(θ)−1 +

1

τ2
ATA

)−1
(

1

τ2
AT(y −Xβ)

)
.

(6)

Plugging in x̂(θ) in Eq. (5) and calling ψ̂(θ) =

y−Xβ−Ax̂(θ) produces the exact profile log-

likelihood function

pl(θ) ' −p
2

log τ2 − 1

2τ2
ψ̂(θ)Tψ̂(θ)

− n

2
log σ2 − 1

2
log det Σ(θ)−

1

2σ2
x̂(θ)TΣ(θ)−1x̂(θ).

(7)

Since simply evaluating this function involves

computing inverses and determinants of the dense

covariance matrix, it must be approximated.

Evaluating the exact profile likelihood presents

three computational challenges: (1) computing

x̂(θ) involves inverting large dense n×n matri-

ces, (2) computing the quadratic term x̂(θ)TΣ(θ)−1x̂(θ)

and (3) computing the log-determinant ofΣ(θ).

The first two are overcome using the genHyBR

method (Chung et al., 2018) while the log-determinant

term is approximated using the symmetric BTTB

structure of the resulting covariance matrix from

the choice of appropriate covariance function

previously mentioned in Section 2. Once these

approximations are in place, optimization of an

approximated profile likelihood function can be

performed using typical optimization routines
to get the estimates of θ and x.

3.2 genHyBR Method

A key component in maximizing the profile like-

lihood is to quickly compute x̂(θ) = argmin
x

l(x,θ) for a given θ. The computation of x̂(θ)

in this context is tantamount to computing

x̂(θ) = argmin
x∈Rn

1

τ2
‖ψ‖22 +

1

σ2
‖x‖2Σ(θ)−1 , (8)
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where ‖r‖2M = rTMr and ‖ · ‖2 represents the

Euclidean norm. The genHyBR algorithm (Chung

et al., 2018) solves this weighted least squares

problem iteratively using generalized Golub-Kahan

bidiagonalization which is a special type of Krylov

subspace method (Benbow, 1999; Chung and

Saibaba, 2017). To simplify notation, we drop

the dependence on θ and write Σ = Σ(θ).

We provide an outline of the algorithm here.

Denote Kk(M, r) = span{r,Mr, . . . ,Mk−1r}
as the Krylov subspace of degree k. Observing

that Eq. (8) involves the inverse ofΣ, employing

a change of variables w = Σ−1x and b = y −
Xβ, we then compute x̂(θ) = Σŵ(θ) and

ŵ(θ) = argmin
w∈Rn

1

τ2
‖AΣw − b‖22 +

1

σ2
‖w‖2Σ .

(9)

Then, for our problem of estimating x, the gen-

HyBR method (Chung et al., 2018) looks for the

solution of w in

Sk = Kk
(

1

τ2
ATAΣ,

1

τ2
AT (y −Xβ)

)
.

The genHyBR algorithm creates an n × k ba-

sis Vk = [v1,v2, . . . ,vk] for this subspace, i.e.,

Sk = span {V1, . . . ,Vk} using an efficient Golub-

Kahan bidiagonalization iteration scheme which

has been sketched in Algorithm 1.

From Algorithm 1, we also obtain a (k + 1)× k
bidiagonal matrix

Bk =


α1

β2 α2

. . .
. . .

βk αk

 .
The outputs of the algorithms satisfy the fol-

lowing relationships

AΣVk = Uk+1Bk,

UT
k+1Uk+1 = τ2Ik+1,

VT
kΣVk = Ik.

(10)

Algorithm 1 Generalized Golub-Kahan

(genGK) bidiagonalization

Ensure: Matrices A, Σ, vector b = y − Xβ

and τ2.

1: Compute u1 = b/β1, where β1 = ‖b‖2/τ .

2: Compute v1 = 1
τ2A

Tu1/α1 where α1 =

‖ 1
τ2A

Tu1‖Σ .

3: for i = 1, . . . , k do

4: Compute ui+1 = (AΣvi − αiui) /βi+1

where βi+1 = 1
τ2 ‖AΣvi − αiui‖2.

5: Compute vi+1 =(
ATui+1/τ

2 − βi+1vi
)
/αi+1 where

αi+1 = ‖ATui+1/τ
2 − βi+1vi‖Σ .

6: end for

7: return β1,Uk+1,Vk+1 and Bk.

Since we are looking for a solution of w ∈ Sk,

we can write wk = Vkzk and determine zk by

solving

min
wk∈Sk

1

τ2
‖AΣwk − b‖22 +

1

σ2
‖wk‖2Σ

⇔ min
zk∈Rk

‖Bkzk − β1e1‖22 +
1

σ2
‖zk‖22.

(11)

Therefore, given Bk and Vk and by undoing the

change of variables, we approximate the solution

to Eq. (8) as

x∗k(θ) = ΣVk

(
BT
kBk +

1

σ2
I

)−1
BT
kβ1e1, (12)

where e1 is the first column of the (k+1)×(k+1)

identity matrix; that is, the vector with the first

entry 1 and every other entry equal to 0. In gen-

eral, a stopping criterion must be used to ter-

minate the iterations and to automatically de-

termine the number of iterations k. Details on

one such choice of stopping criterion are given

in Chung et al. (2018). However, we do not use

the said criterion for our method and instead

treat the parameter k as an algorithm param-

eter to be input by the user. The orthogonal

basis vectors uk and vk may not remain nu-

merically orthogonal and therefore may require
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a reorthogonalization scheme. Such a scheme is

described in the Chung et al. (2018) paper and

is available for the user to use in Kryging as

well. However, we do not use it for the results

presented in this paper.

The genHyBR method reduces the computa-

tional complexity of solving for x from O(n3)

to that of matrix vector multiplication, O(n2 +

nk2). When the latent process locations s∗1, . . . , s
∗
n

are arranged on a rectangular grid, Σ is sym-

metric BTTB and thus the matrix-vector multi-

plication can be achieved swiftly, in O(n log n+

nk2) flops, using circulant embedding. Addition-

ally, due to the form of x∗k(θ) in Eq. (12) and

the exact arithmetic relationships presented in

Eq. (10), the quadratic term x̂(θ)TΣ−1x̂(θ) can

now be approximated as ‖z∗k‖22, where z∗k =
(
BT
kBk + 1

σ2 I
)−1

BT
kβ1e1.

