3,001 research outputs found

    Flexible provisioning of Web service workflows

    No full text
    Web services promise to revolutionise the way computational resources and business processes are offered and invoked in open, distributed systems, such as the Internet. These services are described using machine-readable meta-data, which enables consumer applications to automatically discover and provision suitable services for their workflows at run-time. However, current approaches have typically assumed service descriptions are accurate and deterministic, and so have neglected to account for the fact that services in these open systems are inherently unreliable and uncertain. Specifically, network failures, software bugs and competition for services may regularly lead to execution delays or even service failures. To address this problem, the process of provisioning services needs to be performed in a more flexible manner than has so far been considered, in order to proactively deal with failures and to recover workflows that have partially failed. To this end, we devise and present a heuristic strategy that varies the provisioning of services according to their predicted performance. Using simulation, we then benchmark our algorithm and show that it leads to a 700% improvement in average utility, while successfully completing up to eight times as many workflows as approaches that do not consider service failures

    Cognitively-inspired Agent-based Service Composition for Mobile & Pervasive Computing

    Full text link
    Automatic service composition in mobile and pervasive computing faces many challenges due to the complex and highly dynamic nature of the environment. Common approaches consider service composition as a decision problem whose solution is usually addressed from optimization perspectives which are not feasible in practice due to the intractability of the problem, limited computational resources of smart devices, service host's mobility, and time constraints to tailor composition plans. Thus, our main contribution is the development of a cognitively-inspired agent-based service composition model focused on bounded rationality rather than optimality, which allows the system to compensate for limited resources by selectively filtering out continuous streams of data. Our approach exhibits features such as distributedness, modularity, emergent global functionality, and robustness, which endow it with capabilities to perform decentralized service composition by orchestrating manifold service providers and conflicting goals from multiple users. The evaluation of our approach shows promising results when compared against state-of-the-art service composition models.Comment: This paper will appear on AIMS'19 (International Conference on Artificial Intelligence and Mobile Services) on June 2

    Grid service discovery with rough sets

    Get PDF
    Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.The computational grid is evolving as a service-oriented computing infrastructure that facilitates resource sharing and large-scale problem solving over the Internet. Service discovery becomes an issue of vital importance in utilising grid facilities. This paper presents ROSSE, a Rough sets based search engine for grid service discovery. Building on Rough sets theory, ROSSE is novel in its capability to deal with uncertainty of properties when matching services. In this way, ROSSE can discover the services that are most relevant to a service query from a functional point of view. Since functionally matched services may have distinct non-functional properties related to Quality of Service (QoS), ROSSE introduces a QoS model to further filter matched services with their QoS values to maximise user satisfaction in service discovery. ROSSE is evaluated in terms of its accuracy and efficiency in discovery of computing services

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Optimal QoS aware multiple paths web service composition using heuristic algorithms and data mining techniques

    Get PDF
    The goal of QoS-aware service composition is to generate optimal composite services that satisfy the QoS requirements defined by clients. However, when compositions contain more than one execution path (i.e., multiple path's compositions), it is difficult to generate a composite service that simultaneously optimizes all the execution paths involved in the composite service at the same time while meeting the QoS requirements. This issue brings us to the challenge of solving the QoS-aware service composition problem, so called an optimization problem. A further research challenge is the determination of the QoS characteristics that can be considered as selection criteria. In this thesis, a smart QoS-aware service composition approach is proposed. The aim is to solve the above-mentioned problems via an optimization mechanism based upon the combination between runtime path prediction method and heuristic algorithms. This mechanism is performed in two steps. First, the runtime path prediction method predicts, at runtime, and just before the actual composition, execution, the execution path that will potentially be executed. Second, both the constructive procedure (CP) and the complementary procedure (CCP) heuristic algorithms computed the optimization considering only the execution path that has been predicted by the runtime path prediction method for criteria selection, eight QoS characteristics are suggested after investigating related works on the area of web service and web service composition. Furthermore, prioritizing the selected QoS criteria is suggested in order to assist clients when choosing the right criteria. Experiments via WEKA tool and simulation prototype were conducted to evaluate the methods used. For the runtime path prediction method, the results showed that the path prediction method achieved promising prediction accuracy, and the number of paths involved in the prediction did not affect the accuracy. For the optimization mechanism, the evaluation was conducted by comparing the mechanism with relevant optimization techniques. The simulation results showed that the proposed optimization mechanism outperforms the relevant optimization techniques by (1) generating the highest overall QoS ratio solutions, (2) consuming the smallest computation time, and (3) producing the lowest percentage of constraints violated number
    corecore