52 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationVirtual environments provide a consistent and relatively inexpensive method of training individuals. They often include haptic feedback in the form of forces applied to a manipulandum or thimble to provide a more immersive and educational experience. However, the limited haptic feedback provided in these systems tends to be restrictive and frustrating to use. Providing tactile feedback in addition to this kinesthetic feedback can enhance the user's ability to manipulate and interact with virtual objects while providing a greater level of immersion. This dissertation advances the state-of-the-art by providing a better understanding of tactile feedback and advancing combined tactilekinesthetic systems. The tactile feedback described within this dissertation is provided by a finger-mounted device called the contact location display (CLD). Rather than displaying the entire contact surface, the device displays (feeds back) information only about the center of contact between the user's finger and a virtual surface. In prior work, the CLD used specialized two-dimensional environments to provide smooth tactile feedback. Using polygonal environments would greatly enhance the device's usefulness. However, the surface discontinuities created by the facets on these models are rendered through the CLD, regardless of traditional force shading algorithms. To address this issue, a haptic shading algorithm was developed to provide smooth tactile and kinesthetic interaction with general polygonal models. Two experiments were used to evaluate the shading algorithm. iv To better understand the design requirements of tactile devices, three separate experiments were run to evaluate the perception thresholds for cue localization, backlash, and system delay. These experiments establish quantitative design criteria for tactile devices. These results can serve as the maximum (i.e., most demanding) device specifications for tactile-kinesthetic haptic systems where the user experiences tactile feedback as a function of his/her limb motions. Lastly, a revision of the CLD was constructed and evaluated. By taking the newly evaluated design criteria into account, the CLD device became smaller and lighter weight, while providing a full two degree-of-freedom workspace that covers the bottom hemisphere of the finger. Two simple manipulation experiments were used to evaluate the new CLD device

    Mechanical design optimization for multi-finger haptic devices applied to virtual grasping manipulation

    Get PDF
    This paper describes the design of a modular multi-finger haptic device for virtual object manipulation. Mechanical structures are based on one module per finger and can be scaled up to three fingers. Mechanical configurations for two and three fingers are based on the use of one and two redundant axes, respectively. As demonstrated, redundant axes significantly increase workspace and prevent link collisions, which is their main asset with respect to other multi-finger haptic devices. The location of redundant axes and link dimensions have been optimized in order to guarantee a proper workspace, manipulability, force capability, and inertia for the device. The mechanical haptic device design and a thimble adaptable to different finger sizes have also been developed for virtual object manipulation

    Dexterous Grasping Tasks Generated With an Add-on End Effector of a Haptic Feedback System

    Get PDF
    The simulation of grasping operations in virtual reality (VR) is required for many applications, especially in the domain of industrial product design, but it is very difficult to achieve without any haptic feedback. Force feedback on the fingers can be provided by a hand exoskeleton, but such a device is very complex, invasive, and costly. In this paper, we present a new device, called HaptiHand, which provides position and force input as well as haptic output for four fingers in a noninvasive way, and is mounted on a standard force-feedback arm. The device incorporates four independent modules, one for each finger, inside an ergonomic shape, allowing the user to generate a wide range of virtual hand configurations to grasp naturally an object. It is also possible to reconfigure the virtual finger positions when holding an object. The paper explains how the device is used to control a virtual hand in order to perform dexterous grasping operations. The structure of the HaptiHand is described through the major technical solutions required and tests of key functions serve as validation process for some key requirements. Also, an effective grasping task illustrates some capabilities of the HaptiHand

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on fourteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant R01 DC00126National Institutes of Health Grant R01 DC00270National Institutes of Health Contract N01 DC52107U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0003U.S. Navy - Office of Naval Research Grant N00014-96-1-0379U.S. Air Force - Office of Scientific Research Grant F49620-95-1-0176U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0202U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0002National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-92-J-184

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2 and reports on five research projects.National Institutes of Health Contract 2 R01 DC00117National Institutes of Health Contract 1 R01 DC02032National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Contract N01 DC22402National Institutes of Health Grant R01-DC001001National Institutes of Health Grant R01-DC00270National Institutes of Health Grant 5 R01 DC00126National Institutes of Health Grant R29-DC00625U.S. Navy - Office of Naval Research Grant N00014-88-K-0604U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-1814U.S. Navy - Naval Air Warfare Center Training Systems Division Contract N61339-94-C-0087U.S. Navy - Naval Air Warfare Center Training System Division Contract N61339-93-C-0055U.S. Navy - Office of Naval Research Grant N00014-93-1-1198National Aeronautics and Space Administration/Ames Research Center Grant NCC 2-77

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on twelve research projects.National Institutes of Health Grant R01 DC00117National Institutes of Health Grant R01 DC02032National Institutes of Health/National Institute of Deafness and Other Communication Disorders Grant 2 R01 DC00126National Institutes of Health Grant 2 R01 DC00270National Institutes of Health Contract N01 DC-5-2107National Institutes of Health Grant 2 R01 DC00100U.S. Navy - Office of Naval Research Grant N61339-96-K-0002U.S. Navy - Office of Naval Research Grant N61339-96-K-0003U.S. Navy - Office of Naval Research Grant N00014-97-1-0635U.S. Navy - Office of Naval Research Grant N00014-97-1-0655U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research Grant N00014-96-1-0379U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0202National Institutes of Health Grant RO1 NS33778Massachusetts General Hospital, Center for Innovative Minimally Invasive Therapy Research Fellowship Gran

    From Autonomous to Performative Control of Timbral Spatialisation

    Get PDF
    Timbral spatialisation is one such process that requires the independent control of potentially thousands of parameters (Torchia, et al., 2003). Current research on controlling timbral spatialisation has focussed either on automated generative systems, or suggested that to design trajectories in software is to write every movement line by line (Normandeau, 2009). This research proposes that Wave Terrain Synthesis may be used as an effective bridging control structure for timbral spatialisation, enabling the performative control of large numbers of parameter sets associated with software. This methodology also allows for compact interactive mapping possibilities for a physical controller, and may also be effectively mapped gesturall
    • …
    corecore