This requires only O(k3) operations.

3.3 Log-determinant Approximation

To compute the log determinant of Σ(θ), we

once again use the symmetric BTTB structure

of Σ(θ). Gray (2006) reviews methods for cre-

ating a circulant matrix based on a Toeplitz ma-

trix and using the circulant matrix structure to

approximate the determinant of a Toeplitz ma-

trix using inverse FFTs. Refer to Section 4.1, 4.4

and 5.3 of Gray (2006) for details. This behavior

can be extended to a BTTB structure as well

and a similar asymptotic result also holds for

them (Gyires, 1956; Widom, 1974). The block

circulant matrix C = ((Cjk))(2n1−1)×(2n2−1) can

be created exactly as it is done for circulant em-

bedding based matrix-vector product and there-

fore does not add any extra computation. The

approximation to the log-determinant is of the

form

˜log detΣ(θ) =

n1∑
p=1

n2∑
q=1

log

2n1−1∑
j=1

2n2−1∑
k=1

ω(j−1)(p−1)
n1

ω(k−1)(q−1)
n2

Cjk

)
,

where ωn1 = exp (−2πi/(2n1 − 1)) and ωn2 =

exp (−2πi/(2n2 − 1)).

The approximation stems from the fact that

the result is only exact in an asymptotic sense.

However, numerical evidence suggests that the

approximation to the log determinant and its

derivatives improves as the number of grid points

n increases; a more precise statement of conver-

gence can be found in Theorem 1.1 and Lemma

4.1(b) of Kent and Mardia (1996). We mention

that besides the BCCB approximation, there

are other ways of estimating the log-determinant,

such as stochastic trace estimation (Anitescu

et al., 2012; Ubaru et al., 2017) and using Hier-

archical matrix structure (Ambikasaran et al.,

2015; Minden et al., 2017). In particular, the

advantage of the stochastic trace estimator is

that the information used in estimating the log-

determinant can be reutilized during the com-

putation of the gradient information. These ap-

proaches can be used in place of the proposed

estimator.

3.4 Optimization Details

The approximations described in the previous

sections render the approximate profile log-likelihood

function p̃l(θ) to have the form

p̃l(θ) ' −p
2

log τ2 − 1

2τ2
ψ∗k(θ)Tψ∗k(θ)

− n

2
log σ2 − 1

2
˜log det (Σ(θ))

− 1

2σ2
‖zk‖22,

(13)

where ψ∗k = y−Xβ−Ax∗k(θ), x∗k(θ) and z∗k are

as described in Section 3.2 and ˜log det (Σ(θ))

is as described in Section 3.3. Evaluating this

function is faster and we can put it in an opti-

mization routine to optimize over θ to get the

estimates of θ and x̂(θ).

We use the MATLAB optimization routine fminunc

with log-transformed range and variance param-
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eters to avoid the non-negativity constrains. The

optimization algorithm we use is a trust-region

algorithm, which requires derivative information

such as gradients and Hessians. The true gra-

dient functions involve terms with Σ(θ)−1 and

therefore needs to be approximated. These prob-

lems are averted by using the genHyBR solution

of x∗k(θ) in place of x as the matrix inversion

problem reduces to a matrix vector multiplica-

tion problem. The derivative of the log determi-

nant is also approximated by using the BTTB

structure. The details are given in Appendix A.

To approximate the Hessian, we use a rank-one

estimate of Hessian computed as the outer prod-

uct of the approximate gradient. The rationale

behind this approximation is the fact that, in

expectation, the outer product of the score func-

tion equals the information matrix. Once again,

the details are given in Appendix A.

3.5 Uncertainty Quantification

Besides a point estimate for x, we also want to

quantify the uncertainty associated with the es-

timated x and the predicted y. We employ a

parametric bootstrap for uncertainty quantifi-

cation. Using the estimated θ̂, we generate B

samples of x1, . . . ,xB from a zero-mean Gaus-

sian process. For each xb, we generate yb from

the model in Eq. (1) with τ2 and β replaced by

their estimates. We then estimate ŷb by Kry-

ging, but assuming θ is known.

On the set of prediction locations s∗1, . . . , s
∗
m, we

compute the bootstrap MSE for each location s∗i
as

var (x(s∗i )|θ̂) ≈ 1

B

B∑
b=1

(
xb(s

∗
i |θ̂)− x̂b(s∗i |θ̂)

)2
,

var (y(s∗i )|θ̂) ≈ 1

B

B∑
b=1

(
yb(s

∗
i |θ̂)− ŷb(s∗i |θ̂)

)2
.

(14)

This serves as an estimate of the classical Krig-

ing variance for spatial prediction (Den Hertog

et al., 2006). Since we use a parametric boot-

strap approach, we use B = 20 bootstrap sam-

ples as just this many bootstrap samples pro-

vide satisfactory performance. The entire sce-

nario entails using genHyBR method (Chung

et al., 2018) B times, therefore costs O(n log n+

nk2) flops. This procedure only approximates

the uncertainty of the predictions assuming θ

is known. However, the bootstrap could be ex-

tended to give standard errors for the elements

of θ̂ as well as prediction variances that account

for uncertainty in θ by simply estimating θ for

each bootstrap sample.

3.6 Summary of the Method

We now summarize the overall computational

cost of this procedure. There are three main

steps:

1. Optimizing the profiled likelihood p̃l(θ) to

obtain θ∗

2. Compute x∗k(θ∗) and ŷ = Ax∗k(θ∗).

3. Compute prediction variance using bootstrap

sampling.

The optimization routine involves computing an

approximate profile likelihood function and uses

approximations based on the genGK algorithm

to gradients and Hessian. Using genGK algo-

rithm takes only O(nk log n) steps for comput-

ing x∗k(t) at the t-th iteration of the optimiza-

tion.

