353 research outputs found

    Sub-Nyquist Sampling: Bridging Theory and Practice

    Full text link
    Sampling theory encompasses all aspects related to the conversion of continuous-time signals to discrete streams of numbers. The famous Shannon-Nyquist theorem has become a landmark in the development of digital signal processing. In modern applications, an increasingly number of functions is being pushed forward to sophisticated software algorithms, leaving only those delicate finely-tuned tasks for the circuit level. In this paper, we review sampling strategies which target reduction of the ADC rate below Nyquist. Our survey covers classic works from the early 50's of the previous century through recent publications from the past several years. The prime focus is bridging theory and practice, that is to pinpoint the potential of sub-Nyquist strategies to emerge from the math to the hardware. In that spirit, we integrate contemporary theoretical viewpoints, which study signal modeling in a union of subspaces, together with a taste of practical aspects, namely how the avant-garde modalities boil down to concrete signal processing systems. Our hope is that this presentation style will attract the interest of both researchers and engineers in the hope of promoting the sub-Nyquist premise into practical applications, and encouraging further research into this exciting new frontier.Comment: 48 pages, 18 figures, to appear in IEEE Signal Processing Magazin

    High-resolution distributed sampling of bandlimited fields with low-precision sensors

    Full text link
    The problem of sampling a discrete-time sequence of spatially bandlimited fields with a bounded dynamic range, in a distributed, communication-constrained, processing environment is addressed. A central unit, having access to the data gathered by a dense network of fixed-precision sensors, operating under stringent inter-node communication constraints, is required to reconstruct the field snapshots to maximum accuracy. Both deterministic and stochastic field models are considered. For stochastic fields, results are established in the almost-sure sense. The feasibility of having a flexible tradeoff between the oversampling rate (sensor density) and the analog-to-digital converter (ADC) precision, while achieving an exponential accuracy in the number of bits per Nyquist-interval per snapshot is demonstrated. This exposes an underlying ``conservation of bits'' principle: the bit-budget per Nyquist-interval per snapshot (the rate) can be distributed along the amplitude axis (sensor-precision) and space (sensor density) in an almost arbitrary discrete-valued manner, while retaining the same (exponential) distortion-rate characteristics. Achievable information scaling laws for field reconstruction over a bounded region are also derived: With N one-bit sensors per Nyquist-interval, Θ(log⁑N)\Theta(\log N) Nyquist-intervals, and total network bitrate Rnet=Θ((log⁑N)2)R_{net} = \Theta((\log N)^2) (per-sensor bitrate Θ((log⁑N)/N)\Theta((\log N)/N)), the maximum pointwise distortion goes to zero as D=O((log⁑N)2/N)D = O((\log N)^2/N) or D=O(Rnet2βˆ’Ξ²Rnet)D = O(R_{net} 2^{-\beta \sqrt{R_{net}}}). This is shown to be possible with only nearest-neighbor communication, distributed coding, and appropriate interpolation algorithms. For a fixed, nonzero target distortion, the number of fixed-precision sensors and the network rate needed is always finite.Comment: 17 pages, 6 figures; paper withdrawn from IEEE Transactions on Signal Processing and re-submitted to the IEEE Transactions on Information Theor

    Fast and direct inversion methods for the multivariate nonequispaced fast Fourier transform

    Full text link
    The well-known discrete Fourier transform (DFT) can easily be generalized to arbitrary nodes in the spatial domain. The fast procedure for this generalization is referred to as nonequispaced fast Fourier transform (NFFT). Various applications such as MRI, solution of PDEs, etc., are interested in the inverse problem, i.e., computing Fourier coefficients from given nonequispaced data. In this paper we survey different kinds of approaches to tackle this problem. In contrast to iterative procedures, where multiple iteration steps are needed for computing a solution, we focus especially on so-called direct inversion methods. We review density compensation techniques and introduce a new scheme that leads to an exact reconstruction for trigonometric polynomials. In addition, we consider a matrix optimization approach using Frobenius norm minimization to obtain an inverse NFFT

    From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals

    Full text link
    Conventional sub-Nyquist sampling methods for analog signals exploit prior information about the spectral support. In this paper, we consider the challenging problem of blind sub-Nyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum. Our primary design goals are efficient hardware implementation and low computational load on the supporting digital processing. We propose a system, named the modulated wideband converter, which first multiplies the analog signal by a bank of periodic waveforms. The product is then lowpass filtered and sampled uniformly at a low rate, which is orders of magnitude smaller than Nyquist. Perfect recovery from the proposed samples is achieved under certain necessary and sufficient conditions. We also develop a digital architecture, which allows either reconstruction of the analog input, or processing of any band of interest at a low rate, that is, without interpolating to the high Nyquist rate. Numerical simulations demonstrate many engineering aspects: robustness to noise and mismodeling, potential hardware simplifications, realtime performance for signals with time-varying support and stability to quantization effects. We compare our system with two previous approaches: periodic nonuniform sampling, which is bandwidth limited by existing hardware devices, and the random demodulator, which is restricted to discrete multitone signals and has a high computational load. In the broader context of Nyquist sampling, our scheme has the potential to break through the bandwidth barrier of state-of-the-art analog conversion technologies such as interleaved converters.Comment: 17 pages, 12 figures, to appear in IEEE Journal of Selected Topics in Signal Processing, the special issue on Compressed Sensin

    Sinc interpolation of nonuniform samples

    Get PDF
    It is well known that a bandlimited signal can be uniquely recovered from nonuniformly spaced samples under certain conditions on the nonuniform grid and provided that the average sampling rate meets or exceeds the Nyquist rate. However, reconstruction of the continuous-time signal from nonuniform samples is typically more difficult to implement than from uniform samples. Motivated by the fact that sinc interpolation results in perfect reconstruction for uniform sampling, we develop a class of approximate reconstruction methods from nonuniform samples based on the use of time-invariant lowpass filtering, i.e., sinc interpolation. The methods discussed consist of four cases incorporated in a single framework. The case of sub-Nyquist sampling is also discussed and nonuniform sampling is shown as a possible approach to mitigating the impact of aliasing
    • …
    corecore