Caveat: Kryging depends on circulant embed-

ding operations via the log-determinant approx-

imation and bootstrap based uncertainty quan-

tification. A successful execution requires that a

positive definite embedding be found for the cor-

responding Gaussian process. Without this, the

method may fail to produce a bootstrap sample

from the Gaussian process in question and as
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a result fail to estimate uncertainty. This will

also result in poor approximation of the log-

determinant as many near-zero positive eigen-

values would be computed as near-zero negative

eigenvalues and throw off the overall computa-

tion. This problem is evidently present when the

spatial range parameter is high for the Gaussian

process (See Graham et al., 2018). This prob-

lem with circulant embedding is well known.

The problem of generating samples from a Gaus-

sian process can be ameliorated by using dif-

ferent periodic embedding schemes (See Stein,

2002; Gneiting et al., 2006; Guinness and Fuentes,

2017). Forcefully resetting the small negative

eigenvalues to zero or machine-precision value

is a quick recourse for approximating the log-

determinant. The different embedding schemes

proposed in the literature may also be consid-

ered for this. However, none of these can solve

the computational issue completely.

4 Simulation Studies

In this section, we perform simulation studies

to evaluate the performance of our proposed

method. These studies aim to demonstrate the

effectiveness of the model with varying sample

size as well as under different parametric set-

tings for both gridded and irregularly spaced

data. We perform three different simulation stud-

ies towards this goal. In each of the experiments,

for each case, we repeat the process on 25 repli-

cations. Throughout the studies, the observed

values y are created by adding noise to x, where

x is an observation from a Gaussian process

with constant mean β and exponential covari-

ance function (i.e., Matérn covariance with ν =

0.5) with sill σ2 and spatial range ρ. We take

the variance of the noise process to be τ2.

The first study varies the number of observa-

tions n by generating data on a 100×100, 200×
200, 300 × 300 and 400 × 400 grid in the unit

square. The covariate matrix X is a single col-

umn vector of ones and the choice of θ = (β, σ2, τ2, ρ)T

is taken to be (44.49, 3, 0.5, 0.1). The Kryging

method is fit using the same grid of p = n used

to generate the data and we compare perfor-

mance for k ∈ {20, 50, 100, 200}. About 5% of

the observed data y were held out and were

treated as test data upon which the performance

was evaluated.

The second study demonstrates the performance

of the method under different parametric set-

tings on a grid of 200× 200 points. The spatial

extents were kept same as in the first study. The

four different parametric settings that were used

for this study are as follows:

1. Small spatial range, θ = (44.49, 3, 0.5, 0.05)T.

2. Large spatial range, θ = (44.49, 3, 0.5, 0.2)T.

3. Small partial sill, θ = (44.49, 1.5, 0.5, 0.1)T.

4. Large partial sill, θ = (44.49, 6, 0.5, 0.1)T.

In all of these cases, about 5% of the data from

randomly chosen locations on the grid, were held

out from the observed y and kept as test sample

data on which to evaluate the method.

The third study deals with the issue of irregu-

larly spaced data. We used the first parametric

setting, θ = (44.49, 3, 0.5, 0.1) and the spatial

extent of the data as in the first study.

The number of observed points were 40, 000 of

which 5% were held out as test samples. The

data were generated by drawing x on a 1000 ×
1000 grid and discarding 96% of the data at

random, leaving an irregularly spaced dataset of

40, 000 observations. For testing the scalability

with the grid size n, we used 200×200, 300×300

and 400× 400 grids for s∗i .

The root mean squared error (RMSE) in pre-

dicting y, pointwise coverage (CVG) of 95% pre-

diction intervals for these predictions were av-

eraged over replications and median of compu-

tation time (MedTime) for all the replications

were noted. These were used as performance
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metrics for each of the cases. For a compet-

ing method, we use the SPDE method avail-

able in the R package INLA. The SPDE method

emerged from the comparison of several meth-

ods in Heaton et al. (2019) as one of the leading

methods in terms of both computational speed

and predictive accuracy.

Table 1: Table a) represents RMSECoverage for

predicting y over different grid sizes and dif-

ferent choices of the tuning parameter k and

the SPDE method, averaged over replications.

The last column presents the maximum stan-

dard error for the given grid size across meth-

ods. Table b) shows the median computation

times in minutes over different grid sizes and

different choices of the tuning parameter k and

SPDE method. The figures in the bracket indi-

cate standard errors.

a)
Grid Size SPDE Kryging SE

k=20 k=50 k=100 k=200

100× 100 0.910.95 0.930.92 0.910.91 0.910.91 0.910.91 0.030.03
200× 200 0.830.95 0.860.92 0.840.91 0.830.91 0.830.91 0.010.02
300× 300 0.800.95 0.860.92 0.840.91 0.830.91 0.830.91 0.010.02
400× 400 0.780.95 0.840.91 0.800.89 0.790.88 0.780.88 0.010.02

b)
Grid Size SPDE Kryging

k=20 k=50 k=100 k=200

100× 100 5.42 (0.66) 0.14 (0.00) 1.84 (0.49) 5.14 (0.03) 11.00 (0.15)

200× 200 44.64 (10.57) 5.51 (0.02) 1.66 (0.28) 2.12 (0.09) 48.24 (0.54)

300× 300 170.01 (21.46) 3.39 (0.01) 4.11 (0.03) 5.49 (0.20) 7.81 (0.24)

400× 400 662.95 (108.14) 10.78 (0.03) 12.02 (0.12) 14.28 (0.17) 18.09 (0.22)

Table 1 presents the RMSE and pointwise cov-

erage values, averaged over replications, for the

first simulation study and the median time for

computation over the replicates for different choices

of the tuning parameter k and different grid

sizes. In all cases, k = 50 seems to be sufficient.

The occasional inconsistencies in the computa-

tion times in Table 1 are due to the differences in

the number of iterations taken by the optimiza-

tion procedure to converge. In terms of RMSE

and coverage, both the methods perform simi-

larly but Kryging is considerably faster and is

more scalable. On the other hand, the coverage

for the proposed method is slightly below the

nominal level. This may be due to ignoring un-

certainty in θ when computing the prediction

variances using Eq. 14. A possible fix for this is

mentioned at the end of Section 3.5. However,

the coverage is not so low as to require such a

fix sacrificing its fast runtime advantage.

Table 2: Table a) represents RMSECoverage for

predicting y under different parametric set-

tings for the SPDE and the proposed method

with different choices of the tuning parameter

k, averaged over replications. The last column

presents the maximum standard error for the

given setting across methods. Table b) shows

median computation times in minutes over dif-

ferent choices of the tuning parameter k and

SPDE method for different parametric settings.

The figures in the bracket indicate standard er-

rors.

a)
Setting SPDE Kryging SE

k=20 k=50 k=100 k=200

Setting 1 0.910.95 0.980.89 0.920.88 0.910.88 0.910.88 0.010.01
Setting 2 0.780.95 0.800.91 0.800.89 0.790.89 0.790.89 0.010.03
Setting 3 0.800.95 0.800.86 0.790.83 0.790.83 0.790.83 0.080.03
Setting 4 0.900.95 0.980.96 0.920.96 0.910.96 0.900.96 0.020.01

b)
Setting SPDE Kryging

k=20 k=50 k=100 k=200

Setting 1 17.69 (2.63) 0.90 (0.00) 1.40 (0.08) 2.15 (0.10) 48.25 (0.47)

Setting 2 19.03 (1.06) 5.56 (0.05) 1.60 (0.25) 2.12 (0.07) 48.74 (0.88)

Setting 3 18.26 (3.10) 5.47 (0.41) 1.37 (0.08) 2.17 (0.08) 48.53 (0.27)

Setting 4 18.49 (2.19) 5.57 (0.04) 2.37 (1.02) 2.16 (0.08) 48.62 (0.52)

The results for the 200×200 grids with different

true spatial covariance parameters are given in

Table 2. For Settings 2 and 3, k = 25 works

well. This is not surprising for Setting 2 be-

cause the process with large range is smooth

as easier to represent with a small number of

terms. Solid performance for small k in Set-

ting 3 with lower partial sill is also expected

because genHyBR (Chung et al., 2018) makes

use of the partial sill to nugget ratio being mod-

erate. As in the first simulation, going beyond

k = 50 seems unnecessary and the prediction

RMSE performance is comparable to that of



12 Majumder et al.

the SPDE method, but with substantially faster

computation. Since INLA is implemented in R

and Kryging is implemented in Matlab, the dif-

ference in platform makes the computing time

comparisons difficult to interpret. However, the

gain in computation time for Kryging is likely

not the result of change in platform solely be-

cause INLA is highly optimized code (Martino

and Rue, 2009).

Table 3: Table a) represents RMSECoverage for

predicting y for the SPDE and Kryging with dif-

ferent choices of the tuning parameter k and dif-

ferent underlying gridsizes, averaged over repli-

cations for irregularly spaced datasets. The last

column presents the maximum standard error

for the given setting across methods. Table b)

shows median computation times in minutes

over different grid sizes and different choices of

the tuning parameter k and SPDE method. The

figures in the bracket indicate standard errors.

a)
Gridsize SPDE Kryging SE

k=20 k=50 k=100

200× 200 0.820.95 0.850.90 0.830.88 0.830.87 0.020.02
300× 300 0.820.95 0.850.90 0.830.89 0.830.88 0.020.02
400× 400 0.820.95 0.850.91 0.830.89 0.820.89 0.020.02

b)
Gridsize SPDE Kryging

k=20 k=50 k=100

200× 200 33.55 (3.58) 8.08 (0.02) 3.33 (0.31) 3.93 (0.15)

300× 300 33.55 (3.58) 4.86 (0.02) 5.58 (0.03) 6.85 (0.05)
400× 400 33.55 (3.58) 8.58 (0.10) 9.96 (0.11) 12.40 (0.09)

The results for irregularly-spaced data are shown

in Table 3. The performance is similar to the

SPDE method for the proposed method with

slight undercoverage. In essence, the performance

is quite similar to the regularly gridded data sce-

nario in the first simulation study.

We also check the performance of the proposed

method in estimating the true mean and spatial

covariance parameters against those obtained

from SPDE. Across all settings and irrespective

of whether the data was on a regular grid or

not, the results are consistent. While SPDE does

a better job at estimating the nugget parame-

ter, Kryging does a better job at estimating the

partial sill. For estimating range and the mean

parameters, both the method perform similarly.

Detailed comparisons are presented in tables in

Appendix B.

5 Application to MODIS/Terra Land

Surface Temperature Data

In this section, we analyze a real dataset us-

ing the proposed method. We use the dataset

used by Heaton et al. (2019) for a comparison

of methods for analyzing massive spatial data.

The dataset consists of Level-3 data on land sur-

face temperatures as measured by the Terra in-

strument onboard the MODIS satellite on Au-

gust 4, 2016. The original data was available in

MODIS reprojection tool web (MRTweb) which

has since been decomissioned. The entire dataset

is available in the GitHub repository for the

Heaton et al. (2019) project at this GitHub repos-

itory. The main reason for using this dataset is

so that we can compare to other existing meth-

ods easily as this dataset was previously ana-

lyzed by twelve other existing methods in Heaton

et al. (2019).

The observations were laid out on a regular grid

of size 500×300 within longitude values−95.91153

to −91.28381 and latitude values 34.29519 to

37.06811. About 1.1% of the data, 1, 691 grid

cells out of 150, 000 cells, were corrupted due to

cloud cover. A further 42, 740 observations were

held out from the training set, keeping about

70% of the data in the training set and about

30% in the test set. The training and testing

datasets along the locations are available in the

previously mentioned GitHub repository. Fig-

ure 1 shows the true data (top) and training

data (second top) created after removing some

observations.

https://github.com/finnlindgren/heatoncomparison
https://github.com/finnlindgren/heatoncomparison
https://github.com/finnlindgren/heatoncomparison
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Fig. 1: True satellite image (top), the image used

for training after holding out data for test sam-

ple (second top), the image obtained from the

estimated values (second bottom) and the pre-

diction standard errors (bottom) for k = 200.

Table 4: Performance of the proposed method

on the MODIS dataset for various choices of k.

k MAE RMSE CRPS INT CVG Run time (min.) Cores used

50 1.43 1.95 1.07 10.97 0.93 11.18 4

100 1.43 1.85 1.04 9.74 0.93 15.10 4

200 1.36 1.78 0.99 9.60 0.93 19.59 4

300 1.36 1.79 0.99 9.68 0.93 27.01 4

Table 5: Results from the case study competi-

tion for the satellite data as in Table 3 of Heaton

et al. (2019).

Method MAE RMSE CRPS INT CVG Run time(min) Cores used

FRK 1.96 2.44 1.44 14.08 0.70 2.32 1
Gapfill 1.33 1.86 1.17 34.78 0.36 1.39 40

LatticeKrig 1.22 1.68 0.87 7.55 0.96 27.92 1

LAGP 1.65 2.08 1.17 10.81 0.83 2.27 40
Metakriging 2.08 2.50 1.44 10.77 0.89 2888.52 30

MRA 1.33 1.85 0.94 8.00 0.92 15.61 1

NNGP 1.21 1.64 0.85 7.57 0.95 2.06 10
Partition 1.41 1.80 1.02 10.49 0.86 79.98 55

Pred. Proc. 2.15 2.64 1.55 15.51 0.83 160.24 10
SPDE 1.10 1.53 0.83 8.85 0.97 120.33 2

Tapering 1.87 2.45 1.32 10.31 0.93 133.26 1
Periodic Embedding 1.29 1.79 0.91 7.44 0.93 9.81 1

We ran the Kryging algorithm with k = 50,

100, 200 and 300. For each value of k, we use

different initial values and pick the best one us-

ing five-fold cross-validation within the train-

ing dataset. The mean absolute error (MAE),

root mean squared error (RMSE), continuously

ranked probability score (CRPS), interval score

(INT) and pointwise coverage (CVG) for the

predictions of the test set datapoints were com-

puted for each case and the computation times

were noted and are tabulated in Table 4. Figure

1 shows the estimates (bottom left) and corre-

sponding standard errors (bottom right) for the

data. The estimated image picks up all the spa-

tial features in the true data, indicating a good

fit. Since the same dataset was also analyzed by

twelve other existing methods, the above men-

tioned metrics for which are available in the

Heaton et al. (2019) paper. The relevant results,

as presented in the original paper, are presented

in Table 5. This allows us a chance to compare

the performance of our method to other exist-

ing methods, although the computing platforms

were not the same for the two cases.
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In terms of RMSE and coverage, SPDE (Lind-

gren et al., 2011), Nearest Neighbor Gaussian

Process or NNGP (Datta et al., 2016a,b,c) and

LatticeKrig (Nychka et al., 2015) perform better

than the proposed method. The time taken by

the method is significantly less than the SPDE

method and comparable to LatticeKrig. Although

it should be mentioned that the they were run

in different platforms with similar hardware set-

up, so the comparison should not be considered

a direct one. The time presented for the NNGP

method in Heaton et al. (2019) considers only

the time taken for the conjugate model where

a well defined grid of possible parameter val-

ues were supplied to the model to use cross-

validation in parallel. This range of parameter

values need to be determined first and is the

more difficult and time consuming part of any

existing approximate inference method and nei-

ther the strategy nor the time taken to arrive

at those numbers were reported in Heaton et al.

(2019).

6 Conclusion

In this article, we propose an approximate infer-

ence method for analyzing massive spatial datasets

using Krylov subspace approximation and pro-

file maximum likelihood methods. The method

assumes that the underlying process realizations

are on a regular equispaced grid, but the obser-

vations need not be colocated on the grid. While

we exclusively model the spatial process covari-

ance using the Matérn covariance family, the

method works for any choice of stationary co-

variance function. We also propose an approach

to approximate log-determinants for symmetric

BTTB matrices which has guaranteed asymp-

totic convergence to the true log-determinant

value. The method has computational complex-

ity of O(n log n), resulting in fast run times and

excellent scalability with the sample size while

producing decent estimates and requires little

tuning. The method is expected to run espe-

cially well when the spatial range is small to

moderate and partial sill to nugget ratio is mod-

erate. This is seen in the applications involving

both synthetic and real datasets.

Although uncertainties for the mean and spatial

parameter estimates are not provided directly,

they can be obtained using the following ap-

proaches. A reasonable approach would be to

compute the exact Hessian and its inverse for

the optimization process of Eq. (13). However,

that is time consuming as it has O(n3) com-

plexity involved with the computation. A suit-

able approximation to the inverse of the Hes-

sian will be needed to efficiently estimate the

uncertainties associated with these parameters.

A computationally-expensive alternative is to

estimate the parameters using the parametric

bootstrap, as outlined in Section 3.5.

The method is proposed as a d-dimensional method.

However, for irregular datasets on dimensions

higher than 3, the grid formation is slow and

difficult. But for the purposes of geostatistical

analyses, we need only concern ourselves with

problems in R2 or R2 × R where grids are sim-

ple and easy to deal with. Should the case arise

where one has to deal with higher dimensional

geospatial analysis, one needs to look for a suit-

able alternative to the grid structure which can

be a future avenue for research. Moreover, Kry-

ging is most attractive when the observations

are approximately on a grid or uniformly dis-

tributed and adaptations for extremely irregu-

lar cases such as data observed along transects

or in separated clusters is another area of future

work.

The proposed model can be utilized in many

other scenarios than simply what has been illus-

trated in this article. The computational ameni-

ties of the method can be utilized for spatiotem-

poral modeling. Changing the observational model

to include two or more sources of data can be

contemplated as well. Quantifying uncertainties

for the mean and the spatial parameters can be



Kryging 15

one possible extension. Extending the method

to non-Gaussian observational models, for ex-

ample, binary or count data, would be another

possibility.
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APPENDIX

A Gradient and Hessian Computation

for the Optimization Procedure

In this section, we present the necessary details of
computing and approximating the gradient and Hes-
sian for the optimization routine.

We first, derive exact expressions for the gradient
and then show how to approximate them using the
strategy in Sections 3.2 and 3.1. Computing the ana-
lytical gradient would require computing derivatives
of Γ =

(
1
σ2Σ(θ)−1 + 1

τ2 A
TA
)−1

and x̂(θ) with re-

spect to each of µ, σ2, τ2 and ρ. For convenience,
we reparametrize 1/σ2 = λ2 and 1/τ2 = λ2

e. Using
the precision instead of variance brings about greater
ease in computing the analytical derivatives. Under
the new parametrization,

Γ =
(
λ2
eA

TA + λ2Σ−1
)−1

, (15)

x̂(θ) = Γλ2
eA

T(y −Xβ), (16)

and

pl(θ) '
p

2
log λ2

e −
λ2
e

2
ψ̂(θ)Tψ̂(θ)

+
n

2
log λ2 −

1

2
log det Σ(θ)−

λ2

2
x̂(θ)TΣ(θ)−1x̂(θ),

(17)

https://doi-org.prox.lib.ncsu.edu/10.1137/1.9780898718003
https://doi-org.prox.lib.ncsu.edu/10.1137/1.9780898718003
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where ψ̂(θ) = y −Xβ −Ax̂(θ).

The derivatives for Γ are computed to be

∂Γ

∂β
= 0,

∂Γ

∂λ2
= −ΓΣ(ρ)−1Γ ,

∂Γ

∂ρ
= λ2ΓΣ(ρ)−1 (dΣ(ρ))Σ(ρ)−1Γ ,

∂Γ

∂λ2
e

= −ΓATAΓ ,

(18)

where dΣ(ρ) denotes the derivative of Σ(ρ) with re-
spect to ρ. This is easy to compute analytically and
has the nice BTTB property that Σ(ρ) has.

Using the expressions in (18), we compute the deriva-
tives of x̂(θ) to be

∂x̂(θ)

∂β
= −λ2

eΓATX,

∂x̂(θ)

∂λ2
= −ΓΣ(ρ)−1x̂(θ),

∂x̂(θ)

∂ρ
= λ2ΓΣ(ρ)−1 (dΣ(ρ))Σ(ρ)−1x̂(θ),

∂x̂(θ)

∂λ2
e

= ΓATψ̂(θ).

(19)

Substituting the expressions for analytical derivatives
of Γ and x̂(θ) in the expression for the analytical gra-
dient, we have it computed to be

∂pl

∂β
= λ2

eX
Tψ̂(θ),

∂pl

∂λ2
=

n

2λ2
−

1

2
x̂(θ)TΣ(ρ)−1x̂(θ)

∂pl

∂ρ
= −

1

2
dL +

1

2
λ2x̂(θ)TΣ(ρ)−1 (dΣ(ρ))Σ(ρ)−1x̂(θ),

∂pl

∂λ2
e

=
p

2λ2
e

−
1

2
ψ̂(θ)Tψ̂(θ),

(20)

where dL is the derivative of log det Σ(ρ) with re-
spect to ρ.

We approximate the gradient expressions in (20) by
approximating x̂(θ) by x∗

k(θ) as in (12) and using
the exact arithmetic identities expressed in (10). The

approximated gradients can be computed as

∂pl

∂β
≈ λ2

eX
Tψ∗

k(θ),

∂pl

∂λ2
≈

n

2λ2
−

1

2
‖zk‖22,

∂pl

∂ρ
≈ −

1

2
d̂L +

λ2

2
zTkV

T
k (dΣ(ρ))Vkzk,

∂pl

∂λ2
e

≈
p

2λ2
e

−
1

2
ψ∗
k(θ)Tψ∗

k(θ),

(21)

where ψ∗
k(θ) = y −Xβ −Ax∗

k(θ) and Vk, zk have
been defined in Section 3.2.

d̂L is an approximation to dL, the derivative of the
log-determinant of Σ(ρ) with respect to ρ. The ana-
lytical expression for dL turns out to be

dL = trace
(
Σ(ρ)−1dΣ(ρ).

)
This is infeasible to compute directly and is therefore
approximated using the BTTB structure of Σ(ρ) and
dΣ(ρ).

Any symmetric matrix with BTTB structure can be
extended to have a BCCB structure as was done in
computing the log-determinant itself and one can ex-
tract the eigenvalues of the matrix with BTTB struc-
ture using the matrix with BCCB structure. Any
BCCB matrix is diagonalizable as FDFT, where F
is a scaled matrix consisting of d-dimensional (d=2,
in our case) Fourier coefficients, irrespective of the
BCCB matrix being diagonalized. Therefore, we can
say

Σ(ρ) = FD1F
T,

Σ(ρ)−1 = FD−1
1 FT,

dΣ(ρ) = FD2F
T.

(22)

These imply that

trace
(
Σ(ρ)−1dΣ(ρ)

)
= trace

(
FD−1

1 FTFD2F
T
)

= trace
(
D−1

1 D2

)
.

(23)

Since both D1 and D2 are diagonal, approximat-
ing dL boils down to computing D1 and D2 which
can be computed by d-dimensional FFT of the cor-
responding first circulant block structures of the ex-
tended BCCB structure and subsetting it properly.
The equivalence in computing the derivative of log-
determinant of the BTTB and matrix and its corre-
sponding BCCB matrix has been demonstrated by
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Kent and Mardia (1996), showing the approximation
to have the same error rate as in approximating the
log-determinant itself. Approximating the derivative
of the log-determinant term also costs the same as
approximating the log-determinant itself, O(n logn).

While minimizing the negative log-likelihood func-
tion, the Hessian turns out to be simply the Infor-
mation matrix I(θ). While

E (−∇2pl(θ)) = I(θ),

we also have

E
(
∇pl(θ)∇pl(θ)T

)
= E

[
(−∇pl(θ)) (−∇pl(θ))T

]
.

Here the expectations are computed with respect to
y and ∇, ∇2 represent the gradient and Hessian
created by computing first and second order partial
derivatives with respect to θ. Therefore, the outer
product of the gradient with itself serves as a rank-
one estimate for the Hessian for a likelihood opti-
mization problem. Although we are using profile like-
lihood instead of the actual likelihood function, the
approximation still stands in an asymptotic sense
since both the actual likelihood estimator and the
profile likelihood estimators have the same asymp-
totic properties. This prompts us to take the outer
product of the approximated gradient with itself as
a rank-one approximation to the Hessian.

However, we compute the unique entries of the exact
Hessian to be

∂2pl

∂β∂βT
= −λ2

eX
TX + λ4

eX
TAΓATX

∂2pl

∂β∂λ2
= λ2

eX
TAΓΣ(ρ)−1x̂(θ)

∂2pl

∂β∂ρ
= −λ2

eλ
2XTAΓΣ(ρ)−1 (dΣ(ρ))Σ(ρ)−1x̂(θ)

∂2pl

∂β∂λ2
e

= XTψ̂(θ)− λ2
eX

TAΓATψ̂(θ)

∂2pl

∂λ4
= −

n

2λ4
+ x̂(θ)TΣ(ρ)−1ΓΣ(ρ)−1x̂(θ)

∂2pl

∂λ2∂ρ
=

1

2
x̂(θ)TΣ(ρ)−1 (dΣ(ρ))Σ(ρ)−1x̂(θ)

− λ2x̂(θ)TΣ(ρ)−1 (dΣ(ρ))Σ(ρ)−1ΓΣ(ρ)−1x̂(θ)

∂2pl

∂λ2∂λ2
e

= −x̂(θ)TΣ(ρ)−1ΓATψ̂(θ)

∂2pl

∂ρ2
= −

1

2
d2L +

λ2

2
x̂(θ)Σ(ρ)−1

(
d2Σ(ρ)

)
Σ(ρ)−1x̂(θ)

− λ2x̂(θ)TΣ(ρ)−1 (dΣ(ρ))
[
Σ(ρ)−1

−Σ(ρ)−1ΓΣ(ρ)−1
]

(dΣ(ρ))Σ(ρ)−1x̂(θ)

∂2pl

∂ρ∂λ2
e

= λ2x̂(θ)TΣ(ρ)−1 (dΣ(ρ))Σ(ρ)−1ΓATψ̂(θ)

∂2pl

∂λ4
e

= −
p

λ4
e

+ ψ̂(θ)TAΓATψ̂(θ),

(24)

where d2L represents the second derivative of log det Σ(ρ)
with respect to ρ and d2Σ(ρ) is the second derivative
of Σ(ρ) with respect to ρ. d2Σ(ρ) also has a BTTB
structure as Σ(ρ) and dΣ(ρ).

These entries are then approximated using the ap-
proximation to Γ as presented in Chung et al. (2018),
namely

Γ ≈ λ−2
(
Σ(ρ)− Zk∆kZ

T
k

)
, (25)

where Zk = Σ(ρ)VkWk with BT
kBk = WkΘkWk

and ∆k =
(
I + λ−2Θk

)−1
.
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We define z0 = y − Xβ − Ax∗
k(θ) = ψ∗

k(θ). The
approximated entries of the Hessian are

∂2pl

∂β∂βT
≈ −λ2

eX
TX +

λ4
e

λ2
XTAΣ(ρ)ATX

−
λ4
e

λ2
XTUkBkWk∆kW

T
kB

T
kU

T
kX

∂2pl

∂β∂λ2
≈
λ2
e

λ2
XTAx̂∗(θ)−

λ2
e

λ2
XTUkBkWk∆kW

T
kzk

∂2pl

∂β∂ρ
≈ −λ2

eX
TA (dΣ(ρ))Vkzk

+ λ2
eX

TUkBkWk∆kW
T
kV

T
k (dΣ(ρ))Vkzk

∂2pl

∂β∂λ2
e

≈ −XTz0 −
λ2
e

λ2
XTAΣ(ρ)ATz0

+
λ2
e

λ2
XTUkBkWk∆kW

T
kB

T
kU

T
kz0

∂2pl

∂λ4
≈ −

n

2λ4
+

1

λ2
‖zk‖22 −

1

λ2
zTkWk∆kW

T
kzk

∂2pl

∂λ2∂ρ
≈ −

1

2
zTkV

T
k (dΣ(ρ))Vkzk

+ zTkV
T
k (dΣ(ρ))VkWk∆kW

T
kzk

∂2pl

∂λ2∂λ2
e

≈ −
1

λ2
zTkB

T
kU

T
kz0 +

1

λ2
zTkW

T
k∆kW

T
kB

T
kU

T
kz0

∂2pl

∂ρ2
≈ −

1

2
d̂2L +

λ2

2
zTkV

T
k

(
d2Σ(ρ)

)
Vkzk

− λ2zTkV
T
k (dΣ(ρ))VkWk∆kW

T
kV

T
k (dΣ(ρ))Vkzk

∂2pl

∂ρ∂λ2
e

≈ zTkV
T
k (dΣ(ρ))ATz0

− zTkV
T
k (dΣ(ρ))VkWk∆kW

T
kB

T
kU

T
kz0

∂2pl

∂λ4
e

≈ −
p

2λ4
e

+
1

λ2
zT0AΣ(ρ)ATz0

−
1

λ2
zT0UkBkWk∆kW

T
kB

T
kU

T
kz0,

(26)

where d̂2L is a numerical approximation to d2L. We
do not use this approximation for our computing, but
hope to use it in future.

B Additional Tables from the Simulation

Study

In this section, we provide additional results for the
simulation study. Table 6 evaluates parameter esti-
mations for the first simulation study for both SPDE
and Kryging methods. The same is done in Tables

7 and 8 for the second and third simulation studies.
The results across the board are similar as mentioned
in Section 4. SPDE performs better in estimating the
nugget parameter τ2, while Kryging performs bet-
ter in estimating the partial sill parameter σ2. Both
methods do equally well in estimating the mean pa-
rameter β and the spatial range parameter ρ.

Table 6: RMSE in estimating the parameters

for SPDE and Kryging for different gridsizes

and choices of k as in the first simulation

study. The true values for the parameters were

(44.49, 3, 0.5, 1). The figures in brackets indicate

standard error.

Parameter Grid Size SPDE Kryging

k=20 k=50 k=100 k=200

β 100× 100 0.30 (0.30) 0.31 (0.32) 0.30 (0.32) 0.31 (0.32) 0.31 (0.32)

200× 200 0.23 (0.22) 0.28 (0.23) 0.28 (0.23) 0.28 (0.23) 0.28 (0.23)

300× 300 0.32 (0.24) 0.32 (0.25) 0.32 (0.25) 0.32 (0.25) 0.32 (0.25)

400× 400 0.26 (0.26) 0.29 (0.26) 0.29 (0.26) 0.29 (0.26) 0.29 (0.26)

σ2 100× 100 1.43 (0.11) 0.36 (0.34) 0.36 (0.34) 0.36 (0.34) 0.36 (0.34)

200× 200 1.59 (0.07) 0.31 (0.24) 0.31 (0.24) 0.31 (0.24) 0.31 (0.24)

300× 300 1.70 (0.07) 0.33 (0.26) 0.33 (0.26) 0.33 (0.26) 0.33 (0.26)

400× 400 1.81 (0.06) 0.30 (0.17) 0.30 (0.17) 0.30 (0.17) 0.30 (0.17)

τ2 100× 100 0.10 (0.01) 0.17 (0.05) 0.17 (0.05) 0.17 (0.05) 0.17 (0.05)

200× 200 0.06 (0.01) 0.16 (0.04) 0.16 (0.04) 0.16 (0.04) 0.16 (0.04)

300× 300 0.05 (0.00) 0.16 (0.05) 0.16 (0.05) 0.16 (0.05) 0.16 (0.05)

400× 400 0.04 (0.00) 0.19 (0.03) 0.19 (0.03) 0.19 (0.03) 0.19 (0.03)

ρ 100× 100 0.06 (0.02) 0.03 (0.00) 0.03 (0.00) 0.02 (0.00) 0.02 (0.00)

200× 200 0.01 (0.01) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)

300× 300 0.01 (0.01) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)

400× 400 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)
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Table 7: RMSE in estimating the parameters

for SPDE and Kryging under different para-

metric settings and different choices of k as in

the second simulation study. The true values

for the parameters were (44.49, 3, 0.5, 0.05),

(44.49, 3, 0.5, 0.2), (44.49, 1.5, 0.5, 0.1) and

(44.49, 6, 0.5, 0.1) for settings 1 through 4

respectively. The figures in brackets indicate

standard error.

Parameter Setting SPDE Kryging

k=20 k=50 k=100 k=200

β Setting 1 0.16 (0.15) 0.16 (0.14) 0.16 (0.14) 0.16 (0.14) 0.16 (0.14)

Setting 2 0.42 (0.37) 0.46 (0.39) 0.46 (0.39) 0.46 (0.39) 0.46 (0.39)

Setting 3 0.18 (0.10) 0.22 (0.10) 0.22 (0.10) 0.22 (0.10) 0.22 (0.10)

Setting 4 0.42 (0.27) 0.43 (0.28) 0.43 (0.28) 0.43 (0.28) 0.43 (0.28)

σ2 Setting 1 1.43 (0.05) 0.16 (0.17) 0.16 (0.17) 0.16 (0.17) 0.16 (0.17)

Setting 2 1.79 (0.11) 0.59 (0.32) 0.59 (0.32) 0.59 (0.32) 0.59 (0.32)

Setting 3 0.47 (0.06) 0.23 (0.21) 0.23 (0.21) 0.23 (0.21) 0.23 (0.21)

Setting 4 4.07 (0.06) 0.70 (0.44) 0.70 (0.44) 0.70 (0.44) 0.70 (0.44)

τ2 Setting 1 0.10 (0.01) 0.16 (0.02) 0.16 (0.02) 0.16 (0.02) 0.16 (0.02)

Setting 2 0.04 (0.01) 0.21 (0.06) 0.21 (0.06) 0.21 (0.06) 0.21 (0.06)

Setting 3 0.07 (0.15) 0.30 (0.03) 0.30 (0.03) 0.30 (0.03) 0.30 (0.03)

Setting 4 0.12 (0.01) 0.10 (0.06) 0.10 (0.06) 0.10 (0.06) 0.10 (0.06)

ρ Setting 1 0.03 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00)

Setting 2 0.05 (0.02) 0.13 (0.00) 0.13 (0.00) 0.13 (0.00) 0.13 (0.00)

Setting 3 0.03 (0.02) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)

Setting 4 0.01 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)

Table 8: RMSE in estimating the parameters for

SPDE and Kryging for different choices of un-

derlying gridsize and k for the simulation study

with irregularly spaced data. The true parame-

ter values were (44.49, 3, 0.5, 0.1). The figures in

brackets indicate standard error.

Parameter Gridsize SPDE Kryging

k=20 k=50 k=100

β 200× 200 0.24 (0.18) 0.29 (0.16) 0.29 (0.16) 0.29 (0.16)

300× 300 0.24 (0.18) 0.29 (0.16) 0.29 (0.16) 0.29 (0.16)

400× 400 0.24 (0.18) 0.29 (0.16) 0.29 (0.16) 0.29 (0.16)

σ2 200× 200 1.61 (0.07) 0.26 (0.21) 0.26 (0.21) 0.26 (0.21)

300× 300 1.61 (0.07) 0.26 (0.21) 0.26 (0.21) 0.26 (0.21)

400× 400 1.61 (0.07) 0.26 (0.21) 0.26 (0.21) 0.26 (0.21)

τ2 200× 200 0.06 (0.01) 0.17 (0.04) 0.17 (0.04) 0.17 (0.04)

300× 300 0.06 (0.01) 0.17 (0.04) 0.17 (0.04) 0.17 (0.04)

400× 400 0.06 (0.01) 0.17 (0.04) 0.17 (0.04) 0.17 (0.04)

ρ 200× 200 0.01 (0.01) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)

300× 300 0.01 (0.01) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)

400× 400 0.01 (0.01) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)
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